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В работе рассмотрено моделирование циклических процессов реального макроми-
ра набором двух (или большего числа) систем линейных разностных уравнений с 
постоянными коэффициентами. Показано, что из любого начального состояния 
система может быть переведена в заданное конечное состояние за заданное               
число шагов и, как следствие — получены условия существования циклического 
решения на плоскости или в пространстве любой размерности. Для циклического 
решения интегральные кривые  систем состыковываются по непрерывности.                 
Переключение с одной системы уравнений на другую происходит при  достижении 
интегральными кривыми границ на фазовой плоскости (пространстве). Проведен 
анализ скорости сходимости таких решений к устойчивому циклу. Показана          
существенная зависимость хода интегральных кривых (траекторий) от началь-
ных условий. Модель в виде авторегрессий связана с экспериментальными                    
данными — временными рядами и аппроксимирует их  по критерию минимизации 
среднеквадратичного отклонения.  
Предложенные модели могут также  применяться к задачам достижения задан-
ных значений процессов (технических, экономических) в заданный момент времени.  
 
Ключевые слова: Кусочно-линейные разностные уравнения, условие существова-
ния циклического решения, скорость сходимости, аппроксимация эксперименталь-
ных данных 

 

Введение. Известно, что общие вопросы  поведения траекторий 
систем нелинейных дифференциальных уравнений на фазовой 
плоскости, в частности, свойств циклов, строго рассмотрены в [1, 2, 
3]. Отдельные уточняющие исследования можно найти, например в 
[4]. Для моделирования биологических систем большое количество 
методов описано в [5]. Указанные исследования служат, однако, для 
качественного описания систем и не предназначены для связи 
моделей с какими либо экспериментальными данными. 

Мы же рассматриваем модели, использующие экспери-
ментальные данные, представленные временными рядами.  

 Исходные временные ряды при этом оказываются 
аппроксимированными решениями систем линейных разностных 
уравнений с постоянными коэффициентами, причем выполняется  
критерий МНК — минимизации среднеквадратичного отклонения.   

Такой выбор моделирующих функций представляется наиболее 
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соответствующим физической сути многих реальных динамических 

процессов макромира, поскольку даже процессы релаксационного 

типа,  например, в электронике или механике, имеют описание 

фронтов в виде быстро затухающих экспонент или функций вида  
   cos

j
e j





   [6, 7]. А для процессов  накопления или расхо-

дования некоторых  взаимосвязанных ресурсов, при которых  скорость 

накопления (расходования) пропорциональна наличествующей массе 

ресурсов, такое описание вытекает из самих понятий массы и скорости 

накопления. В чистом виде такое поведение характерно для 

радиоактивного распада делящихся элементов, изменения величин 

токов и напряжений в электронных цепях, содержащих индуктивности 

( L ), емкости (C ) и сопротивления ( R ). Уравнения, описывающие  

процессы,  соответствуют тут физической основе, заложенной в  

понятия индуктивности и емкости, что и обеспечивает адекватность 

модели и позволяет проводить численные расчеты всех участвующих 

величин [6, 7]. 

Сходный характер имеют  также процессы роста популяций 

организмов в условиях достаточной кормовой базы и отсутствия 

врагов [8], выведения лекарственных препаратов из организма [9], а 

также такие физиологические процессы, как реакция зрачка на 

световой импульс [10] и «натрий-калиевый насос» на клеточных 

мембранах [11]. 

Использование отдельных звеньев (уравнений) в нашей модели 

апеллирует к принципу управления по «узкому месту»,  суть которого 

заключается в том, что  величина тех ресурсов,  которые накопились в 

избытке, никак уже не влияет на протекание процесса, 

соответствующего «узкому месту».  Для описания «узкого места» 

избыточные компоненты могут при этом считаться постоянными,  а 

весь сложный процесс распадается на звенья, которые могут 

описываться уравнениями первого или второго порядков, что 

упрощает описание всей системы.  

Примерами систем, для которых известно наличие управления по 

«узкому месту», являются в частности: биологические  

ферментативные процессы [9], работа сердца (стадия QRS-комплекса 

и стадия изменения концентраций ионов): электрическая активность 

миокарда на интервале времени, соответствующем QRS-комплексу, 

не зависит от процессов изменения концентраций ионов калия или 

кальция и, напротив, по завершении QRS-комплекса процессы 

изменений концентраций ионов не зависят от практически 

постоянного состояния (называемого изолинией) электрической 

активности  клеток  миокарда. 

Заметим, что предлагаемый тип описания процессов не 

относится к тем моделям, которые базируются на общих логических 
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соображениях (как это делается, например, в известной в экологии 

системе уравнений Лотки-Вольтерра «хищник-жертва», [12]), на 

применении общих физических принципов протекания циклических 

процессов [13, 14, 15] или на использовании знаний о конкретном 

характере протекающих физических (химических, биологических…) 

процессов,  как в модели Белоусова-Жаботинского [16], служащей 

для качественного описания (в виде систем дифференциальных 

уравнений) автоколебательной химической реакции.  

Математическая модель. Настоящая статья опирается на преды-

дущую работу [17], в которой в частности показано, что                             

авторегрессию вида 

 
1 2( ) ( 1) ( 2) ... ( )kY j c Y j c Y j c Y j k b             (1) 

можно представить в иной форме: 

 
0 0 1 1( ) ( ) ( ) ... ( ) ( ),k kY j A j Y A j Y A j Y B j          (2) 

здесь коэффициенты  kA j  и  B j  меняются с течением времени j , 

а величины 
0 ,..., kY Y  являются начальными (искомыми) условиями 

 Y j  в моменты   

 
00,..., : (0),..., ( ).kj j k Y Y Y Y k      

Алгоритмы вычисления (по экспериментальным данным)               

коэффициентов kc  и b  для (1)  и коэффициентов  kA j ,  B j  и 

начальных условий 
0 ,..., kY Y  для (2)  приведены в [17] для моделей (ав-

торегрессий)  первого, второго и любых более высоких порядков.  Там 

показано, что коэффициенты kc  и b  для (1)  должны быть получены 

из решения системы уравнений, формально совпадающей с системой 

уравнений Юла-Уокера, например для авторегрессии  второго порядка   

 
1 2( ) ( 1) ( 2) ,Y j c Y j c Y j b         

коэффициенты 
1 2,с c  и b , обеспечивающие минимизацию 

среднеквадратичной ошибки аппроксимации, должны быть получены 

из решения системы уравнений: 

 

2

1 2( 1) ( 1) ( 2) ( 1)

( ) ( 1);

n n n

j n m j n m j n m

n

j n m

c x j c x j x j b x j

x j j

     

 

          

  

  


  

2

1 2( 1) ( 2) ( 2) ( 2)
n n n

j n m j n m j n m

c x j x j c x j b x j
     

               
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 ( ) ( 2);
n

j n m

x j j
 

     

  1 2( 1) ( 2) 1 ,
n n n n

j n m j n m j n m j n m

c x j c x j b x j
       

             

тут  x j  — значения аппроксимируемого временного ряда. 

После нахождения величин 
1 2,c c  и b  из этой системы  

переменные коэффициенты    ,kA j B j  для авторегрессии в форме 

(2) могут быть вычислены для всех  ,j n m n   по рекуррентным 

соотношениям: 

 
     
     

для 0 : 0 0; 0 1; 0 0;

для 1: 1 1; 1 0; 1 0,

j A B C

j A B C

   

   
  

а для 2j  : 

 

1 2

1 2

1 2

( 1) ( ) ( 1);

( 1) ( ) ( 1);

( 1) ( ) ( 1) .

A j c A j c A j

B j c B j c B j

C j c C j c C j b

     

     

      

  

Наконец, для получения начальных условий, обеспечивающих 

минимизацию среднеквадратичной ошибки аппроксимации по этим 

начальным условиям, необходимо решить систему: 

 

1 0

1 0

( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( );

( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( ).

n n

j n m j n m

n n

j n m j n m

n n

j n m j n m

n n

j n m j n m

Y A j A j Y A j B j

X j A j A j C j

Y A j B j Y B j B j

X j B j B j C j

   

   

   

   

     

   

     

   

 

 

 

 

  

При полученных таким образом коэффициентах, последователь-

ность значений  Y j , порожденная (1) (или, что то же самое —                 

вычисленная по (2)),  аппроксимирует экспериментальные данные 

 X j  с минимизацией среднеквадратичной ошибки как по                             

коэффициентам уравнений 1 2, ,..., kc c c  и b , так и по начальным 

условиям 
0 1, ,..., kY Y Y . 
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Заметим, что предлагаемый тут метод сразу дает точные                      

значения коэффициентов и начальных условий модели и не исполь-

зует какие-либо итерации.  

Имея модель такого вида для исследуемого процесса, можно не 

только предсказывать его дальнейший ход (по текущему состоянию), 

но и выявлять возможные качественные изменения (при изменении 

коэффициентов и начальных условий уравнений модели).  

Все сказанное выше относилось пока к нециклическим процес-

сам. Настоящая статья имеет целью показать, что метод применим и 

к циклическим процессам также. 

Известные в литературе методы анализа циклических процессов 

предназначены в основном лишь для выявления в эксперименталь-

ных данных компонент в виде сумм синусоид, никак не модулиро-

ванных [18, 19] или для получения моделей типа ARIMA для случай-

ных процессов, содержащих  либо стационарные приращения, либо 

периодические нестационарности [20]. При плавном изменении                    

параметров таких моделей их циклические компоненты также плавно 

меняются. 

 В данной работе предлагаются  модели циклических процессов в 

виде двух (или большего числа) систем линейных разностных                 

уравнений с постоянными коэффициентами. Для циклического               

решения интегральные кривые  систем состыковываются по непре-

рывности. Переключение с одной системы уравнений на другую    

происходит при  достижении интегральными кривыми границ на            

фазовой плоскости (пространстве). Важным свойством таких моде-

лей является их «жесткость» — устойчивый цикл этих моделей       

определяется условиями переключения систем уравнений (границами 

в фазовом пространстве) и слабо зависит от коэффициентов отдель-

ных составляющих модель систем уравнений. Это свойство                    

проиллюстрировано ниже, частью работы, относящейся к рис.3. 

Применять такие модели имеет смысл лишь к процессам,  для 

которых они физически логичны  в силу характера самого исследуе-

мого материала. 

Условие существования цикла. Заметим теперь, что из того, 

что   может быть представлено в виде  , вытекает возможность «по-

слать» решение из начальной точки 
0 (0)Y Y  в заданную конечную 

точку  Y n  — достаточно решить уравнение  (например, для                       

авторегрессии второго порядка) 

 
0 0 1 1( ) ( ) ( ) ( )Y n A n Y A n Y B n       

относительно начального значения 
1Y : 

 
1 0 0 1( ( ) ( ) ( )) / ( ).Y Y n A n Y B n A n      (3) 
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Тогда авторегрессия  (1)  с найденными таким образом                          

значениями 0Y  и 
1Y  примет на n  м шаге в точности значение  Y n . 

Это, в свою очередь, позволяет сконструировать процесс в виде                

замкнутого цикла, состоящего из двух (или большего количества) 

ветвей.  Для этого достаточно из точки, полученной на некотором 

шаге 
1N  процесса одной ветви, послать вторую замыкающую ветвь 

(второй процесс) в начальную точку первого процесса. 

Назовем выполнение условия (3) «прицеливанием» в заданную 

конечную точку  Y n  из начальной точки  0 0Y Y . Заметим, что 

оно может оказаться вычислительно неустойчивым. Это происходит, 

когда для заданного числа шагов n  величина  1A n  1A (n)  в выраже-

нии (3) оказывается близка к 0. Дело в том, что переменные коэффи-

циенты    ,kA n B n  задают ход трассы, описываемой (2) . Для трас-

сы, имеющей колебательный характер, могут найтись точки, лежа-

щие вблизи нулевой ординаты (точки пересечения оси абсцисс). 

«Прицеливание» по (3) в такую точку и приводит к неустойчивости. 

Простым выходом из такой ситуации является прицеливание в 

предыдущую точку на отсчете 1n   (или последующую на 1n  ). При 

этом (3) обеспечит попадание в точку, лежащую на 1n    м шаге, но 

вся трасса пройдет и через желаемую n  ю точку. 

Следует, однако, иметь ввиду  тот факт, что хотя попадание за 

заданное число шагов из начальной точки в конечную всегда обеспе-

чивается условием (3), но траектории движения сильно зависят от 

положения точки-цели и числа шагов до нее.  В результате  движение 

может происходить по существенно различным траекториям.  Это 

связано с тем обстоятельством, что для того, чтобы при данной                  

динамике процесса (определяемой его коэффициентами 
1 2, ,c c b ), 

попасть в цель за заданное время (за нужное число  шагов), необхо-

димо дать процессу верный начальный толчок (определяемый 

начальным условием 
1Y  в момент времени 1). 

Иллюстрацией такого поведения интегральных кривых служит 

пример, представленный на рисунке рис. 2 и приведенный ниже в 

разделе «Результаты численного моделирования». 

Условие (3),  обеспечивающее попадание в заданное положение 

«Цель»  из любого начального «Нач», позволяет проводить 

корректировку приведения системы в заданное целевое состояние и в 

том случае, если это целевое состояние (положение цели) меняется с 

течением времени. 

Другой способ прицеливания. Существует также иной способ 

прицеливания, эквивалентный (3). В [17] было отмечено (без 

доказательства), что по коэффициентам авторегрессии 
1 2,c c  и b  из 
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(1)  могут быть получены выражения  вида  

 1 2( ) ( )

1 2( )
j j

Y j A e A e b
  

       (4) 

или 

 ( )

1( ) cos( ) ,jY j A e j b        (5) 

соответственно для случая действительных 1 2,   или комплексно-

сопряженных корней i    характеристических уравнений, 

соответствующих  (1).  При этом коэффициенты авторегрессии 

связаны с корнями как 

 1 2 1 2( ) ( ) ( ) )

1 2,
t t t

c e e c e
      

      

— для случая действительных корней,  а  для комплексно-

сопряженных корней 

 

(( ) ) (( ) ) ( )

1

(2 )

2

2 cos( );

.

i t i t t

t

c e e e t

c e

    



      

 

     

 
  

Точки, порождаемые кривыми (4) и (5)  в точности ложатся (в 

отсчетные моменты времени t t m    на точки  рекуррентной                  
процедуры (1). 

 Вывод этих соотношений, связывающих коэффициенты               

авторегрессии 
1 2,c c  и b  со значениями затуханий 1  и 2  для (4) 

несложно провести, выписав выражения (4) для последовательных 

значений  y j ,  1y j   и  2y j  . Выражение для частоты    и 

затухания   для (5)  затем просто получается с использованием              

формулы Эйлера. 
Важно,  что значения начальных условий авторегрессии не 

входят в эти выражения. 
Выражения (4) и (5) можно непосредственно использовать для 

прицеливания в заданную точку  Y n , например при 0j   выраже-

ние (5) переходит в   

   10 ,Y A b    

а при  j n   

 ( )

1( ) cos( ) .nY n A e n b        

Из этих двух равенств получаем 

 

( )

1

( )

1

( ( ) (0)) / ( cos( ) 1);

( ) cos( ).

n

n

A Y n Y e n

b Y n A e n













    

    
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Эти значения 1A  и b  эквивалентны начальным условиям 

авторегрессий.  

Тут следует обратить внимание на следующее обстоятельство — 

если необходимо моделировать процесс не с нулевого момента 

времени, а с некоторого отсчета k , то амплитуда должна задаваться 

исходя из выражения  

 ( )

1( ) cos( ) ,k jY k A e k j b          

а не  

 
1(0) .Y A b    

Для этого случая 

( ) ( )

1

( )

1

( ( ) (0)) / ( cos( ) cos( ));

( ) cos( ).

n j k j

k j

A Y n Y e n j e k j

b Y k A e k j

 



 



   

 

        

     
  

Вообще, моделирование процесса по его экспериментальным 

данным с использованием описанных в [17] процедур сводит все 

операции к линейным. Затем, используя соотношения (4)  или  (5)  

можно просто вычислить значения параметров  ,  , хотя 

непосредственно по временному ряду получить модель в виде                        

(4), (5) — существенно нелинейную по этим параметрам — 

затруднительно. 

«Прицеливание» по (4) или (5) вычислительно  всегда                       

устойчиво — нет процедуры деления на переменную, могущую 

принимать малые значения, как это происходит в (3). 

Полезным свойством моделей вида (4) или (5) является также 

возможность получения точек, промежуточных между точками 

исходного ряда — достаточно лишь вместо целых значений индексов 

j  подставить любые промежуточные значения. 

Предложенная нами ранее в [17] процедура получения 

промежуточных точек позволяла вычислять такие точки лишь 

делением пополам отрезков между точками исходного ряда. 

Результаты численного моделирования.  На рис. 1 приведена 

работа описанного выше алгоритма аппроксимации  кривых.  

Обрабатывалась часть реальной электрокардиограммы (в районе 

начала петли QRS — зоны, в которой вектор электрической 

активности сердца наиболее быстро растет по амплитуде. Эта 

трехмерная экспериментальная кривая («петля Франка») 

записывается в трех ортогональных отведениях (координатах) 

, ,X Y Z . Трехмерная кривая представлена тут в виде проекции в 

плоскость бумаги. 
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Рис. 1.  Аппроксимация реальной электрокардиограммы от начала 
 QRS-комплекса (проекция трехмерной петли в плоскость X Y ) 

 

Коричневой линией изображена кривая, соответствующая 
экспериментальным точкам (отсчеты помечены на ней синими 
точками). Сплошные зеленые и малиновые линии соответствуют 
аппроксимирующим кривым, аппроксимация велась на участках 
длиной по семь точек соответственно вперед и назад от общей точки 
участков, причем применялись уравнения вида (1) по каждой из 

координат ,X Y  и Z .  

В качестве примера существенной зависимости хода 
интегральных кривых (траекторий) от начальных условий на рис. 2 
представлен результат компьютерного  моделирования циклического 
процесса на фазовой плоскости 1 2Y Y . Оба процесса 1Y  и 2Y  — 
траектории авторегрессий второго порядка, без добавления шума.  

 

  
Рис. 2. Пример зависимости хода интегральных кривых  

от начальных условий 
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Y

Z
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Кружочки соответствуют отсчетам времени, стрелки — 
направлению движения. Первый процесс тут  (нижняя жирная 
сплошная линия) начинается в точке, подписанной на рисунке как 
«Нач» и завершается в точке «Кон», которая является начальной для 
замыкающей ветви второго процесса (жирная пунктирная). Тонкие 
сплошные линии, плавно продолжающие жирные, отходящие от 
точек  «Нач» и «Кон» и входящие внутрь цикла — продолжения 
процессов верхней и нижней ветвей цикла.  По этим кривым 
развивались бы процессы, если бы не было переключения. 

Эти кривые ведут (асимптотически) к особым точкам верхнего и 
нижнего процессов. 

Тонкие линии, начинающиеся в точке “Нач” и завершающиеся в 
точках «Ц1» и «Ц2», показывают траектории движения 
изображающих точек процессов для авторегрессий с теми же 
коэффициентами, что и у процессов цикла,  но c другими  точками-
целями (точками «Ц1» и «Ц2»). Попадание в эти точки 
осуществляется за одинаковое число шагов (10 шагов). 

Тонкая пунктирная линия, начинающаяся в точке «Нач» и 
проходящая через точку «Кон», соответствует процессу попадания в 
заданную точку («Кон») за число шагов, не совпадающее с числом 
шагов исходного процесса (жирной траекторией). 

Параметры процессов (коэффициенты соответствующих 
авторегрессий) и их начальные условия (в нуле) подписаны                              
на рисунке. 

Сходимость к устойчивому  циклу. Рассмотрим теперь вопрос о 
сходимости циклического решения. Интересным представляется 
случай, когда переключение процессов осуществляется при 
достижении некоторых порогов (например, полностью разрядился 
один из конденсаторов в мультивибраторе  [7], закончилась фаза 
QRS-комплекса в сердце или произошло насыщение фермента в 
реакции [9]). 

Иллюстрацией такого поведения служит рис. 3, полученный как 
результат моделирования на компьютере. 

Кроме наличия двух порогов будем предполагать, что для любой 
из трасс при движении справа налево происходит «прицеливание» в 

некоторое известное состояние — точку ЦL  с координатами ( ЦL
X ,

ЦL
Y ), а при движении слева направо — в точку ЦR

( ЦR
X , ЦR

Y ). 

Попасть в эти заданные состояния предполагается за конечное 

число шагов — соответственно Lm  и Rm  . В физическом мире это 

могут быть, например, такие задачи, как достижение заданного 
значения показателя (технического, экономического…) к заданному 
моменту. 

Вертикальные сплошные линии тут соответствуют порогам, 
достижение которых сигнализирует о переключении процесса 1Y  
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(соответствующего горизонтальной оси). Вертикальные пунктирные 
линии — значения по 1Y ,  от которых начинаются трассы. 
Коэффициенты авторегрессий подписаны в правом нижнем углу.   

Ветви процессов, начинающиеся от правой границы и 
обозначенные цифрами 1, 3 и 5 соответствуют тут движению по 
горизонтальной оси от правого порога к левому (прямому 
направлению), а ветви 2, 4, 6… — обратному движению. Ветви 1, 3 и 
5 описываются одной системой авторегрессий (и по горизонтали и по 
вертикали — уравнения вида (1), второго порядка, ветви 2, 4, 6… 
описываются другой системой — тоже второго порядка, вида (1), но с 
другими коэффициентами авторегрессий).  Стрелками программа 
указывает на положение по 2Y  для моментов переключения, цифры 
при стрелках — последовательность движений.  В левом верхнем               
углу — значения по 2Y , соответствующие моментам переключения 
процессов на левой границе, цифры соответствуют нумерации 
переключений у стрелок. Расстояния между этими значениями 2Y  
графически изображены посередине в верхней части рисунка. Чтобы 
не загромождать рисунок, программа отображает только первые 
шесть трасс (последующие почти совпадают).   

 

 
Рис. 3. Пример сходимости интегральных кривых к устойчивому циклу 
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В результате моделирования выяснилось, что весь процесс 

быстро сходится на некоторый предельный цикл, из любого 

начального состояния.  

Для объяснения такого поведения заметим, что особой точкой 

для (5) является точка типа фокус, на которую накручиваются все 

траектории.  По мере приближения к фокусу все траектории 

сближаются, поэтому для любых траекторий, начинающихся от 

правой границы и идущих справа налево расстояния между точками 

пересечения левой границы сокращаются с каждым оборотом. 

Можно строго показать, что ординаты этих точек подчиняются закону   

 1

0 1 ,s sY K K Y      

где 0K  и 
1K  — постоянные. Но это выражение для 1sY   — 

авторегрессия первого порядка относительно sY , то есть точки трасс 

ложатся на границу  по затухающей экспоненте при  10 1K  . Этот 

случай и представлен на рис. 2. 

Если рассмотренный выше способ моделирования циклических 

процессов применять к экспериментальным данным в виде 

временного ряда, то может возникнуть две дополнительные                    

задачи  — определение моментов переключения с одной системы 

аппроксимирующих уравнений на другую и задача улучшения 

устойчивости аппроксимации при значительном уровне шума в 

экспериментальных данных. 

Задача определение моментов переключения просто решается, 

если верна гипотеза о переключении ветвей циклического процесса 

при достижении переменными пороговых значений и значения этих 

порогов являются прямыми, перпендикулярными к осям фазового 

пространства. В этом случае моменты переключения — это просто 

точки касания цикла к границам (порогам). 

Если же пороги имеют более сложную конфигурацию, то 

программно для определения моментов переключения можно 

использовать следующее обстоятельство: модель, полученная 

указанным способом на любом участке трассы, не зависит от места 

начала этого участка до тех пор, пока используемый участок 

относится к одному физическому процессу, то есть описывается (c 

точностью до влияния шума на получаемые коэффициенты) одним и 

тем же уравнением вида (1) . Поэтому вычисленное по полученной 

модели значение, предсказанное вперед на любое число шагов, 

должно в точности (в отсутствии шума) укладываться на 

исследуемую трассу, а если между передним концом используемого 

для аппроксимации участка и точкой предсказания произошло 

переключение типа процесса, то предсказанное значение уже не 

ляжет на обрабатываемую кривую. 
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      Устойчивость  аппроксимации. Что касается устойчивости 

аппроксимации экспериментальных данных, то описанная в [17] 

вычислительная процедура  является  устойчивой  в  случае 

небольшого уровня шума и при условии, что на участке 

аппроксимации точки обрабатываемого временного ряда  ложатся 

вблизи некоторой дуги (кривой, но никак не прямой).  Действительно, 

если данные лежат на прямой  

 ( ) ,Y j K j b     

то 

 
( 1) ( 1) ( 1) ( 1)

( 1) ( ) .

Y j K j b Y j K j b

Y j Y j K

           

   
  

Но последнее выражение является авторегрессией первого 

порядка с начальным значением  0Y b . Если такие данные (с 

нулевым уровнем шума) подставить в систему Юла-Уокера, то 

детерминант ее будет в точности равным нулю (столбцы при j  и 

1j   окажутся линейно зависимыми). В случае ненулевого шума эта 

система,  соответственно,  неустойчива. 

Вообще, если данные сгенерировать авторегрессией N  го по-

рядка, то попытка аппроксимации 1N   м порядком даст линейно 

зависимые столбцы и, следовательно, нулевой детерминант. 

В [17] случай неустойчивого поведения решения системы Юла-

Уокера был разобран применительно к условию расположения 

аппроксимируемых точек именно вблизи некоторой прямой и 

предложен способ улучшения устойчивости за счет прореживания — 

выбора отсчетов экспериментальных данных не подряд, а с 

некоторым шагом 1 . При этом то же самое количество 

аппроксимируемых точек оказывается на интервале, в шаг раз 

большем исходного интервала — более изогнутом и более 

отдаленном от прямой. 

Рассмотрим теперь способы повышения устойчивости решения 

за счет регуляризации. 

 С приближением  к опорной кривой. В этом варианте  регуля-

ризация ведется по минимизации  функционала: 

 * 2 * 2[ ( ) ( )] (1 ) [ ( ) ( )] ,
n n

j n m j n m

S Y j Y j Y j F j 
   

          

тут   ( )Y j  — экспериментальные точки, ( )Y j  — значения искомой 

аппроксимации вида   

 1 2( ) ( 1) ( 2)Y j c Y j c Y j b         
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(для второго порядка аппроксимации, тут ищем коэффициенты 
1 2,с с  

и b ),  F j  — значения  любой функции  F j , заданной в 

отсчетных точках j  и выбранной в качестве опорной (к которой и 

идет приближение),   — число, 0 1   (параметр регуляризации, 

определяет баланс между приближением к исходным данным и к 

опорной кривой). 

В качестве опорной кривой для задачи аппроксимации 

авторегрессией второго порядка удобно выбрать параболу или 

одиночную экспоненту. Прямую в качестве опорной кривой 

использовать нельзя вследствие получающейся линейной 

зависимости столбцов. 

Кстати, задача аппроксимации авторегрессией первого порядка 

данных, лежащих около прямой — не приводит к нулевому 

детерминанту, поэтому корректна. 

Параболу всегда можно  использовать  в качестве опорной кривой 

для регуляризации, так как функции вида   

 ( ) ( )( ) или ( ) cos( )m t m tF m A e F m A e m t              

не совпадают с параболой на всем участке аппроксимации кроме, 

может быть, двух точек, при этом параболу через экспериментальные 

точки всегда можно провести по МНК, т. к. детерминант 

соответствующей системы в этом случае всегда не равен 0. 

 С приближением  по коэффициентам. Если была построена 

модель процесса вида   с использованием экспериментальных данных 

на некотором участке исследуемой трассы, и качество аппроксимации 

признано (каким либо образом) хорошим, то предполагая, что и                     

соседние участки трассы подчиняются тем же порождающим их                

явлениям (описываются той же самой авторегрессией),  можно               

построить функционал вида: 

 

* 2 2

1 1

2 2

2 2

[ ( ) ( )] (1 ) [( )

( ) ( ) .

n

j n m

S Y j Y j c c

c c b b

 
 

      

   


  

Тут ищем коэффициенты 
1 2,c c  и b , а коэффициенты 1 2,c c  и b  

относятся к аппроксимации, качество которой признано хорошим. 

 Дифференцирование по 1 2,c c  и b  при использовании 

функционалов описанных выше видов дает линейные по этим 

коэффициентам системы. 

Заключение. В настоящей работе предложено описание                      

динамических, в частности циклических, процессов моделью в виде 
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кусочно-линейных разностных уравнений. Модель состоит из двух 

(или большего числа) систем линейных разностных уравнений с                 

постоянными коэффициентами; интегральные кривые систем состы-

ковываются по непрерывности. Переключение с одной системы 

уравнений на другую происходит при  достижении интегральными 

кривыми пороговых значений — границ на фазовой плоскости. 

Увеличение размерности фазового пространства не вызывает  

появления принципиальных трудностей как со стороны условия               

существования цикла, так и со стороны алгоритма аппроксимации 

экспериментальных данных [17]. 

Данная модель может быть использована для описания многих 

биологических, химических, экономических и иных явлений, цикли-

чески или однократно протекающих во времени. В результате                

применения данного подхода экспериментальные данные оказывают-

ся аппроксимированными кривыми, являющимися решениями                     

линейных разностных уравнений с постоянными коэффициентами 

(наборами  действительных или комплексно-сопряженных экспонент, 

а также  знакопеременными кривыми). 
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Modeling of cyclic processes (of time series type                          

experimental date) by solution of piecewise linear                                

differential equations with constant coefficients 
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This paper presents a method for modeling of real macroworld  cyclic processes by the 

solutions of  two (or more) linear differential equations with constant coefficients. It is 
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shown that possible to send such model from any initial condition (point in phase space) 

to a prescribed final point in phase space for a prescribed amount of steps. As a result, 

conditions for a constructing closed cycle in phase space of any dimension were found. 

Switching from one system of equations to another is obtained then integral curve reach-

es some threshold  —  frontier in phase sheet (space). The analysis of convergence rate 

of the solution for such closed cycles is made.  

The integral curve behavior  significant  dependence of  initial condition  was shown.The 

obtained model is connected with experimental data in the form of time series and               

approximates them with solution of linear differential equations on condition of minimiz-

ing the RMS deviation. Proposed model also can be applied  to a task of some index 

(technical, economical) reaching the prescribed meaning to a prescribed moment.  
 

Keywords: piecewise-linear differential equations, conditions for a constructing of closed 

cycle, convergence rate,  approximation of  experimental data 
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