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Продемонстрирован математический вывод представленной модели нейронной 

сети. Сведение задачи классификации к задаче оптимизации. Произведен разведы-

вательный анализ данных, а также их предобработка для дальнейшего использо-

вания в обучении алгоритмов классификации. Были спроектированы архитектуры 

нейронных сетей, зависящих от функции активации, количества скрытых слоев 

нейронной сети и количества нейронов в скрытых слоях. Обучено более десяти 

нейронных сетей, решающих поставленную задачу кредитного скоринга. Произве-

ден расчет времени обучения нейронных сетей. Представлено решение задачи при 

помощи классических алгоритмов машинного обучения. Можно было заметить, 

что стандартное отклонение accuracy и ROC AUC для нейронных сетей больше, 

чем у случайного леса. Это происходит из-за того, что мы выбираем начальные 

веса случайным образом и градиенты считаем не на всей выборке, а на малых             

частях, что добавляет некоторую погрешность при обучении. Но эти отклонения 

были не только в худшую сторону. В лучших ситуациях, по обеим метрикам, 

нейронные сети показывали результат хуже всего на пару процентов. Произведен 

анализ резульатов. Сравнительный анализ показывает, что нейронные сети          

имеют лучшее качество классификации, чем классические алгоритмы машинного 

обучения, а также, что нейронные сети имеют меньшее время обучения, чем 

классические алгоритмы машинного обучения. Представлены графики и                 

таблицы, отображающие имеемые результаты. 
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Введение. Кредитный скоринг  система оценки кредитоспо-

собности лица, основанная на численных статистических методах. 

Кредитный скоринг широко используется как крупными банками, 

финансовыми организациями, так и в потребительском (магазинном) 

экспресс-кредитовании на небольшие суммы[1]. 

Задача кредитного скоринга возникла в связи с необходимостью 

уменьшения рисков, которым может подвергнуть себя организация, а 

также вследствие имения большого количества данных людей,                   

ежедневно берущих в долг денежные средства для приобретения                  

товаров или услуг.  

Одним из основных рисков является невозврат заемщиком                  

суммы кредита в полном объеме или в указанный срок, т.е. наруше-

ние обязательств. Оценка кредитных рисков потенциального                 

заемщика называется кредитным скорингом (от англ. credit scoring). 

Говоря о кредитном скоринге, как правило, имеют в виду анализ            
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рисков по кредитованию физических лиц, хотя методы оценки 

надежности организаций также существуют.  

Кредитный скоринг состоит в применении алгоритмов, получен-

ных с использованием математических и статистических методов, с 

тем, чтобы разделить потенциальные кредитные операции на непере-

секающиеся группы риска, хорошие и плохие [2]. Плохие риски                 

подразумевают бóльшую вероятность нарушения обязательств заем-

щиком, поэтому необходимо выявлять факторы кредитного риска, их 

значимость и взаимозависимость. Предполагается, что созданные 

модели могут выявлять закономерности, так что кредитные операции 

в будущем будут иметь такой же исход, как и операции со схожими 

характеристиками, для которых известна принадлежность к одному 

из рисков.  

Факторы, учитываемые при кредитном скоринге могут отличать-

ся в зависимости от алгоритмов и целей скоринга. К типично исполь-

зуемым факторам можно отнести демографические данные (семейное 

положение, возраст и др.) и характеристики занятости заемщика (тип 

занятости, должность и др.), информацию о кредитной истории и 

предыдущих отношениях с кредитором, характеристики предостав-

ляемой услуги, данные о финансовом благополучии клиента [3]. 

Целью данной работы является: 

 создание оптимальной модели классификации заемщика. 

Задачами данной работы являются: 

 обработка и фильтрация исходных данных; 

 разработка модели кредитного скоринга с использованием  

методов искусственных нейронных сетей; 

 оценка качества прогнозирования моделей; 

 сравнение итоговой модели с иными моделями. 

Работа была выполнена на языке программирования python с                 

использованием фреймворка Pytorch. 

Математическая постановка задачи, принятые допущения. 

Математическую постановку задачи можно записать следующим                

образом: пусть X   множество описаний объектов (людей), Y   

множество меток классов (ответов на вопрос: был ли выплачен кре-

дит). Существует неизвестная целевая зависимость: 

 * : ,y X Y   (1) 

значения которой известны на объектах обучающей выборки.  

Требуется построить алгоритм: 

 : ,a X Y   (2) 

способный классифицировать произвольный объект x X . 
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Математический вывод модели нейронной сети. Покажем 

простейшую архитектуру нейронной сети. Пусть задана однослойная 

нейронная сеть (нейрон). Используя теорему Колмогорова об                         

аппроксимации всякой непрерывной функции, заданной на единич-

ном d  кубе [4], можно показать, что такая нейронная сеть будет 

определяться выражением: 

    
2 1

1 1

,
d d

i ij j

i j

a x f x


 

 
  

 
    (3) 

где  1, ,
T

dx x x    вектор описания объекта; ,i ijf   некоторые 

непрерывные функции, при этом ijf  не зависят от a . 

Тогда для любой непрерывной функции  f x  найдется нейрон-

ная сеть  a x  с линейным выходом [5]: 

      , ,
M

a x W x   (4) 

 
           1

0 ,
k k k k

f x W z x


    (5) 

 
          1

,
k k k

z x f x


   (6) 

аппроксимирующая  f x  с заданной точностью [6]. 

Пусть имеется несколько видов архитектур нейронной сети для 

поставленной задачи: архитектура с убыванием размерности в                   

скрытых слоях, архитектура с одинаковой размерностью и архитек-

тура с увеличением размерности [7]. 

На первом шаге мы располагаем признаками количеством n , то-

гда выход линейной части нейронной сети на первом скрытом слое 

будет записан по формуле (7): 

    1

1 1

),
n m

i k

k i j

i j

v x x w b
 

    (7) 

где  1

jv x    вектор результирующих значений в скрытом слое;              

ix   признак i  заемщика; 
i

jw   вес j , данный соответствующим 

нейроном признаку i ; kb   смещение, данное соответствующим 

нейроном признаку k . 

Далее к (7) применим некоторую функцию активации, опреде-

ляемую в каждом слое соответственно. Тогда результат нелинейной     

части нейронной сети в первом скрытом слое будет определяться по 

формуле (8): 

 
1

1 1( ) ( ( )).kh x f v x   (8) 
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Далее действуем аналогично:  

      
1

2 1

1

1 1

,
m m

j k

k i j

i j

v x w f v x b


 

    (9) 

     2

2 2 .kh x f v x   (10) 

Производя аналогичные действия, в конечном итоге можем                    

записать результирующую модель нейронной сети в формуле (9): 

 

  

        

    

 

1

* * ,

*

, , ;

1
, ln 1 ln 1 ;

, argmin , ;

max;

max.

n

n

l

i i i

k

w b

ROC

y f v w b x

L y y y y y y
l

w b L y y

U
P x

U

S











   



 














  (11) 

В модели (9) также добавили необходимость увеличение площа-

ди под ROC-кривой [8]. Площадь под кривой будет увеличиваться, 

чем лучше модель предсказывает выплату кредита. Во время                

обучения данной модели будем пользоваться градиентными метода-

ми второго порядка, а именно метод, именуемый BFGS  вследствие 

необходимости расчета матрицы Гессе данный метод позволит               

учитывать при спуске кривизну кривой, что скажется, в свою                  

очередь, на времени работы алгоритма и на качестве работы                    

алгоритма. 

Обучение классических методов машинного обучения.                  

Обучим модель, используя метод логистической регрессии [9]. Для 

выбора наилучшей модели логистической регрессии, также будем 

варьировать количество итераций для обучения модели. Обучение 

алгоритма заняло 40 с.  

Необходимо рассмотреть метрику accuracy [10] на тестовых и 

тренировочных данных: 

 accuracy    0,8595,test    (12) 

 accuracy 0,8592.train    (13) 

Теперь рассмотрим основную метрику  площадь под                              

ROC-кривой (на график были выведены три наиболее эффективные                        

модели) (рис. 1). 
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Рис. 1. Результаты предсказаний логистической регрессии.  

Основной задачей является увеличение площади под кривой ROC.                                                          

Как видно, чем больше шагов (iterations) сделано  

в признаковом пространстве,  

тем большую площадь под кривой имеет данная модель: 

─  10 шагов 0,73633 ; ─  11 шагов 0,73636 ;  

─  12 шагов 0,73775  

 

Теперь обучим модель, используя метод решающих деревьев 

[11]. Прежде всего, обучим всего лишь одно решающее дерево.                       

С помощью одного решающего дерева уже можно строить прогнозы 

относительно клиентов банка.  

Необходимо рассмотреть метрику accuracy на тестовых и                           

тренировочных данных: 

 accuracy    0,8598,test    (14) 

 accuracy 0,8585.train    (15) 

Продолжим рассмотрение качества алгоритма и построим                       

метрику ROC на рис. 2. 

Теперь рассмотрим решающий лес и градиентный бустинг над 

деревьями [12]. В результате, на рис. 3 получаем следующий график 

зависимости качества от количества деревьев. 
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Рис. 2. Результаты предсказаний случайного дерева. Стоит обратить внимание 

на алгоритм, обученный на деревьях глубины «6». Как мы видим, данный алгоритм 

допускает случайный выбор ответа для классификации заемщика, поскольку   

ROC-кривая в окрестности точки (0,0) строится по прямой: 

─  глубина 3 : 0,69345 ; ─  глубина 4 : 0,69954 ;  

─  глубина 5 : 0,70939 ; ─  глубина 6 : 0,69783  

  

 
 

Рис. 3. Результаты предсказаний случайного леса и градиентного бустинга. 

Как можно было предположить, качество композиционных алгоритмов растет с 

увеличением количества деревьев. Для обучения нами будет взято 100 деревьев: 

─  RandomForest; ─  XGBoost;  
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Обучение нейронных сетей. При построении нейронной сети 

необходимо определить ее параметры (скорость обучения сети,        

количество эпох обучения, размер батчи (batch), значение параметра 

регуляризации), выбрать количество скрытых слоев и количество 

нейронов в них, произвести настройку весов нейронов. 

Построение нейросетевых алгоритмов не предполагает четких 

требований при выборе конфигурации и архитектуры сети, зачастую 

выбор конкретной структуры и настройка параметров осуществляют-

ся на основании многочисленных тестов, в результате которых                  

делается оптимальный выбор. 

В соответствии с (11) обучим восемнадцать архитектур нейрон-

ных сетей. Для решения задачи классификации был выбран                       

многослойный персептрон [13] (multilayer perceptron, MLP). 

В качестве активационных функций на выходном слое была                

использована логистическая функция, которая на выходе позволяет 

получить вектор с вероятностями принадлежности записи к конкрет-

ному классу. 

Скорость обучения нейронной сети может задаваться либо                                

константой, либо убывающей функцией от количества эпох                      

обучения [14]. Задание скорости обучения с помощью убывающей 

функции, например, линейной, позволяет подстраивать скорость 

обучения. В данной работе скорость обучения была задана констан-

той, равной 2 3e , так как такая скорость обучения считается эта-

лонной для выбранной архитектуры сети. Она обеспечивает высокую 

точность настройки весов.  

В соответствии с (11), обучим восемнвдцать нейросетей:  

 для сигмоидной функции активации  три однослойных 

нейросети, две двухслойных, четыре трехслойных,  

 для функции активации гиперболический тангенс  три одно-

слойных нейросети, две двухслойных, четыре трехслойных.  

Примем следующие обозначения  NNXP k . X   количество 

слоев в нейронной сети, P    используемая функция активации                

(S   сигмоидная, TS   тангенс гиперболический). В скобках                            

отображено количество нейронов в каждом скрытом слое.                           

Результаты представим в табл. 1, имеющую следующую структуру: 

нейросеть (название нейросети по приведенной выше терминологии), 

доля правильных ответов, ROC-AUC (результат метрики качества), 

время обучения (сколько требовалось данной нейросети времени, 

чтобы дать конкурентоспособный ответ).  

На рис. 4 покажем лучшие результаты их работы. 

Ниже представим таблицу результатов обучения нейронных                

сетей (табл. 1). 
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Рис. 4. Результаты предсказаний лучших из построенных архитектур 

 нейронных сетей: 

─  NN3S_AUC_200_100_50 0,74679 ;  

─  NN3S_AUC_50_100_200 0,74762 ; 

─  NN3S_AUC_150_50_150 0,74694 ; 

─  NN3S_AUC_50_250_50 0,74729  

Таблица 1 

Результаты работы нейронных сетей 

№ Нейросеть 
Доля правильных 

ответов 
ROC-AUC 

Время 

 обучения 

1 NN1S (200) 0,8515 0,74607 35 с 

2 NN1TS (200) 0,8516 0,70644 34 с 

3 NN1S (100) 0,8512 0,74658 30 с 

4 NN1TS (100) 0,8519 0,70053 30 с 

5 NN1S (50) 0,8507 0,74734 23 с 

6 NN1TS (50) 0,8521 0,71643 27 с 

7 NN2S (200, 100) 0,8514 0,74510 43 с 

8 NN2TS (200, 100) 0,8512 0,71623 44 с 

9 NN2S (100, 200) 0,8520 0,74627 40 с 

10 NN2TS (100, 200) 0,8499 0,71511 39 с 

11 NN3S (200, 100, 50) 0,8526 0,74679 47 с 
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Продолжение таблицы 1 

12 NN3TS (200, 100, 50) 0,8521 0,71502 52 с 

13 NN3S (50, 100, 200) 0,8516 0,74762 40 с 

14 NN3TS (50, 100, 200) 0,8521 0,72079 45 с 

15 NN3S (150, 50, 150) 0,8518 0,74694 43 с 

16 NN3TS (150, 50, 150) 0,8524 0,72219 44 с 

17 NN3S (50, 200, 50) 0,8521 0,74729 40 с 

18 NN3S (50, 200, 50) 0,8513 0,71967 42 с 

 

Результаты.  Приведенные результаты, без сомнений, можно 

улучшить путем дальнейшей работы с признаками: комбинируя их и 

присоединяя дополнительные таблицы. Также можно провести                    

эксперимент с гиперпараметрами модели[15].  

Теперь на рис. 5 построим ROC-кривую, учитывающую также и 

нейронную модель, выведенную в настоящей работе. 
 

 

 
 

 
 

Рис. 5. Результаты предсказаний лучших из построенных моделей машинного 

обучения и нейронных сетей: 

─  Custom_model 0,73940 ; ─  LogReg 0,73900 ; 

─  XGB 0,71891 ; ─  RF 0,63067  

 

Анализируя результаты, представленные в табл. 1 и на рис. 5                 

делаем следующие выводы: 
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 наилучшей моделью для решения поставленной задачи                 

является трехслойная нейронная сеть с сигмоидной функцией                

активации и возрастающим количеством нейронов в скрытых слоях; 

 использование сигмоидной функции активации увеличивает 

устойчивость нейросети относительно количества нейронов в                  

скрытых слоях, а также относительно глубины нейронной сети; 

 глубина нейронной сети для решения задачи кредитного              

скоринга не является решающим фактором для выбора нейронной 

сети, поскольку трехслойная нейронная сеть (лучшая из полученных) 

требует большего времени обучения, чем однослойная с малым                

количеством нейронов, хотя результаты разнятся в тысячных долях; 

 использование функции активации гиперболический тангенс 

не является оптимальным выбором функции активации в нейронной 

сети (как и смешение функций активаций), хотя время обучения 

нейронной сети с данной функцией активации не меньше времени, 

что необходимо обучению нейронной сети с сигмоидной функцией 

активации; 

 обучение нейронных сетей оказалось намного быстрее и               

эффективнее обучения стандартных моделей машинного обучения. 

Более того, потребовалось нахождение оптимального количества              

деревьев для обучения ансамблевых методов деревьев решений; 

 логистическая регрессия показывает практически сходный, но 

худший результат по сравнению с построенной моделью нейронной 

сети. 
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Neural network methods for solving the problem  

of credit scoring 
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The mathematical derivation of the presented neural network model is demonstrated. 

Reduction of the classification problem to an optimization problem. Produced                     

recon-naissance data analysis, as well as their preprocessing for further use in training 

classification algorithms. The architectures of neural networks were designed depending 

on the activation function, the number of hidden layers of the neural network and the 

number of neurons in the hidden layers. More than ten neural networks were trained to 

solve the task of credit scoring. The calculation of the learning time of neural networks 

was made. The solution of the problem using classical machine learning algorithms is 

presented. It could be seen that the standard deviation of accuracy and ROC AUC for 

neural networks is greater than that of a random forest. This is due to the fact that we 

choose the initial weights randomly and calculate the gradients not on the entire sample, 

but on small parts, which adds some learning error. But these deviations were not only 

for the worse. In the best situations, according to both metrics, neural networks showed 

the worst result by a couple of percent. The analysis of results is made. Comparative 

analysis shows that neural networks have better classification quality than classical ma-

chine learning algorithms, and also that neural networks have less training time than 

classical machine learning algorithms. Graphs and tables displaying the results obtained 

are presented.  
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