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Проведены модельные исследования силового воздействия на обтекаемые гори-
зонтальные элементы инженерных сооружений в верхнем слое резко стратифи-
цированного течения, связанного с генерацией волн на границе раздела жидких 
слоев. Получены интегральные представления волнового сопротивления и подъем-
ной силы. Выполнены численные расчеты для реальной морской среды. Выявлены 
условия, при которых происходит значительное увеличение гидродинамических ре-
акций на обтекаемые элементы конструкций.  

 
Ключевые слова: протяженное горизонтальное препятствие в потоке, страти-
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Введение. На обтекаемые морским течением элементы инженер-

ных сооружений действует сила вязкого сопротивления. Кроме того, в 
случае обтекания подводного сооружения стратифицированным пото-
ком возникают внутренние волны, вследствие чего появляется допол-
нительное волновое сопротивление. Как установлено в работе [1],  
такой эффект может быть весьма существенным. Условия для воз-
никновения внутренних волн при обтекании различных препятствий 
создают, в частности, придонные мутьевые потоки. Плотность таких 
потоков может превышать плотность чистой воды на десять и более 
процентов, а толщина достигать десятков метров [2]. 

Используемые в настоящей статье подходы к расчету силовых 
воздействий на обтекаемое препятствие, связанных с образованием 
внутренних волн в стратифицированном потоке, основаны на резуль-
татах исследований [3−7], в которых были получены выражения для 
комплексных потенциала и скорости возмущенных стратифициро-
ванных потоков различной геометрии. Настоящая работа выполнена 
как продолжение исследования [1] силового воздействия морского 
течения на подводный трубопровод, находящийся в придонном слое 
(этим вопросам посвящены работы [8−15]). Далее рассматривается 
задача обтекания протяженных элементов инженерных конструкций 
при иных условиях их локализации в морской среде, а именно  
в верхнем слое стратифицированного потока. Полученные результа-
ты сравниваются с результатами [1]. 
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Постановка задачи и ее аналитическое решение. Рассмотрим 
двухслойный поток идеальной жидкости, ограниченный горизон-
тальным дном, стационарно обтекающий протяженный элемент кон-
струкции, который с достаточной точностью можно считать цилин-
дром с образующей, параллельной дну. Цилиндр с круговым 
поперечным сечением радиусом R  моделируется точечным диполем 
с моментом 

22 ,m VR                                                (1) 

где V  — скорость набегающего потока. Обозначим толщину верхне-
го слоя H , нижнего — 1H , а плотности слоев — соответственно 1  и 

2  ( 1 2   ). Поставим задачу определить волновую часть гидроди-

намической нагрузки, испытываемой рассматриваемым элементом 
конструкции. Начало координат поместим на невозмущенной грани-
це между слоями жидкости, ось x  направим вдоль этой границы,  
а ось y  — вертикально вверх. Моделирующий элемент конструкции 
диполь находится над границей раздела двух слоев на оси y  в точке 
(0 )h  (рис. 1). 

 

Рис. 1. Обтекание диполя, локализованного в верхнем слое 
 

Предполагая течение потенциальным, комплексно-сопряженную 
скорость в каждом из слоев представим в виде k kV U   , 

k k kU u iv  , {1 2}k   . Обозначим отклонение свободной поверхно-

сти от ее невозмущенного положения y H  через ( )x , а величину 
возвышения границы раздела слоев потока  как ( )x . Поскольку 
вдоль линии тока ( )y H x    вектор скорости произвольной части-
цы жидкости коллинеарен ее касательной, то 

1

1 ( )

( )
y H x

v
x

V u
 

  

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Линеаризуя данное условие и перенося его со свободной поверх-
ности на прямую y H , имеем кинематическое граничное условие  

1 ( ) приv V x y H                                      (2) 

Аналогично получаем линеаризованное кинематическое условие 
вдоль поверхности раздела слоев  

1 2( ); ( ) при 0v V x v V x y                              (3) 

Отсюда имеем одно условие для вертикальных компонент скорости: 

1 2 при 0v v y                                      (4) 

Поскольку возмущения от диполя затухают вверх по потоку, то 
интеграл Бернулли вдоль линии тока ( )y H x    можно записать 
следующим образом: 

( )2 2
0 01

1 1

( )
( ( )) ,

2 2

p x pV
g H x gH

  
      

 
 

где 0 ( )p x  — давление вдоль свободной поверхности, 00
( ) lim ( )

x
p p x



  ; 

g  — ускорение свободного падения. Считая давление постоянным 
вдоль всей свободной поверхности, получаем динамическое условие 
на границе верхнего слоя: 

2 2

( )

1( )
2

y H x

V
x

g
 

   
    

которое посредством линеаризации преобразуется к виду  

1( ) при
V

x u y H
g

                                        (5) 

Продифференцируем равенство (5) по x  и из полученного соот-
ношения исключим величину ( )x  с помощью формулы (2). В ре-
зультате придем к граничному условию для компонент вектора ско-
рости: 

1
1 2

0 при  
u g

v y H
x V


       


                  (6) 

Интегралы Бернулли, записанные для линий тока на верхней и 
нижней сторонах поверхности раздела слоев ( )y x  , выглядят сле-
дующим образом: 

2 ( ) 21 1
1 1 1 1

2 ( ) 22 2
2 2 2 2

( ) ( ) при  ( ) ;
2 2

( ) ( ) при  ( )
2 2

p x g x p V y x

p x g x p V y x





 
         

 
          
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где 1( )p x  и 2 ( )p x  — давления вдоль соответствующих сторон этой по-

верхности, ( )
11 lim ( )

x
p p x


 , ( )

22 lim ( )
x

p p x


 . Поскольку при пере-

ходе через поверхность разрыва касательных скоростей давление не-

прерывно, то 1 2( ) ( )p x p x , ( ) ( )
1 2p p  , и два предыдущих равенства 

могут быть приведены к одному условию для компонент скорости: 

2 2 2 21 2
1 1 1 1 2 2 2 2(2 ) ( ) (2 ) ( )при ( )

2 2
Vu u v g x Vu u v g x y x

 
             

Пренебрегая в последнем соотношении квадратами малых вели-
чин ku  и kv  {1 2}k    и перенося его на невозмущенное положение 

скачка плотности, получаем линеаризованное динамическое условие 
на границе раздела слоев: 

1 1 2 2( ( )) ( ( )) при 0Vu g x Vu g x y          

Продифференцируем обе его части по x  и в полученное равенст-
во подставим выражения для величины ( )x , следующие из формул 
(3). В результате приходим к граничному условию для возмущений 
скорости на слое скачка плотности, не содержащему неизвестной 
функции ( )x :  

1 2
1 1 2 2 при 0

u u
v v y

x x

   
   
   
   

 
      

 
                  (7) 

Кроме того, на дне должно быть выполнено условие непротекания: 

2 10 приv y H                                       (8) 

Перепишем соотношения (6), (7), (4), (8) соответственно в терми-
нах возмущений комплексно-сопряженной скорости: 

1
1Im 0 при ;

dU
i U y H

dz

 
 
 
 

                                (9) 

1 2
1 2Im Im при 0;

dU dU
i U i U y

dz dz

   
   
   
   

                   (10) 

1 2Im Im при 0;U U y                                (11) 

2 1Im 0 приU y H                                   (12) 

где 1 2     ; z x iy  . Таким образом, исходная задача сведена к 

отысканию функций 1( )U z  и 2 ( )U z , удовлетворяющих граничным 

условиям (9)–(12), причем 2 ( )U z  регулярна в полосе x    , 

01H y   , а 1( )U z  — в полосе x    , 0 y H   всюду за 
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исключением точки z ih , в которой она имеет полюс второго по-
рядка (так как в этой точке расположен диполь). 

В соответствии с изложенным выше будем искать комплексно-
сопряженную скорость 2 ( )U z  в виде ее разложения в интеграл Фурье 

по волновым числам, а 1( )U z  — как сумму комплексно-сопряженной 

скорости, индуцированной диполем в безграничном потоке, и регу-
лярной функции, представленной интегралом Фурье:  

1 2
0

1
( ) ( ) ;

2 ( )
ikz ikzm

U A k e B k e dk
z ih


 
  

 
      

               (13) 

2
0

( ) ( )
2

ikz ikzm
U C k e D k e dk


 
  

  


                       (14) 

где функции ( ) ( ) ( )A k B k C k   и ( )D k  подлежат определению. С по-
мощью соотношения  

0

0

2

если ;

если

1
( )

kh ikz

kh ikz

y h

y h

ke e dk

z ih
ke e dk




 





   


 


 

перепишем (13) для комплексно-сопряженной скорости 1( )U z  в об-

ластях верхнего слоя, расположенных соответственно выше и ниже 
диполя: 

0
1

0

[( ( )) ( ) ] если ;
2

( )

[ ( ) ( ( )) ] если
2

kh ikz ikz

ikz kh ikz

m
ke A k e B k e dk y h

U z
m

A k e ke B k e dk y h





 


     

      

       (15) 

Подстановка формул (14)–(15) в граничные условия (9)–(12) при-
водит к неоднородной системе линейных уравнений относительно 
функций ( ) ( ) ( )A k B k C k   и ( )D k : 

( )

11

( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ( ) ;

;

0.

kH kH k h H

kh

kh

kHkH

k e A k e B k k e

k A k B k C k D k k e

A B C D ke

e C e D

 







        


           


   


 

 

Отсюда имеем следующие выражения для ( )A k  и ( )B k :  
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 
 

 

1

2 2 2
1 1

1

2 2 2
1 1

( (1 ) ) th ch ( ) sh ( )
( ) ;

ch [ (1 ) ] th th (th th )

( ) [(1 ) ch sh ] th ch
( )

ch [ (1 ) ] th th (th th )

kH

k k kH k k H h k k H h
k

kH k k kH kH k kH kH

k k e kh k kh kH k kh
B k

kH k k kH kH k kH kH

A



              
       

     
 

       

 (16) 

Перепишем далее равенство (13) следующим образом: 

1 2

1
( ) ( ) ,

2 ( )

m
U z f z

z ih
  

 
 

где 

0 0
( ) ( ) ( )

2
ikz ikzm

f z A k e dk B k e dk
 

 
      

 

Заметим, что для получения физически реализуемого решения (т. е. 
решения, которое удовлетворяет условию отсутствия возмущений да-
леко вверх по потоку) контур интегрирования в первом слагаемом вы-
ражения для ( )f z  следует сместить в нижнюю полуплоскость, а во 
втором — в верхнюю. Таким образом, всюду в дальнейшем ( )f z  по-
нимается как следующий предел: 

1 1

01 1 1

( ) lim ( ) ( )
2

i i
ikz ikz

i i

m
f z A k e dk B k e dk

    


    

 
    

   
          (17) 

Для вычисления равнодействующей R  гидродинамических сил, 
приложенных к диполю (трубопроводу), воспользуемся формулой 
С.А. Чаплыгина, согласно которой 

21
1* ( )

2 K

i
R X iY z dz


                              (17a) 

Здесь X — волновое сопротивление; Y — подъемная сила, а ин-
тегрирование осуществляется по произвольному контуру K , распо-
ложенному в верхнем слое и охватывающему рассматриваемый ди-
поль. Поскольку  

1 1 2
( ) ( ) ( )

2 ( )

m
z V U z V f z

z ih
     

 
 

и функция ( )f z  регулярна в области, занятой верхней жидкостью, то 

функция 2
1 ( )z  имеет в этой области единственную особую точку: 

z ih . Применяя теорему о вычетах, находим 
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2
1 2 2

( ) ( )
( ) 2 res

( ) ( )z ihK K

m f z f z
z dz dz im

z ih z ih
      

  
 

Вычет подынтегральной функции в точке z ih  

2

( )
res ( )

( )z ih

f z
f ih

z ih
 


 

Следовательно, 

1* ( )R m f ih                                           (18) 

Из (17) имеем 

1 1

1 1

01
( ) lim ( ) ( )

2

i i
kh kh

i i

im
f ih kA k e dk kB k e dk

    


    

 
     

   
 

С помощью интегральной теоремы Коши можно показать, что 
данный предел будет 

 
10

( ) ( ( ) ( ) ) res ( ( ) ( ) ) .
2 2 j

s
kh kh kh kh

k kj

im m
f ih k A k e B k e dk k A k e B k e


 


    


 

Таким образом, 

 
2 2

1 1

10
* ( ( ) ( ) ) res ( ( ) ( ) ) .

2 2 j

s
kh kh kh kh

k kj

i m m
R k A k e B k e dk k A k e B k e


 



 
   


(19) 

Здесь интеграл понимается в смысле главного значения по Коши, а 
вычеты берутся по всем s  полюсам jk  функции ( ( ) ( ) )kh khk A k e B k e  , 

расположенным на положительной действительной оси. Из (16) видно, 
что эти полюса являются положительными корнями уравнения 

2 2 2
1 1[ (1 ) ]th th (th th ) 0.k k kH kH k kH kH                 (20) 

Кроме того, очевидно, что точки jk k  (и только они) являются 

особыми для подынтегральной функции в первом слагаемом (19) (т. е. 
полюсами, расположенными на контуре интегрирования). 

Проведенный в работе [6] анализ показал, что уравнение (20) 
имеет два положительных корня при выполнении условия 

2
вн
кр

( 1 ( 1) 4 )

2

gH
V V

    
                      (21) 

и один положительный корень, если 

2
пов
кр

( 1 ( 1) 4 )
;

2

gH
V V

    
                       (22) 
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при пов
крV V  положительных решений нет. Здесь 1      

2 1 2( )/     — относительный перепад плотности между слоями 

обтекаемого потока; 1 /H H  . С физической точки зрения критиче-

ские скорости вн
крV  и пов

крV  означают максимальную скорость течения, 

при которой в потоке за обтекаемым препятствием образуются вол-
ны, обусловленные, соответственно, наличием слоя скачка плотности 
и свободной поверхности (т. е. внутренние и поверхностные). 

Выделяя в (19) вещественную и мнимую части, с учетом соотно-
шения (1), связывающего момент диполя с радиусом моделируемого 
им цилиндра, окончательно получаем следующие выражения для 
волнового сопротивления и подъемной силы: 

 2 2 4
1

1

2 4
1

0

2 res ( ( ) ( ) ) ;

2 ( ( ) ( ) ) .

j

s
kh kh

k kj

kh kh

X V R k A k e dk B k e

Y V R k A k e B k e dk








    

   

 

Необходимо отметить, что в выражение для вычисления подъем-
ной силы не включена действующая на трубопровод сила Архимеда. 

Подсчет вычетов осуществляем по формуле 

  1 2

3

( ( ) ( ) )
res ( ( ) ( ) ) ,

( ) /j
j

kh kh
kh kh

k k
k k

k g k e g k e
k A k e dk B k e

dg k dk








   

где 

1
1

( (1 ) ) th ch ( ) sh ( )
( ) ;

ch

k k kH k k H h k k H h
g k

kH

                 

 1
2

2 2 2
3 1 1

( ) [(1 ) ch sh ] th ch
( ) ;

ch

( ) [ (1 ) ] th th (th th ).

kHk k e kh k kh kH k kh
g k

kH

g k k k kH kH k kH kH

       


        

 

Численные расчеты для реальных условий моря. Расчеты 
гидродинамических реакций велись при значениях характеристик 
среды, соответствующих реальным условиям моря. Так, плотность 
верхнего слоя 1  была принята равной 31024 кг/м . С целью исследо-

вания влияния величины скачка плотности  2 1 21 ( ) /        

модельные расчеты были проведены для двух вариантов значений 
перепада плотности между верхним и нижним слоями воды: 

2 1/ {1,01; 1,10}   . Причем второй вариант 2 1/ 1,10    соответству-

ет взвесенесущему (или мутьевому) потоку с высокой концентрацией 
взвешенных частиц в его нижнем слое у дна [2]. Для удобства срав-
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нения с результатами работы [1] радиус цилиндра был принят рав-
ным R = 0,71 м. Рассматривался  случай, когда общая глубина потока 
(от поверхности до дна) составляла 0 1 50мH H H    при толщине 

верхнего слоя 40мH  , а моделирующий цилиндр диполь находился 
на расстояниях от невозмущенного положения поверхности раздела 
двух слоев {1,5; 2,0; 3,0; 4,5м}ih  . 

Результаты вычисления волнового сопротивления X и подъемной 
силы Y, действующих на погонный метр длины цилиндрического 
элемента, в зависимости от скорости набегающего потока V  приве-
дены на рис. 2, 3. Для наглядности сравнения величин ( )X V  и ( )Y V  
при различных локализациях моделирующего цилиндрический эле-
мент конструкции диполя графики на этих рисунках представлены 
парами (левая пара — локализация под скачком плотности, правая — 
над ним). При этом верхние графики соответствуют значению пере-
пада плотности 2 1/ 1,01   , нижние — 2 1/ 1,10   . На каждом 

графике приведены четыре кривые, согласно разным расстояниям hi 
от диполя до границы раздела жидких слоев. Увеличение расстояния 

{1,5; 2,0; 3,0; 4,5 м}ih   от поверхности границы раздела слоев до 

диполя (трубопровода) соответствует уменьшению максимума вол-
нового сопротивления и подъемной силы. Причем относительные 
изменения величин X и Y к соответствующему изменению расстояния 

ih  –  1 1( ) ) / /
i i ih h i i h iX X h h X h
       — очень существенны и 

в случае перепада плотности 2 1/ 1,01    изменяются от единиц до 

десятков 2H / м , а при 2 1/ 1,1    относительные изменения X и Y на 

порядок выше. Таким образом, скачки плотности в морской среде 
дополнительно дают весьма значительный вклад в гидродинамиче-
скую нагрузку на обтекаемую преграду. В то же время, как показали 
модельные расчеты, силовые характеристики X и Y практически не 
зависят от толщин слоев набегающего потока Hi . Также отметим, что 
при удалении диполя от слоя скачка плотности водной среды макси-
мумы волнового сопротивления и подъемной силы смещаются при 
увеличении скорости потока (см. рис. 2, 3). 

Как видно на всех графиках рис. 2, характерная особенность 
функции ( )X V  — это наличие резкого максимума max ( )X V  и бы-

строе убывание при увеличении скорости набегающего потока. Ана-
логичное поведение демонстрирует и амплитуда поверхностной вол-
ны [7, 8]. При скоростях, бóльших критической скорости вн

крV   

(см. (21), (22)), волновое сопротивление резко уменьшается практиче-
ски до нуля. Далее оно вновь достигает значительных величин лишь  
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при существенно бóльших значениях скорости 4м сV  . Заметим, 
что такие скорости течения не свойственны реальным условиям моря. 

 

Рис. 2. График зависимости волнового сопротивления диполя от скорости потока 

 

 

Рис. 3. График зависимости подъемной силы диполя от скорости потока 
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Представленные на рис. 2 графики силового сопротивления 
( )X V  с одинаковыми значениями параметров j , 2 1/   и hi показы-

вают, что изменения их форм практически идентичны как при лока-
лизации диполя над скачком плотности, так и под ним. В отличие от 
графиков ( )X V , изменения кривых ( )Y V  существенно отличны и 
обладают другой характерной особенностью: в относительно узком 
диапазоне изменения скорости потока подъемная сила резко меняет 
свое направление на противоположное (см. рис. 3). Так, например, 
перепад значений подъемной силы 

1hY в диапазоне значений скоро-

сти обтекания 0,15 0,35V    м/с составляет 20 Н/м  (при перепа-

де плотности 2 1/ 1,01    — см. левый верхний график), а в случае 

2 1/ 1,1    — 
1

220 H/мhY   в диапазоне значений 0,55 1,15V   м/с. 

Таким образом, с ростом величины скачка плотности увеличивается 
и перепад (от максимума до минимума) подъемной силы. 

Заключение. При значительном перепаде плотности взвесенесу-
щего потока волновое сопротивление горизонтальных элементов кон-
струкций в верхнем слое существенно возрастает до значений, кото-
рыми нельзя пренебречь при анализе безопасности их функцио-
нирования. Кроме того, следует учитывать выявленную особенность 
подъемной силы. Как видно из проведенных расчетов, в относительно 
узком диапазоне изменения скорости потока, характерном для реаль-
ных морских условий, подъемная сила резко меняет свое направление 
на противоположное. Поскольку морские течения непостоянны, такой 
эффект может привести к возникновению противоположно направ-
ленных по вертикали силовых воздействий, рассредоточенных по дли-
не элемента конструкции, что в конечном итоге может привести к его 
деформации и последующему разрушению. Таким образом, выявлен-
ные эффекты необходимо учитывать при проектировании и эксплуа-
тации различных подводных сооружений.  

Работа выполнена при поддержке РФФИ (№ 13-08-00538). 
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Simulation of wave action on horizontal structure elements 

in the upper layer of stratified flow 
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The article describes performed simulation of force action on streamlined horizontal el-
ements of engineering structures in the upper layer of sharply stratified flow associated 
with the generation of waves at the interface between the liquid layers. We obtained an 
integral representation of the wave drag and lift, made numerical calculations for a real 
marine environment. The conditions under which there is a significant increase in the hy-
drodynamic reactions on streamlined structural elements were revealed. 
 
Keywords: extended horizontal obstacle in the flow, stratified flow, wave drag, lift.  
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