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Статья является третьей частью обзора работ, посвященных исследованиям 

свойств упругопластических материалов. Первая и вторая часть были посвящены 

анализу универсальных эмпирических законов деформирования, моделирующих     

свойства материала на всем диапазоне деформирования, вплоть до разрушения. 

Был сделан вывод о том, что для создания модели отклика материала на рост 

напряжений, закон деформирования должен быть, как минимум четырех-парамет-

рическим. Эмпирический закон Рамберга-Осгуда был признан наиболее качествен-

ным, по крайней мере для рассмотренного титанового сплава ВТ6. Тем не менее, 

несмотря на его точность, он не отражает свойств материала в зоне больших 

пластических деформаций, в том числе в окрестности точки предела прочности. В 

данной статье представлен анализ многозвенных моделей, описывающих связь 

между деформацией и напряжением, различными законами в зоне упругих и в зоне 

пластических деформаций. В обзор вошли: двузвенные модели Надаи (Nadai),                   

Мирамбелл-Реал (Mirambell, Real), Расмуссена (Rasmussen), Абделла (Abdella),      

сформулированные для материалов, кривая деформирования, которых не имеет 

участка с положительной кривизной. Также в обзоре рассмотрены трехзвенные 

модели Куача (Quach); Хертеле (Hertele); Белова-Головиной, которые позволяют 

моделировать кривые деформирования с участком положительной кривизны. 

Оценка качества эмпирических законов и соответствие их выборке эксперимен-

тальных точек осуществлена методом минимизации суммарного квадратичного 

отклонения и использованием метода градиентного спуска для определения                    

минимума функции многих переменных. В качестве материала для сравнительного 

анализа эмпирических моделей выбран титановый сплав ВТ6, для моделей Хертеле 

и Белова-Головиной — сталь Ст3сп. Показано, что модели, построенные на основе 

многозвенных сплайнов, боле точно определяют свойства упругопластических            

материалов, чем модели, построенные на основе универсальных законов. 

 

Ключевые слова: математическая модель кривой деформирования, эмпирические 

кривые напряжения-деформации, нелинейный закон упругости, упругопластические 

свойства материала, физические параметры упругопластических материалов,                  

обработка экспериментальных данных 

 

Введение. В первой [1] и второй [2] частях по теме данной статьи 

был приведен анализ универсальных математических моделей                 

нелинейного поведения упругопластических материалов. В данном 

сообщении представлен анализ многозвенных кривых напряжение-  

деформации. Как и в первых сообщениях, применены постулаты о 

ненапряженном начальном состоянии материала, о непрерывности и 

дифференцируемости кривой деформирования. Кроме того, будет   
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уделено внимание тому факту, что в точке контакта соседних участков 

все параметры материала, определяемые слева и справа от этой точки 

должны дать одинаковые значения функции и одинаковые значения 

касательных модулей. 

Анализ однозвенных кривых напряжение-деформация показал, 

что наиболее качественным среди них является закон Рамберга-

Осгуда [3]. Однако, в работах [4–16] последних лет, представлены               

результаты исследований, показывающие, что закон Рамберга-Осгуда 

не отражает свойств материала в зоне больших пластических                   

деформаций, в том числе в окрестности точки предела прочности.            

Поэтому начиная с конца ХХ века для описания свойств материалов 

разработан ряд многозвенных моделей [17–28], анализ которых                  

представлен в данной статье. 

В данной работе все уравнения, соответствующие законам дефор-

мирования, приведены к безразмерному виду так, чтобы кривые 

напряжение-деформация любого материала проходили через точки 

 0;0  и  1;1 . Для этого напряжения   нормированы на напряжение 

предела прочности 
c :  

 * ,
c





   (1) 

а деформации   на деформацию предела прочности c : 

 * ,
c





   (2) 

*

0E  — нормированный касательный модуль упругости в начальной 

точке  0;0  кривой деформирования:  

 
* 0
0 ,c

c

E
E




   (3) 

*

1E  — нормированный касательный модуль упругости в конечной 

 1;1  точке истинной кривой деформирования:  

 * 1
1 .c

c

E
E




   (4) 

Сравнение выборки экспериментальных точек с эмпирическими 

кривыми осуществляется стандартной процедурой минимизации                      

среднеквадратичного отклонения и использованием метода градиент-

ного спуска для определения минимума функции многих переменных. 

Для оценки результата моделирования кривой деформирования                   
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с отрицательной кривизной на всем интервале нагружения, в данной 

статье рассмотрен титановый сплав ВТ6. В качестве материала, кривая 

деформирования которого имеет участок с положительной кривизной 

выбрана сталь Ст3сп. 
Модель Надаи (Nadai). Первое аналитическое выражение для 

кривой деформирования, в виде двухзвенной модели, предложил в 
1939 году Надаи [17]: 

 
0

0

,

.

p

n

p

y p

y p

σ
σ σ

E
ε

σ σσ
ε σ σ

E σ σ





   
      

  (5) 

Здесь: y  — условный предел текучести; y  — деформация 

условного предела текучести; p  — предел пропорциональности;          

0E  — модуль упругости в начальной точке; n  — безразмерный           

параметр материала.  
В нормированном виде модель Надаи будет: 
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* *

*
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*
* **

* * *

* * *
0

,
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ε
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
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  (6) 

Нормированная кривая гарантированно проходит через началь-

ную  0;0  и конечную  1;1  точки: 

 

*

*

* *

* * *
0

(0) 0,

11
(1) 1.

n

p

y

y p

ε

σ
ε ε

E σ σ



 
     

  (7) 

В качестве точки контакта здесь выбрана точка предела пропор-

циональности 
*

p . 

Проверка на непрерывность. 

 

* *

* *

**
*

* *0
0 0

* * **
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* * * *0
0 0

* * *

lim ,
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  (8) 
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Модель дает непрерывную кривую деформирования.  

С учетом (3) получим: 
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  (9) 

Преобразованный закон Надаи принимает вид: 
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  (10) 

Кривая деформирования должна быть дифференцируема: 
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  (11) 

Из определения касательного модуля следует:  
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  (12) 

Значения касательного модуля в характерных точках кривой: 
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    

  (13) 

Таким образом, кривая Надаи непрерывна и дифференцируема. 

На рис. 1 показана кривая деформирования, построенная по                    

модели Надаи.  
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Теоретическая кривая имеет среднее квадратичное отклонение от 

выборки экспериментальных значений по деформациям 5,3 % при                    

оптимальных значениях параметров материала: 2,1n  ; *
0 3,2E  ; 

*
1 0,048E  . 

 
 

 
  

 

Рис. 1. Экспериментальная кривая титанового сплава ВТ6 и теоретическая 

кривая по модели Надаи 

 

Модель Мирамбелл-Реал (Mirambell, Real). В 2000 году                     

Мирамбелл и Реал [18] сформулировали следующую двухзвенную      

модель материала: 
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  (14) 

Здесь: y  — условный предел текучести; y  — деформация 

условного предела текучести; yE  — касательный модуль в точке 

условного предела текучести; 
c  — предел прочности; c  —                            

деформация предела прочности; n  — параметр материала. 

В этой модели принят закон Рамберга-Осгуда для описания                      

кривой деформирования на участке до деформаций условного предела 

текучести y . Как было показано выше, кривая напряжения-                         
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деформации, построенная по закону Рамберга-Осгуда не имеет 

начального линейного участка. Для более значительных пластических                                     

деформаций предложена формула, представляющая собой модифици-

рованный закон Рамберга-Осгуда, сформулированный в предположе-

нии, что на участке, где 
y  , материал имеет самостоятельную               

кривую деформирования с начальной точкой, совпадающей с точкой 

 ;y y  .  

Следует отметить, что в данной статье предлагается изменить 

множитель при степени на интервале y   таким образом, чтобы 

кривая деформирования после нормировки приходила в точку: 

 * *1; 1   . 

После нормировки модель Мирамбелл-Реал приобретает вид: 
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  (15) 

С учетом выполненной замены множителя, нормированная кривая 

проходит через начальную  0;0  и конечную  1;1  точки:  
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  (16) 

Проверка непрерывности: 

Слева от точки  * *;y y  : 
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Проверка на дифференцируемость: 
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Касательный модуль: 
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  (18) 

Касательный модуль в характерных точках кривой деформирова-

ния: 
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  (19) 

Непрерывность кривой деформирования позволяет потребовать 

равенства касательного модуля в точке контакта, при * *
y   : 
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Откуда: 
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Отсюда определен параметр n : 
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В точке предела прочности, при * 1  : 
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Тогда:  
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Таким образом, кривая Мирабелл-Реал непрерывна и дифферен-

цируема, с учетом произведенной замены в оригинале формулы (14). 

На рис. 2 показана кривая деформирования, построенная в соот-

ветствии с моделью Мирамбелл-Реал.  
 

 

 
 
 

Рис. 2. Экспериментальная кривая титанового сплава ВТ6 и теоретическая 
кривая по модели Мирамбелл-Реал 
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Теоретическая кривая имеет среднее квадратичное отклонение от 
выборки экспериментальных значений по деформациям 2,9  % при           

оптимальных значениях параметров материала: 8,03n  ; *
0 3,14E  ; 

* 2,1yE  ; *
1 0,19E  ; * 0,28y  ; * 0,84y  . 

Модель Расмуссена (Rasmussen). В 2003 году Расмуссен [7]         
независимо от Мирамбелл и Реал сформулировал аналогичную модель 
для аустенитной, ферритной и дуплексной нержавеющей стали:  
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  (20) 

Здесь: y  — условный предел текучести; y  — деформация 

условного предела текучести; yE  — касательный модуль в точке 

условного предела текучести; 
c  — предел прочности; c  —                        

деформация предела прочности; n  и m  — безразмерные параметры 
материала. 

В отличии от модели Мирамбелл-Реал показатель степени                           

нелинейного слагаемого в модели Расмуссена на участке y                       

отличается от аналогичного показателя на участке y  . Значит                  

автор полагает, что при переходе через точку условного предела                
текучести механизм деформирования становится иным. 

Для этой модели в данной статье также изменен множитель при 

степени на интервале y   так, чтобы кривая деформирования после 

нормировки приходила в точку  * *1; 1   . 

После нормировки модель Расмуссена приобретает вид:  
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  (21) 

Проверка непрерывности. 

Слева от точки  * *;y y  :  
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Справа от точки  * *;y y  : 
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Модель дает непрерывную кривую деформирования, причем в 

точке предела прочности: 
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Кроме того, что кривая деформирования должна обладать свой-

ством непрерывности, она должна быть дифференцируема, поэтому 

следует получить формулу для касательного модуля. 
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Касательный модуль: 
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  (24) 

Касательный модуль в характерных точках кривой деформирова-

ния: 
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  (25) 

Непрерывность кривой деформирования позволяет потребовать 

равенства касательного модуля в точке контакта, при * *
y  : 
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Откуда: 
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  (26) 

Параметр n  на первом участке кривой деформирования выражен 

через координаты характерных точек кривой: 
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В точке предела прочности, при * 1  : 
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Тогда: 
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  (27) 

Кривая Расмуссена непрерывна и дифференцируема. 

На рис. 3 показана кривая деформирования, построенная в                               

соответствии с моделью Расмуссена. 
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Рис. 3. Экспериментальная кривая титанового сплава ВТ6 и теоретическая 
кривая построенная по модели Расмуссена 

 

Теоретическая кривая имеет среднее квадратичное отклонение от 

выборки экспериментальных значений по деформациям 2,9 % при                  

оптимальных значениях параметров материала 0,83n  ; *
0 2,0E  ; 

* 1,9yE  ; *
1 0,03E  ; * 0,26y  ; * 0,85y  .  

Модель Абделла (Abdella). В 2006 году Абделла предложил              

обратную форму для моделей Мирамбелл-Реал и Расмуссена [19–21] 

описывающую напряжение, как явную функцию деформации: 
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Здесь: y  — условный предел текучести; y  — деформация 
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Модель Абделла также, как и предыдущие две модели, сформули-

рована, как состыкованные в точке условного предела текучести 

 ;y y  , две самостоятельные кривые, подчиняющиеся закону                  

Рамберга-Осгуда. В оригинальной модели напряжения нормированы 

на напряжение 
y , а деформации нормированы на деформацию 

y . 

Модель является семи параметрической. 

В точке контакта двух участков кривой деформирования: 
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Модель дает непрерывную кривую деформирования. 

Удовлетворяя требованию, чтобы кривая проходила через точку 

предела прочности  ;c c  , получаем: 
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Отсюда может быть выражена связь между двумя параметрами: 
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  (29) 
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Другие параметры выразим, удовлетворяя требование дифферен-

цируемости: 
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  (30) 

Касательный модуль в характерных точках кривой деформирова-

ния: 
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Отсюда параметры модели Абделла будут выражены: 
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Подставив выражение 
2r  в (26) получаем выражение 

3r : 
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В результате, с учетом выраженных параметров, модель Абделла 

принимает вид: 
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  (32) 

Модель Абделла дает непрерывную и дифференцируемую кри-

вую. Однако модель сохраняет недостатки модели Рамберга-Осгуда. 

Произведем перенормировку модели. Как все предыдущие модели 

нормируем напряжения на напряжение предела прочности 
c , а                 

деформации на деформацию предела прочности c . 
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Проверяем перенормированную модель кривой деформирования 

(30) на непрерывность в точке контакта  * *;y y   и дифференцируе-

мость: 
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Кривая деформирования непрерывна. 

Учтем, что координаты точки предела прочности в новой норми-

ровке  * *1; 1c c   : 
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Обеспечим требование дифференцируемости: 
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Касательный модуль в характерных точках кривой деформирова-

ния: 
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  (34) 

Параметры n  и m  определяются из (32): 
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На рис. 4 показана кривая деформирования, построенная в                      

соответствии с моделью Абделла.  

Теоретическая кривая имеет среднее квадратичное отклонение от 

выборки экспериментальных значений по напряжениям 2,2 % при                 

оптимальных значениях параметров материала: 7n  ; 0m  ;             
*
0 3,3E  ; * 15,5yE   ; *

1 0,12E  ; * 0,32y  ; * 0,92y  .  

 

 

 
 

 

Рис. 4. Экспериментальная кривая титанового сплава ВТ6 и теоретическая 

кривая построенная по модели Абделла 
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Здесь: *
p  — нормированный условный предел текучести; *

p  — 

нормированная деформация условного предела текучести; *
1,0  —                 

нормированное напряжение в контрольной точке, где напряжение               

соответствует деформации 1,0 %; *
0E  — нормированный касательный 

модуль в начале координат; *
pE  — нормированный касательный                 

модуль в точке условного предела текучести; n  и m  — безразмерные 

параметры материала; a  и b  — константы материала. 
Данная модель подробно анализироваться не будет, так, как                         

предполагает линейную асимптотику кривой деформирования при 
больших деформациях, что представляется маловероятным для                            
большинства материалов. 

Модель Хертеле (Hertele). В 2010 году Стейн Хертеле (Stijn 
Hertele), Вим Де Вале (Wim De Waele), Руди Денис (Rudi Denys)                    
разработали эмпирическую модель для трубопроводных сталей,               
имеющих на кривой деформирования, участок с отрицательной                   
кривизной (участок упрочнения). 

Описание модели, названной авторами UGent, приведено в                           
работах [24-26]. Кривая деформирования, в соответствии с этой                      
моделью, является составной. Область определения разбивается на 
три участка. На первом и третьем участках постулируется закон              
Рамберга-Осгуда с разными показателями степени, а на втором посту-
лируется кривая, плавно соединяющая кривые на первом и третьем 
участке так, что в целом кривая является дифференцируемой. Первый 
участок назван авторами «early yielding segment», второй — «transition 
segment», третий — «extensive yielding segment». Участки разделены 

двумя характерными точками с координатами  1 1;   и  2 2;  . По 

определению, эти точки являются точками сопряжения на трехзвен-
ном сплайне кривой деформирования. На рис. 5 приведена, как цитата 
из [24-26], графическая иллюстрация модели UGent. Модель является 
шести-параметрической. 

В авторской формулировке закон UGent имеет вид: 
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Рис. 5. Графическая иллюстрация модели UGent 

   

После подстановки в (36) получим: 
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 (37) 

Сплайн непрерывен как при переходе через точку  1 1;  , так и 

через точку  2 2;  . 

В соответствии с этой формулировкой определим и касательный 

модуль, как производную от напряжения по деформации: 
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Отсюда видно, что сплайн дифференцируем как при переходе                   

через точку  1 1;  , так и через точку  2 2;  . 

Однако, идея авторов реализована ими с несколькими                                           
логическими недостатками.  

Первый недостаток касается области определения двух законов 
Рамберга-Осгуда. Строго следуя концепции авторов, закон Рамберга-

Осгуда с показателем степени 1n  должен быть определен только на 

первом и втором участке, так как на третьем участке, согласно их                  
концепции, действует только закон Рамберга-Осгуда с показателем 

степени 2n . Аналогично, закон Рамберга-Осгуда с показателем                     

степени 2n  должен быть определен только на втором и третьем 

участке, так как, согласно их концепции, на первом участке действует 

только закон Рамберга-Осгуда с показателем степени  𝑛1.  Поэтому, 
согласно концепции авторов закона UGent, эволюция процесса                               
деформирования должна выглядеть следующим образом: начиная от 

начала нагружения и до точки  1 1;   действует первый закон                           

Рамберга-Осгуда с показателем степени 1n . В точке  1 1;   «вклю-         

чается» второй закон Рамберга-Осгуда с показателем степени 2n  и на 

втором участке они работают вместе до точки  2 2;  . При переходе 

через точку  2 2;   первый закон Рамберга-Осгуда с показателем            

степени 1n  «выключается», и далее, на третьем участке, работает 

только второй закон с показателем степени 2n . 

Как следствие, на втором участке должны действовать одновре-
менно оба закона и только они. Однако, сама структура закона                  
Рамберга-Осгуда определяется в общем случае тремя механизмами    
деформирования, которые определяются линейной комбинацией двух 
линейных полиномов и степенной функции. Как результат, на втором 
участке действует совместно четыре механизма деформирования, 
определяемые двумя линейными полиномами и двумя степенными 
функциями. Из них линейными комбинациями можно образовать как 
оба закона Рамберга-Осгуда, так и ещё два «переходных» закона,                 
работающих только на втором участке. 

Отсюда следует второй существенный логический недостаток, 
присущий реализации закона UGent — это наличие иных, не                             
свойственных обоим законам Рамберга-Осгуда механизмов                                 
деформирования, определяемых степенными функциями с                                        

показателями степени  1 1n   и  2 1n  . 

Третий недостаток касается условий, которым удовлетворяет            
закон деформирования на третьем участке. Не трудно убедиться             
проверкой, что «второй закон Рамберга-Осгуда» удовлетворяет                  
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следующим требованиям: в точках  ;0  и  0,2 0,2;    дефор-

мация и касательный модуль должны быть заданными. Однако не 
трудно показать, что обе точки не лежат внутри третьего участка.          
Отсюда вытекают трудности в определении физических параметров, 
свойственных «второму закону Рамберга-Осгуда», так как, согласно 
идее авторов, только на третьем участке процесс деформирования 
определяется исключительно этим законом. 

Модель Белова-Головиной.  В 2021 году была сформулирована 

трехзвенная модель Белова-Головиной (28)–(29) для кривой деформи-

рования, имеющей участок с положительной кривизной: 
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  (39) 

 Основная идея заимствована у модели UGent, но в отличии от нее 

модель Белова-Головиной отражает зависимость напряжения от              

деформации, а не наоборот. Модель Белова-Головиной лишена                

недостатков, характерных для модели UGent.  

Для первого и третьего участков принят закон Рамберга-Осгуда с 

индивидуальным для каждого участка набором формальных                      

параметров: 
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Закон деформирования на втором участке сформулирован, как        

линейная комбинация двух линейных полиномов и двух степенных 

функций, характерных для законов Рамберга-Осгуда, действующих на 

первом и третьем участках. 

Модель является двенадцати-параметрической. Формальные           

параметры: 
0A , 1A , 

2A , 
0B , 1B , 

2B , 3B , 
0C , 1C , 

2C , 1n , 2n  выражены 

через двенадцать физических параметров, имеющих ясный                       

физический смысл: через координаты четырех характерных точек      

кривой  0 0;  ,  1 1;  ,  2 2;  ;  ;c c   и величины касательных 

модулей в этих точках 
0E , 1E , 

2E , 
cE . 

Четыре параметра 
0A , 1A , 

2A , 1n  в (39) принадлежат закону               

Рамберга-Осгуда первого участка 
10     и должны удовлетворять 

следующим требованиям: в начальной и конечной точках первого 

участка должны быть заданы напряжение и модуль касательной. С 

учетом этого требования: 
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  (40) 

Параметры 
0C , 1C , 

2C , 2n  в (37) принадлежат закону Рамберга-

Осгуда третьего участка 2 c     и должны удовлетворять                          

требованиям, чтобы в начальной и конечной точках третьего участка 

были заданы напряжение и касательный модуль. Отсюда получено: 
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Исключая из последнего уравнения системы (41) амплитуды 1С , 

2С  получаем нелинейное уравнение на показатель степени 2n  
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  (42) 

На втором, переходном участке 
1 2     выделены явно законы 

первого и третьего участков, а остаток интерпретирован, как специфи-

ческий механизм деформирования, работающий исключительно на 

втором участке: 
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  (43) 
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Введены дополнительные обозначения: 
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С учетом этого: 
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Четыре последних слагаемых в (45) описывают работу дополни-

тельного механизма, характерного только для второго участка. 

Четыре параметра 
0B , 1B , 

2B , 3B  в (43) должны удовлетворять 

требованию, чтобы в начальной и конечной точках второго отрезка 

были заданы напряжения и касательные модули: 
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На рис. 6 приведена выборка из 524 экспериментальных точек для 

стали Ст3сп и соответствующая ей теоретическая кривая, построенная 

в соответствии с решением (39). 

 
 

 
 

 

Рис. 6. Экспериментальная кривая стали Ст3сп и теоретическая кривая                            

построенная по модели Белова-Головиной: 

 точка 1 —  1 1;  ; точка 2 —  2 2;   
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Теоретическая кривая имеет среднее квадратичное отклонение от 

выборки экспериментальных значений по деформациям 0,5% при            

оптимальных значениях параметров материала: 
1 1,19n  ; 

2 0,91n  ; 

*
0 1,1E  ; *

2 1, 2E  ; * 0cE  ; *
1 0,08  ; *

1 0,667  ; *
2 0,715  ; * 1c  ; 

* 1c  . 

Заключение. Проведенный анализ кривых деформирования                      

показал, что для качественного описания зависимости между                                

деформацией и напряжением на полном диапазоне нагружения, 

вплоть до точки предела прочности, необходимы многозвенные                    

модели, с различными законами в зоне упругих и в зоне пластических 

деформаций.  

Для кривых деформирования, не имеющих участка с положитель-

ной кривизной все двухзвенные модели, представленные в данном                    

обзоре, показали высокую точность, укладывающуюся в необходи-

мую инженерную точность 5%. Немного менее точной оказалась                  

модель Надаи, но возможно, для другого упругопластического                 

материала эта модель покажет более качественный результат. 

Для описания кривых деформирования, имеющих участок с                      

положительной кривизной необходимы, как минимум, трехзвенные 

модели, имеющие индивидуальные законы деформирования на                       

каждом участке. Границами участков в этом случае являются точки, 

где происходит смена знака кривизны кривой деформирования.  
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This article is the third part of a review of works devoted to the study of the properties of 

elastic-plastic materials. The first and second parts were devoted to the analysis of                           

universal empirical laws of deformation, which model the material properties over the                      

entire range of deformation, up to fracture. It was concluded that in order to create a model 

of the material response to stress growth, the deformation law must be at least four-                            

parametric. The empirical Ramberg-Osgood law was found to be the most qualitative, at 

least for the titanium alloy VT6 considered. However, despite its accuracy, it does not                

reflect the material properties in the zone of large plastic strains, including in the vicinity 

of the point of ultimate strength. This paper presents an analysis of multilink models                      

describing the relationship between strain and stress by different laws in the elastic zone 

and in the plastic zone. The review includes two-link models by Nadai, Mirambell-Real, 

Rasmussen, Abdella, formulated for materials whose strain curve has no positive curvature 

section. Also considered in the review are the three-link models of Quach; Hertele;                           

Belov-Golovina, which allow modeling of deformation curves with a positive curvature 

region. The evaluation of the quality of empirical laws and their correspondence to the 

sample of experimental points was carried out by minimizing the standard quadratic                      

deviation and using the method of gradient descent to determine the minimum of the func-

tion of many variables. The material for the comparative analysis of empirical models is 

titanium alloy VT6; for the Hertele and Belov-Golovina models — steel St3sp. It is shown 

that the models built on the basis of multi-line splines determine the properties of                      

elastic-plastic materials more accurately than the models built on the basis of universal 

laws. 

 

Keywords: mathematical model of the deformation curve, empirical stress-strain curves, 

nonlinear elasticity law, elastoplastic material properties, physical parameters of                           

elastoplastic materials, processing of experimental data 
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