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Работа посвящена сравнению различных методов моделирования и применения 

фрактального броуновского движения в задачах анализа временных рядов.                      

Реализованы программные модули, генерирующие траектории фрактального                 

броуновского движения с использованием методов стохастического представле-

ния, разложения Холецкого и Дэвиса-Харта. Проведено сравнение алгоритмов с 

точки зрения их сложности и качества получаемых траекторий.  Показатель               

Хёрста оценивался методами Минковского и R/S анализа. Предложена и реализо-

вана аппроксимация временных рядов фрактальным броуновским движением с                  

помощью степенной функции для последующего применения алгоритма линейного 

прогнозирования, основанного на теореме о нормальной корреляции. Установлено, 

что с помощью представленной аппроксимации удается добиться удовлетвори-

тельного прогноза валютного курса на несколько значений вперед. 

 

Ключевые слова: фрактальное броуновское движение, показатель Хёрста,             

стохастическое представление, разложение Холецкого, метод Дэвиса-Харта,                

метод Минковского, метод R/S анализа, линейное прогнозирование временных рядов 

 

Введение. До недавнего времени модели стохастических процес-

сов, используемые в прикладных научных исследованиях и реальных 

задачах, предполагали марковский характер таких процессов. Однако 

недавние исследования показали, что в реальных данных обнаружи-

вается дальнодействующая зависимость, или свойство персистентно-

сти [1]. Это означает, что поведение реального процесса в момент                  

времени 1t   зависит не только от его состояния в момент времени t , 

но и от всей истории процесса до этого момента времени.  Более того, 

оказалось, что этим свойством нельзя пренебречь из-за оказываемого 

им влияния на поведение глобальной системы. 

Применительно к финансовой математике эта тенденция привела 

к увеличению интереса к этой тематике и росту популярности модели 

фрактального броуновского движения (ФБД), обладающего необходи-

мым свойством персистентности [2]. В многочисленных работах         

изучаются как способы моделирования ФБД и оценивания показателя 

Хёрста, так и возможности его применения к анализу и прогнозирова-

нию реальных временных рядов [3–15]. 

Целью настоящей работы является изучение методов моделирова-

ния фрактального броуновского движения и их сравнительный анализ. 
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Сравнение проводится на основе специально разработанного                           

вычислительного программного комплекса для моделирования               

фрактального броуновского движения и оценивания показателя                     

Хёрста. В работе проведен сравнительный анализ качества моделиро-

вания фрактального броуновского движения и методов оценивания 

показателя Хёрста, а также решены задачи прогнозирования времен-

ных рядов с помощью аппроксимации фрактальным броуновским            

движением. 

Основные определения и факты. Стохастический процесс  HB t , 

0t   называется (стандартным) фрактальным броуновским движе-

нием с показателем Хёрста  0,1H   и ковариационной функцией [2]: 

    2 2 21
, , , 0,

2H

H H H

BR t s t s t s t s        (1) 

если  
п.н.

0 0HB  , а приращения    H H HB B t s B s     стационарны 

и распределены нормально с ковариационной функцией: 

    2 2 21
, 1 1 2 , , 0.

2H

H H H

BR t s t s t s t s t s             (2) 

В силу нормальности конечномерных распределений из (1) легко                      

вывести, что [2] 

    ~ 0, ,H

HB t N t   (3) 

а также, что ФБД обладает свойством автомодельности с показателем 

Херста H , то есть [9] 

      Law L .H

H HB a t a B t    (4) 

Геометрически равенство (4) означает самоподобие траекторий, что и 

объясняет употребление термина «фрактальное» в названии ФБД [2]. 

Заметим, что при 1 2H   процесс  HB t  является обыкновенным 

броуновским движением с независимыми приращениями, поскольку в 

этом случае 

      
1/2

1
, min , .

2
BR t s t s t s t s       (5) 

Методы моделирования ФБД. Стохастическое представление 

ФБД. Исследования о моделировании ФБД начались с работы                  

Мандельброта и Ван Несса [4], в которой для построения траекторий 

использовалось представление процесса посредством стохастических 

интегралов по винеровскому процессу   ,W W t t  : 



Т.В. Облакова, Д.С. Алексеев 

50 

         
0

1 2 1 2 1 2

0

,

t
H H H

H H s sB t c t s s dW t s dW
  



 
      

 
    (6) 

где 
 

   

2 3 2
,

1 2 2 2
H

H H
c s t

H H

 
 

   
. 

Аппроксимируя интеграл (6) суммами Римана, получим итератив-

ную формулу для моделирования процесса   , 0,HB t t T : 

 

        

   

0
1 2 1 2

1

1 2

2

0

,

H H

H H

k a

t
H

k

B t C t k k B k

t k B k

 








    




  







  (7) 

где 1 2,B B  — вектора стандартного нормального распределения           

размерности  1a   и  1T   соответственно [5], 

 
   

 
1,5

2 1 sin
, .

1 2
H

H H
C a T

H

 
 

 
  

Метод с использованием разложения Холецкого. Приращения 

ФБД представим в виде линейного преобразования стандартного  

гауссовского вектора  ~ 0,1 , 1,k N k n   . Для моделирования 

траектории ФБД с помощью метода с использованием разложения          

ковариационной матрицы методом Холецкого [5] необходимо                     

рассмотреть следующий временной ряд: 

 1 , 1, , 1.k k

k H Hy B B k m m n       (8) 

Ряд (8) называется фрактальным гауссовским шумом с показате-

лем Хёрста H  и ковариационной матрицей R , элементы которой                

вычисляются по формуле (2). Для реализации данного подхода к               

моделированию ФБД необходимо преобразовать ковариационную 

функцию приращений к следующему виду [5]: 

 
  

  

2 2

2

1
, 1 1

2

2 , 0.

H

H H

B

H

R t t s s s

s s s

      

  

  (9) 

Ковариационную матрицу, получаемую с помощью формулы (9), 

представим в следующем виде: 
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         

         

         

         

         

0 1 2 2 1

1 0 1 3 2

2 1 0 4 3
.

2 3 4 0 1

1 2 3 1 0

m m

m m

m m

m m m

m m m

    

    

    

    

    

  
 

  
  

   
 
   
 
    

  (10) 

Заметим, что матрица (10) является симметричной и положительно 

определенной. Следовательно, можно разложить ее с помощью метода 

квадратного корня (Разложение Холецкого): 

 ,TL L     (11) 

где L  — нижняя треугольная матрица со строго положительными               

элементами на главной диагонали. 

Тогда значения приращений ФБД можно, как известно [5],               

получить линейным преобразованиям гауссовского вектора  : 

 .y L     (12) 

Следовательно, с учетом (12) значения искомой траектории фракталь-

ного броуновского движения k

HB  можно получить по следующей                   

рекуррентной формуле: 

 0 1

0 , , 1, .k k

H H H kB y B B y k m      (13) 

Метод Дэвиса-Харта. Рассматриваемый метод [5] в некоторой 

степени похож на алгоритм с разложением Холецкого. Основная идея 

алгоритма заключается в вычислении циркулянтной ковариационной 

матрицы G  размера  2 1m n  : 

 

0 1 2 2 1

1 0 1 3 2

2 1 0 4 3

2 3 4 0 1

1 2 3 1 0

,

m m

m m m

m m m m

m

g g g g g

g g g g g

g g g g g
G

g g g g g

g g g g g

 

  

   



 
 
 
 

  
 
 
  
 

  (14) 

где  

 

1, 0,

, 1, 1,

, , 1.

k

k

g k k n

M k k n m








  


  
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Заметим, что циркулянтная матрица может быть представлена в виде: 

 ,G Q Q SS     (15) 

где   — диагональная матрица собственных значений G ,

 
1

exp 2jk

jk
Q q i

mm


 
   

 
, 

___________

, 0, 1j k m  , 1 2 .S Q Q    

При этом выполняется: 

 .QQ E   (16) 

Собственные значения матрицы G  можно найти по формуле [5]: 

  
2 1

0

exp 2 , , 0, 1,
n

k j

j

jk
g i j k m

m
 





     (17) 

где jg  —  1j   элемент первой строки матрицы G . Т.к. матрица G  

положительно определена и симметрична, то ее собственные значения 

также будут положительными и действительными. 

Для нахождения траектории ФБД необходимо вычислить следую-

щую матричную формулу: 

 1 2 ,HB Q Q    (18) 

где   — стандартный нормально распределенный вектор. 

Сравнение методов моделирования ФБД. Произведем оценку 

качества моделирования траекторий ФБД рассмотренными выше             

методами. Для начала сгенерируем каждым алгоритмом реализации 

ФБД длины 500n   с показателем Хёрста  0,2;0,5;0,8H   и визуа-

лизируем их на рис. 1. 

 

 

 

 

 

 

 

а б в 

Рис. 1. Результаты моделирования ФБД: 

─ — 0,2H  ; ─ — 0,5H  ; ─ — 0,8H  ; 

а — стохастическое представление; б — метод Холецкого;  

в — метод Дэвиса-Харта 

 

Заметим, что выполняется одно из свойств ФБД, а именно что                    

показатель Хёрста H  в реализациях ФБД соответствует степени                  
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изрезанности графика. Следовательно, траектории ФБД при 0,8H   

являются более плавными, чем при 0,2H  . 

Сгенерируем n  траекторий и оценим алгоритмы с точки зрения 

вычисления эмпирической ковариационной функции. Воспользуемся 

95% доверительным интервалом для коэффициента корреляции: 

  
 

 

1

0,9751
ln

tanh ,
2 2 1 3

ij

ij
r

rij
ur

r
n n





 
  
  
 

   

где        , , , , , 1,
H H H

ij

B B Br R i j R i i R j j i j n   . 

Визуализируем полученные матрицы нижней границы 
 и                   

верхней границы 
 95 % доверительного интервала и матрицу                      

выборочных коэффициентов корреляции на рис. 2, 3, 4. 
 

  
Рис. 2. Выборочный коэффициент корреляции и 95% доверительный интервал для 

метода моделирования с помощью стохастического представления ФБД: 

■ — эмпирическая корреляция; ■ — нижняя граница;  

■ — верхняя граница 

 

  
Рис. 3. Выборочный коэффициент корреляции и 95% доверительный интервал для 

метода моделирования с разложением Холецкого ковариационной матрицы: 

■ — эмпирическая корреляция; ■ — нижняя граница;  

■ — верхняя граница 

 

Все алгоритмы показывают хорошие результаты с точки зрения 

качества моделирования [11]. Видно, что в некоторых участках                

выборочные коэффициенты корреляции не лежат внутри доверитель-

ного интервала, что можно объяснить ненулевой ошибкой                                 

доверительного оценивания. Стоит отметить, что рассмотренные                   

r r

r r
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алгоритмы обладают разной алгоритмической сложностью. Слож-

ность алгоритма стохастического представления составляет  O N a , 

метода, использующего разложение Холецкого —  2O N , а алго-

ритма Дэвиса-Харта —  logO N N . 

 

  
Рис. 4. Выборочный коэффициент корреляции и 95% доверительный интервал для 

метода моделирования Дэвиса-Харта: 

■ — эмпирическая корреляция; ■ — нижняя граница;  

■ — верхняя граница 

 

Оценка показателя Хёрста. ФБД тесно связано с рядом понятий 

статистической физики, а именно с фрактальной размерностью, масштаб-

ной инвариантностью и показателем Хёрста.  

Фрактальная размерность — характеристика, описывающая                          

фрактальные структуры на основе количественной оценки их сложности, 

как коэффициент изменения детали с изменением масштаба [6][7]. Одно-

мерное ФБД обладает фрактальной размерностью, которая вычисляется 

по следующей формуле [8]: 

 2 ,D H    (19) 

Определение фрактальной размерности играет ключевую роль в                 

моделировании ФБД, так как позволяет проверить правильность                       

моделирования. Более того, в случаях, когда нам изначально неизвестен 

показатель Хёрста, например, при исследовании экономических рядов, 

вычисление фрактальной размерности позволяет численно определить 

значение параметра H . Стоит отметить, что фрактальная природа                 

траектории непосредственно влияет на выбор метода определения 

фрактальной размерности. Именно поэтому для разных типов                       

фрактальных структур может меняться точность расчетов [11].                   

Остановимся на двух методах оценки фрактальной размерности. 

Метод Минковского. Один из способов оценивания фрактальной 

размерности D  ограниченного фрактального множества в метриче-

ском пространстве — вычисление размерности Минковского [9]. Суть 

данного метода заключается в вычислении следующего предела: 

r r
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  
 0

ln
lim ,

ln

N
D






    (20) 

где  N   — минимальное число геометрических объектов размера              

 , которыми можно покрыть фрактальное множество. 

Если предел (20) не существует, то рассматривают верхний и        

нижний пределы, которые соответствуют верхней и нижней размер- 

ности Минковского. 

При этом фрактальная размерность связана с показателем Хёрста 

выражением (19), то есть получаем оценку для Ĥ : 

 
  
 0

ln
ˆ 2 lim .

ln

N
H






    (21) 

Данный способ имеет так же другое название — «box-counting 

dimension», из-за реализации метода, которая заключается в подсчете 

количества  N   элементарных квадратов размера  , покрывающих 

исходное множество. 

Метод R/S анализа. Определение фрактальной размерности          

методом R/S анализа сводится к вычислению показателю Хёрста Ĥ  с 

помощью статистических характеристик процесса [10]. 

Временной ряд ny , 1 mn l   разделим на l  одинаковых времен-

ных интервалов длины m . Для удобства перенумеруем ряд двойным 

индексом: j

iy , 1,i m , 1,j l , где j

iy  — i   й элемент j  ого времен-

ного интервала. 

На каждом интервале вычислим выборочные средние значения jy  

и выборочные отклонения j  соответствующей части ряда по                   

следующим формулам [11]: 

  
2

1 1

1 1
, .

m m
j j j j j

i i

i i

y y y y
m m


 

      (22) 

Определим ряд из накопленных отклонений на j  ом интервале: 

  
1

, 1, ,
k

j j j

k i

i

X y y k m


     (23) 

и размахи накопленного отклонения на каждом интервале: 

    
11

max min .j j j

k k
k mk m

R X X
  

    (24) 

На следующем шаге вычисляется среднее значение отношений 
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накопленных отклонений к выборочным стандартным отклонениям 

соответствующих временных интервалов: 

 
1

1
.

jl

j
j

R
R S

l 

    (25) 

При последующих итерациях увеличивают длину интервала m , пока 

2m n , и повторяют алгоритм. По накопленным данным вычисляют 

оценку Ĥ  углового коэффициента прямой, аппроксимирующей линей-

ную зависимость статистики ln
R

S

 
 
 

 от  ln m  с помощью метода 

наименьших квадратов. 

Сравнение методов оценивания показателя Хёрста ФБД. 

Сравним методы оценивания показателя Хёрста для уже сгенериро-

ванных траекторий. Результаты оформим в виде табл. 1. 

Таблица 1 

Сравнение качества оценки показателя Хёрста  

 H   Метод Минковского Метод R S  анализа 

Стохастическое 

представление 

0,2 0,31 0,33 

0,5 0,54 0,55 

0,8 0,75 0,79 

Метод Холецкого 

0,2 0,27 0,25 

0,5 0,59 0,60 

0,8 0,78 0,78 

Метод Дэвиса-

Харта 

0,2 0,30 0,43 

0,5 0,55 0,60 

0,8 0,78 0,81 

 

Видно, что в большинстве случаев метод Минковского лучше 

справляется с поставленной задачей. 

Линейное прогнозирование. Линейное прогнозирование — это 

метод, использующий информацию о предыдущих значениях времен-

ного ряда для прогнозирования последующих. Предполагается, что 

есть обучающая выборка [16], по которой мы можем изучить поведе-

ние последовательности, а затем применить полученную информацию 

для прогнозирования.  

Рассмотрим временную последовательность kx , 1,k n  и соответ-

ствующий ей ряд приращений 
1k k ky x x  , 1,k m . Для аппроксима-

ции необходимо выполнение следующих условий [12]: 
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1) последовательность ky  стационарна в узком смысле, т.е. 

 
   

   

0, const,

, , ;

k k

j k m j m k

M y D y

P y u y v P y u y v 

 

    
  

2) с вероятностью, равной 1, существует предел: 

 
  
 

2
2

1

2
2

lim ,
km

m
m k

M yR
d

R M y
    (26) 

где 
1

1
,

m
j

jm k

k

R y j
m 

  . 

Тогда при m  последовательность 

 
  
 

 
2

2 2
1

22
2

1 22 ,m
m

m

MR
d d

R M





       (27) 

где  2~ 0,N  . 

Для определения гауссовости будем использовать значение статис-

тики md . Если md  сильно отличается от 2d  , то необходимо             

аппроксимировать ряд ky  гауссовой последовательностью kz                       

согласно следующему алгоритму. Пусть 

  
1

sgn sgn , 0.k k k k k k ky f z y z z y y
 

       (28) 

Подставляя (28) в (27), получим: 

 

2

2

1 1

1 1
.

m m

m k k

k k

d z z
m m

 

 

 
  
 
    (29) 

Так как для   выполняется равенство 

   /21 12
2

M
    


  , то получаем 

 

2

2

1

2

1

1 2
.

1

2

m
m

m

R
d d

R



 

 
  

   
 

  
 

  (30) 

Из (30) находим единственное, в силу убывания функции  d  , 

значение  . Согласно теореме о нормальной корреляции для гауссов-
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ской последовательности оценка прогнозирования совпадает с линей-

ной. Тогда с учетом определения ФБД запишем [2, 12] 

 1 ,XY YX K K Y   (31) 

где  1 2, ,...,
T

mY z z z ,  1 2, ,..., ,
T

m m m rX z z z     jk

Y j kK M y y   

 ,
HBR j k  , 1 ,j k m  ,    ,

H

jk

XY m j k BK M y y R m j k    , 1 j r  , 

1 k m  . 
Окончательные значения прогнозируемых приращений исходного 

временного ряда можно найти по формуле: 

  1 , 1 .m j m jy f z j r

      (32) 

Таким образом, алгоритм линейного прогнозирования можно при-
менить, как к гауссовым, так и к другим реальным рядам. 

Стоит отметить, что для применения этого алгоритма необходимо, 
чтобы приращения реального процесса были зависимыми и гауссо-
выми. Такой случай возможен только при значениях параметра Хёрста 

0,5H  . Ввиду этого возникает необходимость аппроксимации                

временного ряда фрактальным броуновским движением и только                   
после этого можно применять алгоритм линейного прогнозирования к 
преобразованным данным. 

Пример численного моделирования в задаче прогнозирова-
ния. Рассмотрим временной ряд, характеризующий курс доллара 
США к российскому рублю по ЦБ РФ за период с 1 мая по 1 ноября 

2021 года. За этот промежуток времени было сделано 1,125k               

замеров. Обозначим ряд курса как  k kX X t . Сформируем последо-

вательность 1j j jy X X  , 1,j m . Визуализируем полученные                

последовательности на рис. 5.   
 

 

 
 

 

 

 а  б 

Рис. 5. График: 
а — курс доллара США к российскому рублю;  

б —приращения курса доллара  

kX jy

74

73

72

71

70
20 40 60 80 100 k

1,0

0,5

0,0

0,5

20 40 60 80 100 j



Сравнительный анализ методов моделирования и прогнозирования… 

59 

Согласно (27) произведем проверку на гауссовость ряда 
jy . Было 

получено значение статистики 0,59nd  . Перейдем к аппроксимиро-

ванному ряду 
jz  с 0,93   согласно формуле (28). Вычислим                          

значение параметра Хёрста H , описанными выше методами (табл. 2). 

 Таблица 2 

Параметр Хёрста  H  для курса доллара США к российскому рублю 

Метод Минковского Метод R S  анализа 

0,657 0,426 

 

Наиболее хороший результат был получен с помощью метода 

Минковского. Обучающей выборкой для прогнозирования возьмем 

первые m r  значений ряда jz . Далее воспользуемся формулой (31) 

для получения прогноза на 5r   шагов (табл. 3). 

Таблица 3 

Прогноз значений курса доллара США к российскому рублю по ЦБ 

r   
m rz 

  ˆ
m rz 

  
N rX 

  ˆ
N rX    

1 0,08809 0,41159 71,0555 71,3789 

2 –0,06510 –0,39499 70,9904 70,9840 

3 –0,12809 –0,28470 70,8623 70,6993 

4 –0,72780 –0,43970 70,1345 70,2595 

5 –0,58190 0,01940 69,5526 70,2790 

 

Норма ошибки прогноза составила 
ˆ

0,012k k

k

X X

X


 . Следова-

тельно, можно считать полученный прогноз удовлетворительным.     

Визуализируем полученный прогноз на рис. 6. 
 

  

 а  б 

Рис. 6. Визуализация результатов алгоритма линейного прогнозирования 
 рядов курса доллара: 

─ — прогноз; 
а — аппроксимированный ряд; б —исходный ряд 
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Выводы. Полученные результаты позволяют сделать вывод, что 

все рассмотренные и реализованные методы моделирования ФБД     

приводят к хорошим результатам. Доверительные интервалы для                            

коэффициента корреляции сечений содержат его истинное значение с 

допустимой ошибкой для всех методов. 

Оценка показателя Хёрста, полученная методом Минковского, в 

большинстве случаем оказалась лучше оценки по методу R/S анализа, 

что коррелирует с полученными ранее результатами для класси-                       

ческого броуновского движения [11]. 

Аппроксимация временных рядов фрактальным броуновским  

движением с помощью степенной функции привела к удовлетвори-

тельному результату в задаче прогнозирования временных рядов. В 

частности, ошибка краткосрочного прогноза для валютного курса    

доллара США/российский рубль составила порядка 0,012. 
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Comparative analysis of modeling methods 

and time series forecasting 

based on the theory of fractal Brownian motion  

© T.V. Oblakova, D.S. Alekseev 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

The work summarizes the results obtained in the course of the implementation of                            

Bachelor's final qualifying work and is devoted to the methods of simulating and applying 

the fractional Brownian motion in the problems of time series analysis. Software modules 

have been implemented to generate trajectories of fractal Brownian motion using the        

methods of stochastic representation, Cholesky decomposition and Davis-Hart.                          

Algorithms vere compared in terms of their complexity and the quality of the resulting                   

trajectories. The Hurst exponent was estimated by the Minkowski and R/S analysis                    

methods. An approximation of time series by fractal Brownian motion using a power                      

function is proposed and implemented for the subsequent application of a linear prediction 

algorithm based on the normal correlation theorem. It has been established that with the 

help of the presented approximation it is possible to achieve a satisfactory forecast of the 

exchange rate for several values ahead. 

 

Keywords: fractional Brownian motion, Hurst exponent, stochastic representation, Cholesky 

decomposition, Davies and Harte method, Minkowski method, R/S analysis, linear time                   

series forecasting 
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