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Численное исследование персистентных временных 

рядов на основе модели ARFIMA  

© Т.В. Облакова, Э. Касупович 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 
Работа посвящена методам обнаружения долговременной памяти в финансовых 
временных рядах. Методом R/S анализа с помощью оригинального программного 
кода исследован ряд значений реального  финансового индекса S&P500, получены 
оценки показателя Херста, продемонстрировано наличие персистентности. Для 
решения задачи прогнозирования будущих значений ряда предложена модель 
ARFIMA, представляющая собой обобщение стандартной модели ARIMA и предпо-
лагающая использование оператора дробного дифференцирования. Изложен и                   
реализован двухэтапный алгоритм построения прогноза для ряда логарифмических 
прибылей. Показано, что применение модели ARFIMA улучшает качество прогноза 
в сравнении с ARIMA по всем стандартным метрикам. 
 
Ключевые слова: стохастическое  моделирование, временные ряды,  персистент-
ность, показатель Хёрста, R/S анализ, модель ARFIMA 
 

Введение. Первым математиком, предложившим модель финан-
сового рынка был, как известно, Луи Башелье. В начале XX века в 
своих работах он применил открытое к этому моменту броуновское 
движение к изучению колебаний курсов ценных бумаг. 

Спустя полвека Марковитц на основе теории Башелье создал                
теорию инвестиционного портфеля. Далее начали появляться новые 
модели, основанные на результатах предшественников. Такие как:                 
модель оценки финансовых активов (CAMP), модель Блэка-Шоулза 
для оценки стоимости опционов и другие. Все эти модели были                     
построены на основе гипотезы о нормальности цен и хорошо работали 
до 87 года прошлого столетия. Однако кризис показал, что в периоды 
краха фондовых рынков модели, основанные на гауссовском распре-
делении, несостоятельны. 

Альтернативный подход предложил американский математик 
Мандельброт. Он обнаружил, что изменение курсов ценных бумаг на 
самом деле не похоже на гауссовское распределение: обнаруживаются 
так называемые «тяжелые хвосты», высокие пики (рис. 1). Причем в 
периоды спокойствия несоответствие слабо заметно, тогда как при 
приближении к кризисным годам указанные эффекты выражены                   
сильнее.  

Полученные Мандельбротом результаты позволили сделать                    
предположение, что динамика фондовых рынков описывается более 
сложным законом. Поиски альтернативных моделей, объясняющих 
обнаруженные эффекты, интенсивно продолжается все последние де-
сятилетия [1–18]. 
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Рис. 1. Частотное распределение пятидневных прибылей  

по индексу S&P500. Декабрь 1991 — октябрь 2021: 

─ — плотность нормального распределения; 

 ─ — относительные частоты распределения индекса  

 

Целью настоящей работы является: 

 проверка гипотезы о наличии долговременной памяти в                        

финансовых временных рядах методом R/S анализа с использованием 

реальных данных в открытом доступе; 

 подбор параметров и реализация модели ARFIMA, прогнози-

рующей будущие значения ряда с учетом этой зависимости; 

  визуализация, анализ и интерпретация полученных резуль-                  

татов. 

Метод R/S анализа. Рассмотрим последовательность «логариф-

мических прибылей»  
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где  ,  0nX X n   — последовательность значений некоторого              

финансового индекса. Образуем величины 1 .  n nH h h    и                   

положим  
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Разность 
k n

k
H H

n
  имеет смысл отклонения kH  от среднего              

значения 
n

k
H

n
, а величина 

nR  таким образом характеризует степень 

разброса этих отклонений. 

/R S  анализ исследует поведение нормализованного размаха 

/n nR S , где nS  — эмпирическое среднее квадратичное, то есть  
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В предположении независимости величин  nh  (гипотеза 0H ) 

Феллер установил  асимптотическое поведение  характеристик  nR :  
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Этот результат позволяет заключить, что при справедливости 0H  

при больших n  значение /n nR S  должно быть близко к 
1/2

2
n


, или в  

логарифмах 
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Таким образом проверка гипотезы 0H  (наличие линейной                   

зависимости между ln  n

n

R

S
 и ln n  с коэффициентом 1 2 ) может                          

осуществляться методами регрессионного анализа. Отклонение гипо-

тезы 0H  может быть объяснено зависимостью величин  nh . 

Модель ARFIMA(p,d,q).   При прогнозировании стационарных 

временных рядов широко и успешно используется модель 

 ,ARMA p q : 

 1 1 0 0 1 1 ,n n p n p n n q n qh a h a h a b b b             (1) 

где  n   — стандартный гауссовский белый шум, ,p q  — параметры 

модели, 0 0, . ,  , .p qa a b b   — постоянные. Равенство (1) с помощью 
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лагового оператора L , действующего по правилу 1n nLh h  , удобно в 

виде:  

    0 ,n nAR L h a MA L h    (2) 

где 

    1 0 11 ,   .p q

p qAR L a L a L MA L b b L b L        (3) 

Модель ( ), ,ARIMA p d q  отличается тем, что вместо последова-

тельности  nh  в соотношении (2) используются разности порядка d : 

    1

1 .d d

n n nh h h

      

Следовательно, получаем следующее определение модели 

 , ,ARIMA p d q : 

      0 .d

n nAR L h a MA L      

Замечено, что модели  ,ARMA p q  и  , ,ARIMA p d q  в рядах с 

долговременной памятью работают плохо. Для отражения свойств 

долговременной памяти (в случае ее обнаружения) в [16] предлагается 

использовать модель ARFIMA  (AutoRegressive Fractional Integrated 

Moving Average) которая вид: 

     01 ,
d

n nAR L L h a MA L      (4) 

где  0,5;0,5d    — дробный коэффициент, связанный  с показателем 

Хёрста соотношением, полученным Гевеке и Портер-Худак в работе 

[17] 

 1/ 2.d H    (5) 

Разностный оператор  1
d

L  можно естественным образом с по-

мощью биномиального разложения записать в виде: 

    
 
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1 ,

Γ 1 Γ 1

d k k
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k k d k
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 
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   
    (6) 

где d  — любое действительное число. 

Итого, ARFIMA  использует три параметра: 

 p  — коэффициент авторегрессии; 

 q  — коэффициент скользящего среднего; 

 d  — дробный коэффициент,  0,5;0,5d   . 
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В рассмотренной выше модели (4) дробный разностный коэффи-

циент отвечает за самоподобие ряда. При коэффициенте 0d   модель 

(4) вырождается в  ,ARMA p q . 

Алгоритм решения. Рассмотрим детально алгоритм реализации  

модели (4), который предполагает  следующую декомпозицию задачи. 

Шаг 1. Методом R S  анализа оцениваем показатель Херста H  и 

определяем порядок дифференцирования d  по формуле (5). 

Шаг 2. Уравнение (4) предлагается разделить на две части: 

  1 ,
d

n nL h y    (7) 

     0 .n nAR L y a MA L     (8) 

 Этап (7), который можно интерпретировать как сглаживание  nh  

его предыдущими значениями,  реализуем его по формуле (6) . 

Шаг 3. По сглаженному ряду  ny  стандартными методами               

подбираются параметры модели (8). 

Шаг 4. Моделирование прогноза будущих значений ряда                               

осуществляется на основе соотношения (4), из которого получается      

зависимость будущих значений от прошлых. В самом деле, преобра-

зуем левую часть (4) с учетом (6) следующим образом: 
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Далее перенесем все слагаемые из  левой части (4) за исключением 

nh  в правую и получим:  

 

0

0 1

1 1 1

. 

q

n j n j k n k

j k

p p
i

i n i i k n k

i i k

h a b w h

a h a L w h




 

 



 

  

   

 
   

 

 

  

  (9) 

Для оценки результатов моделирования использовались следую-

щие метрики: 

 
1

1 n

i i

i

MAE X X
n 

   — средняя абсолютная ошибка; 
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 
1

1 n

i i

i

RMSE X X
n 

   — корень средней квадратичной 

ошибки; 

 
1

100% n
i i

i i

X X
MAPE

n X


   — средняя абсолютная процентная 

ошибка; 

 
12

1

1

n

i ii

n

i ii

X X
R

X X






 






 — коэффициент детерминации. 

Интерес представляют две последние метрики. MAPE  — безраз-

мерный коэффициент с простой интерпретацией — показывает в                

процентах насколько в среднем модель ошибается. 2R  — коэффи-                  

циент, который измеряет долю дисперсии, объясненную моделью               

[19, 20]. Если значение этой метрики близко к 1, то считают, что                       

модель хорошо описывает данные. 

Численное решение задачи прогнозирования. Рассмотрим ряд            

значений финансового индекса S&P500 (рис. 2). 
 

 

 
 

а 

 

 
 

б 

Рис. 2. График: 

а — наибольшая зафиксированная цена индекса S&P500 за день; 

б  — логарифмическая прибыль S&P500 
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Применив к ряду логарифмических прибылей метод R S  анализа, 

получаем оценку показателя Херста 0,586H  . Тогда дробный                

разностный коэффициент 
1

0,086
2

d H   . Поскольку показатель 

Херста описывает поведение ряда для каждого его подотрезка,                 

ограничим размер исследуемого ряда 4000 значениями. Согласно фор-

муле (7) продифференцируем ряд логарифмических прибылей (рис.3). 
 

 

 
 

Рис. 3. Результат дифференцирования ряда логарифмических прибылей: 

   — th ;  ─ — tY   

 

Для подбора параметров модели ARMA  воспользуемся открытым 
модулем arima.models библиотеки statsmodels. Дополнительно к             
решению, она высчитывает критерии, на основании которых мы будем 
принимать модель [19]. 

В результате оптимальной оказалась модель: 
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Тогда, подставляя полученный результат (10) в формулу (9),                     
получаем численное выражение прогноза логарифмических                               
прибылей: 
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Результат прогнозирования логарифмических прибылей отражен 
для 100 следующих значений на рис. 4. 

Переведем логарифмические прибыли в абсолютные значения по 
формуле 

1 .ht

t tX X e   

Результат приведен на рис. 5. 
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Рис. 4. Прогноз 100 следующих значений для ряда логарифмических прибылей: 

─ — th ;  ─ — прогноз 

 

 

 
 

Рис. 5. Прогноз 100 следующих значений цен индекса S&P500 

─ — tX ;  ─ — прогноз 

 

Результаты прогнозирования. Для получения более объектив-

ных результатов произведено моделирование нескольких прогнозов 

для модели ARFIMA   (рис. 6). 

Для сравнения результатов произведем прогноз цен наиболее                 

широко используемой моделью ARIMA (рис. 7). 
 

 

 
 

Рис. 6. Моделирование семи траекторий прогноза цен индекса S&P500  
моделью ARFIMA  на фоне реального изменения (сплошная линия): 

─ — tX ;  ̵  ̵  ̵  — прогноз № 1;  ̵  ̵  ̵  — прогноз № 2; 

  ̵  ̵  ̵  — прогноз № 3;   ̵  ̵  ̵  — прогноз № 4; 
   — прогноз № 5;  ̵  ̵  ̵  — прогноз № 6; 

̵  — прогноз № 7 

 

Для усредненных траекторий вычислим значения метрик для двух моделей, и 

сравним полученные результаты в виде табл. 1. 
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Рис. 7. Моделирование семи траекторий прогноза цен индекса S&P500  
моделью ARIMA  на фоне реального изменения (сплошная линия): 

─ — tX ;  ̵  ̵  ̵  — прогноз № 1;  ̵  ̵  ̵  — прогноз № 2; 

  ̵  ̵  ̵  — прогноз № 3;   ̵  ̵  ̵  — прогноз № 4; 
̵ — прогноз № 5;  ̵  ̵  ̵  — прогноз № 6; 

    — прогноз № 7 

Таблица 1 

Полученные метрики по прогнозу моделями ARFIMA и ARIMA 

Модель MAE RMSE MAPE 2R  

ARFIMA 42,946 51,567 0,031 0,540 

ARIMA 174,783 198,130 0,127 0,288 

 

Выводы. Из полученных результатов можно сделать вывод, что 
модель ARIMA значительно хуже справляется с задачей прогноза                      
финансовых временных рядов. Она сильнее ошибается в абсолютных 
значениях и не способна уловить тенденцию в изменении поведения 
траектории. 

Также интерпретируя результаты, полученные с использованием 
ARFIMA модели, можно сделать выводы: 

 модель в среднем ошибается на 3 %; 

 модель описывает вариацию значений на 54 %; 

 модель имеет несколько серьезных выбросов, объясняющих 
превышение RMSE на девять пунктов по сравнению с MAE. 
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The work is devoted to methods for detecting long-term memory in financial time series. 

Using the method of analysis with the help of the original program code, a number of 
values of the real financial index S & P500 were studied, estimates of the Hurst index were 

obtained, and persistence was demonstrated. To solve the problem of predicting the future 

values of a series, the ARFIMA model is proposed, which is a generalization of the stand-

ard ARIMA model and involves the use of a fractional differentiation opera-tor. A                       

two-stage algorithm for constructing a forecast for a series of logarithmic profits is                   

presented and implemented. It is shown that the use of the ARFIMA model improves the 

quality of the forecast in comparison with ARIMA for all standard metrics.   
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