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В статье описывается агентная имитационная модель двух популяций, конкури-

рующих за один ресурс. В модели считается, что особь погибает, если её масса-

энергия становится неположительной. Предполагается, что особи каждой из 

рассматриваемых популяций могут образовывать стаи, это позволяет популяци-

ям повышать свою конкурентоспособность. В модели это формализуется посред-

ством возможности организовывать сети, связывающие особей одного вида. При 

этом особи могут образовывать лишь определенное количество связей с соседями. 

В модели для описания этого вводится понятие «валентности». Предполагается, 

что внутри каждой сети происходит мгновенное перераспределение ресурса по 

всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели 

описана структура программы, с помощью которой проводились имитационные 

эксперименты. В результате проведенных имитационных экспериментов было 

получено следующее. Если ресурс высокопродуктивный, то в процессе конкурент-

ного взаимодействия побеждает популяция, агенты, которой имеют большую 

«валентность». А в случае низко продуктивного ресурса победу в конкурентном 

взаимодействии одерживают особи популяции, обладающей меньшей «валентно-

стью». Это связано с тем, что более сложные структуры требуют большей 

энергии поддержания стаи.  
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Введение. Задача исследования конкурентных взаимодействий в 

популяционной экологии не потеряла своей актуальности, несмотря 

на то, что этой задаче уже почти сто лет. Известно фундаментальное 

положение популяционной экологии, называемое принципом конку-

рентного исключения Гаузе, который заключается в утверждении: 

«Два вида организмов не могут устойчиво сосуществовать в ограни-

ченном пространстве, если рост численности обоих лимитирован   

одним жизненно важным ресурсом, количество и/или доступность 

которого ограничены» [1]. Это положение было получено с исполь-

зованием математических моделей вольтерровского типа, основан-

ных на языке обыкновенных дифференциальных уравнений. Иссле-

дованию моделей такого типа посвящено большое количество работ 

[2–5]. Построение и исследование агентных имитационных моделей с 

помощью вычислительной техники позволило учесть эколого-

физиологические характеристики особей популяций более детально, 

чем моделирование на базе обыкновенных дифференциальных урав-
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нений, так как последние не позволяют учесть важные особенности 

жизненного цикла особей. К сожалению, аналитический анализ таких 

моделей чрезвычайно сложен. В качестве примера таких работ             

можно привести работы [6–13]. В последнее десятилетие особое 

внимание уделяется моделированию и анализу сетевых структур, 

формируемых особями различных популяций [14]. Настоящая работа 

пытается учесть особенности сетевой структуры популяций при кон-

куренции за ресурс. В ней рассматривается агентная имитационная 

модель конкуренции двух популяций за ресурс, агенты которых               

могут формировать стаи, в рамках которых организуется внутриви-

довое кооперативное взаимодействие. Оказывается, что структура 

стаи и продуктивность ресурса существенно влияет на исход конку-

рентной борьбы. 

Описание модели. Рассматривались две конкурирующие                

популяции. Каждая популяция состоит из совокупности особей — 

агентов. Каждая особь характеризуется своей массой, которую мы 

трактуем расширенно, а именно: мы считаем, что она тождественна 

энергии и тратится при различных физиологических процессах, таких 

как движение, размножение и т.п. В модели учитываются: энергети-

ческие затраты на перемещение, рождение и выкармливание потом-

ства, учитывается изменение «энергоэффективности» функциониро-

вания при старении особи, на поддержание межагентных связей в 

стаях а также затраты при конкурентных взаимодействиях с особями 

другой популяции и получении дополнительной энергии от особей, 

входящих в стаю, к которой принадлежит рассматриваемая особь.  

Считается, что ареал обитания двух моделируемых популяций 

(индекс 1,2l  ), на котором произрастает ресурс, является прямо-

угольной целочисленной решёткой ( 1,..., , 1,...,i L j F  ). Было             

принято, что количество ресурса в каждой точке ареала ограничено 

предельным значением H. При уменьшении количества ресурса за 

счет потребления особями он с постоянной скоростью K  за такт      

восстанавливается до предельного значения. Уравнения роста ресур-

са имеют вид: 
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где ,i j

tm  количество ресурса в точке ( , )i j    в момент времени t , а 
,
,l

i j
t  

— доля изъятия ресурса, если в точке  ( , )i j  в данный момент есть 

особи l  — ой популяции (   1  , 2l  ). 

В ареале находится некоторое множество подвижных особей. 

Каждая особь описывается следующим вектором состояния в момент 
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времени t : координатами в ареале ( , )i j , возрастом  , массой 
,tn 

. 

Особи каждой популяции также характеризуются  радиусом индиви-

дуальной подвижности lR  (максимальное расстояние, преодолевае-

мое особью l  — ой популяции за один такт), а также радиусом обзо-

ра 
lr  — параметром, учитывающим максимальное расстояние, на ко-

тором особь-агент может обнаружить пищу или другую особь (ради-

ус слышимости). В модели считается, что радиус индивидуальной 

подвижности и радиус обзора постоянны для всех особей и не зави-

сят от возраста. 

Учитываются следующие процессы, меняющие состояние особи: 

рождение, старение, потребление ресурса, перемещение по ареалу, 

присоединение к стае и конкуренция с особями другой популяции. 

Рассмотрим, как изменяется состояние особи в результате вышеиз-

ложенных процессов. 

Процесс старения увеличивает возраст особи в каждом такте на 

единицу. Процесс потребления ресурса (
,
,l

i j
t ) зависит от возраста. В 

модели считается, что с возрастом потребление ресурса уменьшается 

в соответствии с выражением:  
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где 1C , Т  — некоторые постоянные, характеризующие физиологию 

рассматриваемых животных, соответствующих популяций ( 1C  — ко-

эффициент, учитывающий энергетическую ценность ресурса, Т   — 

предельный возраст).  

Гибель особи происходит при критическом недостатке «энергии» 

(ресурса), либо при достижении ею предельного возраста 

   , 0 ,  tn T    . Процесс рождения особей в модели описан сле-

дующим образом. При достижении определенного размера особь за 

каждый такт в соответствии с распределением Бернулли со средним 

значением   случайным образом порождает другую особь нулевого 

возраста, фиксированной массы, при этом материнская особь теряет 

фиксированную часть от текущей, которая тратится на выкармлива-

ние потомства. Перемещение особи S  за один временной такт огра-

ничивается радиусом индивидуальной активности  lS R . При пе-

ремещении теряется часть «энергии» 
2 ,tC n s , имеющейся у особи.  

Перейдем к описанию алгоритма перемещения особей. В модели 

предполагается, что существует два фактора, влияющих на движение. 

Это пищевая активность и активность, связанная с взаимодействием 

с другими особями, т.е. с социальным поведением. 
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Алгоритм пищевой активности заключается в следующем. На 

каждом такте работы модели особь определяет ближайший к ней 

участок, на котором находится ресурс. Причем «анализируемая»  

территория вписывается в круг радиусом обзора lr . Особь переходит 

на найденный участок, если он ближе радиуса индивидуальной         

активности, иначе сдвигается на lR  в его направлении (считается, что 

всегда справедливо неравенство l lR r ). Если ресурса поблизости 

нет, выбирается случайное направление. 

Социальное перемещение особи возможно, если её масса превы-

шает некоторую фиксированную величину (достаточный уровень), то 

есть особь не истощена голодом.  

Рассмотрим поведение агента, значение массы которого превы-

шает достаточный уровень. В качестве параметра введем расстояние 

слышимости — то расстояние, на котором агенты одного вида могут 

обмениваться информацией lr . Если рассматриваемый агент                

(далее — агент А) услышал агента своего вида (далее — агент Б), он 

начинает двигаться по направлению к нему. Как только агент А при-

близился к агенту Б, если уровень энергии последнего тоже превы-

шает достаточный уровень, эта пара агентов образует стаю: между 

ними формируется соединение. Если агент Б уже является частью 

стаи, агент А присоединяется к ней, причем в данном случае соеди-

нения также могут образоваться между агентом А и другими агента-

ми рассматриваемой стаи, если они оказались достаточно близко.  

В модели вводится параметр, который будем называть «валент-

ностью» агента определенной популяции. Он определяет максималь-

ное количество соединений, которое может образовать агент в             

рамках своей стаи. При изменении данного параметра будет меняться 

и возможное структурное устройство стаи. Так, например, для          

валентности, равной двум, единственными возможными структурами 

графа стаи станут замкнутые и незамкнутые ломаные линии. Также 

отметим, что в модели связи между агентами всегда одно валентные, 

то есть не рассматриваются соединения между агентами двух и более 

валентностей. 

В модели принято, что на поддержание соединений агент каждый 

такт тратит некоторое количество энергии il

pe  . В проведенных           

экспериментах считалось, что количество затраченной за такт энер-

гии пропорционально количеству образованных агентом соединений. 

Движение агента в стае определяется максимальным и мини-

мальным расстояниями от данного агента до агентов своей стаи. Если 

максимальное расстояние от данного агента до агентов своей стаи, с 

которыми установлено соединение, оказывается больше, чем некото-

рый параметр, агент начинает двигаться ближе к центру стаи. В то же 
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время, если минимальное расстояние от данного агента до агентов 

своей стаи, с которыми установлено соединение, оказывается мень-

ше, чем некоторый параметр комфортного расстояния, агент начина-

ет двигаться дальше от центра стаи. 

Кроме того, при определении направления движения агента учи-

тывается также расстояние от данного агента до какой-либо другой 

стаи того же вида. Если это расстояние становится малым, агент вы-

бирает направление движения от центра другой стаи. 

Если же все рассмотренные расстояния имеют допустимые зна-

чения, агент продолжает двигаться в направлении, определяемым ал-

горитмом пищевой активности. 

Конкуренция агентов популяций в модели описывается следую-

щим образом. Если два агента разных видов находятся достаточно 

близко друг от друга, то за такт их энергия уменьшается на величину 
il

ce  причем количество теряемой энергии обратно пропорционально 

размеру соответствующих стай или количеству соединений данных 

агентов с агентами из их стай il

fN  ( f — индекс (номер) стаи). В             

модели считается, что  

1
i

i

l c

c l

f

e
e

N

 
   

  
, г 

где ce   — некоторая постоянная. 

Каждая особь, входящая в стаю, за каждый такт тратит часть 

энергии на поддержание целостности сети 
pe , но также получает 

энергию в процессе ее перераспределения по всем членам сети ре-

сурса.  

Уравнение баланса «энергии» свободной особи — агента записы-

вается следующим образом: 

 

,

, , ,, ,

1, 1 , 2 , ( )
2

i j

i j i j
i it l lk m i j

t t t t c p

n
n n C n S e e



          ,  

где  

 

,

,
( )

2

i j

tn 
    

— затраты на рождение ( ( ) 1    — происходит рождение в момент 

времени t    в противном случае ( ( ) 9   ). Члены il

ce , il

pe             

учитывают затраты энергии на конкуренцию и затраты на поддержа-

ние целостности стаи (сети). 



Н.В. Белотелов, А.В. Бровко 

76 

Однако, если агент является частью стаи, то в конце каждого так-

та после расчета энергий агентов по формуле баланса энергии для 

всех агентов, которые состоят в стае, энергия приравнивается к сред-

нему арифметическому энергий всех агентов соответствующей стаи, 

то есть происходит моментальное перераспределение энергии. 

Численная реализация модели. Для написания программы, ре-

ализующей рассматриваемую модель, был использован язык про-

граммирования Java и интегрированная среда разработки программ-

ного обеспечения Processing. Данная среда включает в себя графиче-

ские библиотеки, позволяющие реализовывать алгоритмы покадро-

вой отрисовки анимации с сопутствующими вычислениями. Про-

грамма разработана с использованием методов объектно-

ориентированного программирования. Рассматриваемая модель под-

разумевает введение следующей классовой иерархии: 

 ResourceNet — класс, описывающий структуру и алгоритмы 

объекта целочисленной сетки пищевого ресурса; 

 Agent — класс, описывающий структуру и алгоритмы объекта 

особи; 

 Pack — класс, описывающий структуру и алгоритмы объекта 

стаи; 

 AviaryRivalry — основной агрегирующий класс, описываю-

щий структуру модели в целом и определяющий алгоритмы взаимо-

действия модельных объектов. 

Объект класса ResourceNet содержит в себе поля, описывающие 

состояние целочисленной решетки пищевого ресурса, и определяет 

методы изъятия и восстановления ресурса в ее ячейках. 

Объекты класса Agent хранят информацию об отдельной особи-

агенте, описывают алгоритмы изменения свойств агента, их зависи-

мость друг от друга, методы изменения значений данных свойств, а 

также алгоритмы элементарного поведения отдельного агента.              

Элементарным считается такое поведение, которое не зависит от вза-

имного расположения агента с другими объектами модели, например, 

перемещение агента в заданном направлении на радиус индивиду-

альной активности в ареале обитания. 

Объекты класса Pack содержат поля, описывающие состав и 

структуру стаи, и определяет методы корректного добавления и            

удаления агентов из нее, перераспределения и убывания энергий 

агентов стаи. 

Объект класса AviaryRivalry в качестве полей хранит списки объ-

ектов всей модели и описывает алгоритмы их взаимодействия. В нем 

содержатся список всех агентов, список всех сформированных стай, а 

также один объект класса ресурсной сетки. Частью данного класса 

также являются алгоритмы, определяющие выбор направления          
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пищевого и социального перемещений агентов, описывающие            

формирование новых стай, условия вхождения и исключения агентов 

из стай и удаление пустых или состоящих из одного агента стай,           

задающие определенные моделью процессы рождения, гибели и   

конкуренции особей. 

Рассмотрим алгоритмическую реализацию описанной математи-

ческой модели. В рамках процесса подготовки кадра анимации           

последовательно выполняется ряд вычислений. 

Первым действием при подготовке кадра анимации происходит 

восполнение ресурса в узлах решетки пищевого ресурса в соответ-

ствии с вышеописанными уравнениями. Далее оставшиеся агенты 

повышают значения своих энергий споглощая пищевой ресурс.  На 

Следующем шаге происходит перемещение агентов по полю в              

соответствии с алгоритмами пищевой и социальной активностей, 

формируются или удаляются соединения и рассчитываются затраты 

энергии агентов, состоящих в стаях, на поддержание установленных 

соединений. Затем для каждого агента запускается алгоритм, связан-

ный с процессом рождения особей.  

По результатам изменений энергий агентов, связанных с выше-

описанным алгоритмом, проводится перераспределение энергий в 

рамках сформированных стай. Далее происходит процесс конкурен-

ции агентов разных популяций. Последним шагом проводится            

проверка значения энергии каждого агента модели на критический 

недостаток и производится удаление соответствующих агентов из 

системы. 

Результаты численного моделирования. По результатам вы-

полнения расчетов свойств всех объектов модели по данному алго-

ритму на каждом такте формируется их графическое представление 

(рис. 1). 

На рисунке 1 изображен ареал обитания, в котором определена 

ресурсная решетка размерности 100 100  (цвет морской волны).  

Значения количества ресурса в каждом узле решетки иллюстрируют-

ся оттенком цвета: узлы, в которых количество ресурса меньше             

предельного значения H  отображаются более темными. В ареале 

находится несколько агентов двух популяций (точки красного и              

зеленого цветов), некоторые из которых сформировали стаи (множе-

ства точек, соединенные линиями). Два из представленных агентов 

конкурируют между собой (красная и зеленая точки, соединенные 

фиолетовой линией). 

Был проведем ряд симуляций с целью определения зависимости 

значения стабильной популяции одного вида агентов от валентности 

и предельного значения H  количества ресурса в каждой точке            

ареала. Результата имитаций представлены в табл. 1–4. 
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Рис. 1. Графическое представление объектов модели 

 

По табл. 1 можно сделать вывод, что значение стабильной               

численности популяции вида агентов обратно пропорционально               

валентности агентов данного вида. Кроме того, существует                    

зависимость стабильной численности популяции агентов от предель-

ного значения H  количества ресурса в каждой точке ареала, которая 

для данной модели близка к линейной. 

Далее был проведен ряд симуляций с целью определения               

доминирующего вида агентов из двух видов различной валентности 

для некоторых предельных значений H  количества ресурса в каждой 

точке ареала. 

 
Таблица 1 

Стабильные популяции агентов одного вида в зависимости от их валентности 

и предельного значения H количества ресурса в каждой точке ареала 

Валентность 

Предельное значение H количества ресурса в каждом узле 

 решетки пищевого ресурса 

0,70 0,75 0,80 0,85 0,90 0,95 1,10 1,50 

Стабильная популяция агентов 

0 325 400 540 650 780 870 1200 1980 

2 15 45 90 180 250 310 500 1040 

4 3 10 50 100 130 200 330 820 
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Таблица 2 

Результаты симуляций конкуренции популяций агентов валентностей 0 и 2 

 

Базовое значение пищевого ресурса BASERES 

0,700 0,720 0,750 0,775 0,800 

Валент-
ность 

Валент-
ность 

Валент-
ность 

Валент-
ность 

Валент-
ность 

0 2 0 2 0 2 0 2 0 2 

Кол-во  
выигрышных 
симуляций 

10 0 8 2 4 6 1 9 0 10 

Средняя 
остаточная 
популяция 

18 − 16 10 19 12 27 18 − 28 

Среднее 
остаточное 
количество 
стай 

− − − 2 − 4 − 5 − 6 

Таблица 3 

Результаты симуляций конкуренции популяций агентов валентностей 0 и 4 

 

Базовое значение пищевого ресурса BASERES 

0,70 0,75 0,80 0,90 

Валентность Валентность Валентность Валентность 

0 4 0 4 0 4 0 4 

Кол-во  
выигрышных 
симуляций 

10 0 5 5 3 7 0 10 

Средняя 
остаточная 
популяция 

20 − 13 10 17 12 − 40 

Среднее  
остаточное 
количество 
стай 

− − − 3 − 3 − 9 

Таблица 4 

Результаты симуляций конкуренции популяций агентов валентностей 2 и 4 

 

Базовое значение пищевого ресурса BASERES 

0,90 0,95 1,10 1,50 2,00 

Валент-
ность 

Валент-
ность 

Валент-
ность 

Валент-
ность 

Валент-
ность 

2 4 2 4 2 4 2 4 2 4 

Кол-во  
выигрышных 
симуляций 

10 0 10 0 8 2 6 4 0 10 

Средняя  
остаточная 
популяция 

86 − 109 − 140 36 300 246 − 312 

Среднее  
остаточное 
количество 
стай 

 
10 

 

− 
 

12 
 

− 
 

12 
 

4 
 

19 
 

15 
 

− 
 

18 
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Заключение. По результатам симуляций, приведенным в табл. 2-

4 можно сделать вывод, что доминантность вида зависит и от степени 

структурированности популяции, и от продуктивности пищевого                

ресурса. Если ресурс высокопродуктивный, то в процессе конкурент-

ного взаимодействия побеждает популяция, агенты, которой имеют 

большую «валентность». А в случае низко продуктивного ресурса 

победу в конкурентном взаимодействии одерживают особи популя-

ции, обладающей меньшей «валентностью». Это связано с тем, что 

более сложные структуры требуют большей энергии поддержания 

стаи. 

Популяцию, имеющую большую «валентность» мы называем  

более структурированной по сравнению с популяцией с меньшой 

«валентностью».. В каждом из экспериментов, в полном соответ-

ствии с принципом Гаузе, происходило вытеснение одной из популя-

ций. Однако, если в эксперименте ресурс был высокопродуктивный, 

то в процессе конкурентного взаимодействия побеждала более струк-

турированная популяция. А в случае низко продуктивного ресурса в 

конкурентном взаимодействии выигрывали особи популяции,                

обладающей меньшей «валентностью».  

Таким образом, в случаях, когда ресурса достаточно для актив-

ного размножения и поддержания соединений в больших стаях,              

высокая структуризация популяции является определяющим пре-

имуществом при конкурентном взаимодействии. Однако в средах с 

низко продуктивным ресурсом это свойство популяции оказывается 

недостатком вследствие высоких затрат «энергии» на поддержание 

большого количества соединений. 
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Agent model of two competing populations taking into 

account their structurality 
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The article describes an agent simulation model of two populations competing for one 

resource. In the model, it is assumed that an individual dies if its mass-energy becomes 

non-positive. It is assumed that individuals of each of the populations under considera-

tion can form flocks, this allows populations to increase their competitiveness. In the 

model, this is formalized through the ability to organize networks connecting individuals 

of the same species. At the same time, individuals can form only a certain number of  
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connections with neighbors. The concept of "valence" is introduced in the model to            

describe this. It is assumed that within each network there is an instantaneous redistribu-

tion of the resource available to all members of the network by each member of the pack. 

In addition to the model, the article describes the structure of the program with which 

simulation experiments were carried out. As a result of the simulation experiments, the 

following was obtained. If the resource is highly productive, then in the process of               

competitive interaction, the population wins, the agents of which have a large "valence". 

And in the case of a low-productive resource, individuals of a population with a lower 

"valence" win in competitive interaction. This is due to the fact that more complex               

structures require more energy to maintain the flock.   

 

Keywords: population, competition, agent simulation model, flock structure 
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