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уравнений с начальными условиями 
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Рассматривается нелинейная колебательная система, описываемая обыкновен-
ными дифференциальными уравнениями с переменными коэффициентами.              
Предполагается, что на рассматриваемом интервале времени решение системы 
является достаточно гладкими — без разрывов, столкновений и бифуркаций. Из 
неоднородной системы уравнений выделяются в явном виде члены, линейно               
зависящие от координат, скоростей и ускорений и члены, зависящие от этих          
переменных нелинейно. Предлагается новый подход для численного решения шаго-
вым методом начальной задачи, описываемой такой системой обыкновенных 
дифференциальных уравнений второго порядка. На шаге интегрирования                  
неизвестные функции представляются в виде суммы функций, удовлетворяющих 
начальным условиям: линейного решения Эйлера и нескольких заданных корректи-
рующих функций в виде полиномов второй и выше степеней с неизвестными              
коэффициентами. Дифференциальные уравнения на шаге удовлетворяются             
приближённо в смысле слабого решения по методу Галеркина на системе коррек-
тирующих функций. Получаются алгебраические уравнения с нелинейными             
членами, которые решаются методом итераций, начиная в первом приближении с 
линейного решения. Полученное решение в конце данного шага используется в             
качестве начальных условий на последующем шаге. В качестве примера рассмот-
рено одно однородное дифференциальное уравнение второго порядка без первой 
производной с сильной кубической нелинейностью по координате (при максималь-
ной амплитуде нелинейная сила в два раза превышает линейную силу). Это              
уравнение имеет точное периодическое решение в виде интеграла энергии                  
консервативной системы, которое используется для оценки точности численных 
решений, полученных методами Галеркина, Рунге-Кутта и Адамса второго               
порядка, а также методами Radau5 и BDF на различных интервалах времени (до 
8000 периодов свободных колебаний системы) при использовании различных           
постоянных шагов интегрирования (от 0,0025 долей периода). При этом в методе 
Галеркина на каждом шаге использовалось четыре одинаковых корректирующих 
функций в виде полиномов от второй до пятой степеней. Показано, что на              
больших интервалах времени вычислений метод Галеркина обладает более высо-
кой точностью по сравнению с другими рассмотренными численными методами. 
Поэтому он может быть использован для численного решения нелинейных задач, в 
которых требуется решать их на больших интервалах времени; например при 
расчете установившихся предельных циклов нелинейных колебаний и хаотических 
нелинейных колебаний со странными аттракторами.  

 
Ключевые слова: обыкновенные дифференциальные уравнения, нелинейные систе-
мы, начальная задача, численные решения, одношаговый метод Галеркина 

Введение. Данная Численным методам решения обыкновенных 
дифференциальных уравнений (ОДУ) посвящена обширная литера-
тура: учебные пособия [1], [2] и др.; монографии [3–5] и др.;            
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многочисленные научные статьи. В фундаментальных трудах [4], [5] 
на основе исследований авторов и других исследователей (приведены 
ссылки на сотни публикаций) представлены теоретические обоснова-
ния вычислительных схем различных модификаций и комбинаций 
явных и неявных одношаговых методов типа Рунге-Кутта и                 
многошаговых методов типа Адамса и некоторых других методов 
для нежестких и жестких задач, включая дифференциально-
алгебраические задачи. Большое внимание уделено выбору шага, 
оценкам локальных и глобальных (накопленных) погрешностей, а 
также оценкам устойчивости и сходимости численных решений. 
Приведено много примеров решения тестовых задач с использовани-
ем различных компьютерных программ со сравнениями и анализом 
результатов. В этих работах в основном рассматриваются системы 
первого и второго порядков, разрешенные относительно старших 
производных. В одном примере [5] для многозвенной механической 
системы с матрицей инерции, зависящей от времени и перемещений 
системы, ускорения рассматриваются как независимые параметры и 
уравнения движения системы записываются в виде нелинейных              
алгебраических уравнений, к которой добавляются дифференциаль-
ные соотношения для скоростей и перемещений. Наряду с многочис-
ленными работами, отмеченными в [5], жестким и дифференциально-
алгебраическим задачам также посвящены работы [6–10] и др. 

Отметим некоторые оригинальные подходы к численному реше-
нию начальной задачи для ОДУ. В работе [11] предлагается парамет-
ризировать уравнения и затем интегрировать их по параметру. Метод 
наименьших квадратов для минимизации невязки на шаге применен к 
решению линейных задач для ОДУ и для дифференциально-
алгебраических задач с использованием разложения в ряд по задан-
ным функциям с неизвестными коэффициентами в работах [12], [13]. 
В работах [14], [15] и ряде других работ этих авторов для прибли-
женного решения начальной задачи, описываемой ОДУ, используют-
ся разложения по полиномам Чебышева, а в работах [16], [17] — по 
полиномам Эрмита. 

Метод Галеркина обычно используется при решении краевых  
задач в слабой формулировке для сведения их к алгебраическим 
уравнениям или к ОДУ на системе глобальных или локальных базис-
ных функций [1–3]; в последнем случае этот метод также как в вари-
ационной формулировке задачи называется методом конечных          
элементов или методом конечных объемов [18], [19]. 

Большие нестационарные системы, в которых одновременно 

происходят медленные и быстрые движения, с одной стороны          

требуют выполнения расчетов на больших интервалах времени, а с 

другой стороны — использования весьма малых шагов интегрирова-

ния по времени (меньше периода колебаний системы с максимальной 

собственной частотой). Например, в случае дискретных моделей             
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неоднородных сплошных сред с отраженными ударными волнами, 

локальными разрушениями и пр. для получения достоверного реше-

ния необходимо выполнить численные эксперименты, используя   

различные методы (программы) и вычисления на разных шагах. Это 

также относится к нелинейным системам при расчете предельных 

циклов колебаний, а также хаотических колебаний со странными        

аттракторами 

Вопросы сходимости численных решений ОДУ и их локальной и 

глобальной погрешностей, а также выбора длины шага исследова-

лись в работах [4], [5], отмеченных там в соответствующих ссылках 

работах и в [10], [20], [21]. При решении ОДУ большой размерности, 

записанных в общей матричной форме, которые, например, получа-

ются после дискретизации по координатам в задачах динамики 

сплошных деформируемых сред и тел (конструкций) и нестационар-

ной аэрогидродинамики [18], [22], для дискретизации по времени 

обычно используются сравнительно простые схемы: 1) центральные 

разности второго порядка с квадратичной аппроксимацией на двух 

шагах [23]; 2) нецентральные разности назад третьего порядка             

с кубической аппроксимацией на трех шагах [24]; 3) метод обобщен-

ного ускорения с квадратичной аппроксимацией на одном шаге и с 

двумя выбираемыми из условия устойчивости параметрами [25]; 4) 

модифицированный метод линейного ускорения  ( -метод), в               

котором считается, что ускорение изменяется линейно на расширен-

ном шаге h , где 1,37   для безусловной устойчивости метода [26]. 

Эти четыре метода приводят задачу к рекуррентным алгебраическим 

соотношениям в матричном виде, которые решаются с учетом 

начальных условий по шагам; они являются частными случаями об-

щей разностной схемы [27]. 

Постановка задачи и метод её решения. Рассмотрим нелиней-

ную систему обыкновенных дифференциальных уравнений с пере-

менными коэффициентами, приведенную к виду 

  , , , 0t      L x x x mx dx cx N X , (1) 

где }{)( ixt x   вектор неизвестных; }{)( iXt X   вектор правых 

частей неоднородной системы дифференциальных уравнений; 

}{),,,( iNt xxxN    вектор нелинейных членов произвольного вида, 

который определяется конкретной рассматриваемой задачей; 

)]([ tmijm , )]([ tdijd , )]([ tcijc   квадратные матрицы инерции, 

демпфирования и жесткости соответственно. Здесь и далее точкой 

обозначается производная по времени t . 

Начальные условия для вектора неизвестных координат и их 

скоростей в момент времени 0tt   задаются в виде: 
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  0 0t x x ,    0 0 0t t v x x . (2) 

Время t  рассматривается в виде возрастающей последовательно-

сти дискретных моментов kt , nk ,,2,1,0   в общем случае с пере-

менным шагом 
1 kk tth . Для удобства вычислений на каждом шаге 

вводим безразмерное время  : 

  1

1
kt t

h
   , 0 1  . 

Далее штрихом обозначается производная по безразмерному 

времени  . Имеет место соотношение: 
d

d

hdt

d 1
 . 

Векторы перемещений x  и скоростей xv   на k -ом шаге ап-

проксимируются как 

 

 

   

( )

1 1

1

( ) ( )

1 1

1 1

;

1
,

s
k

k k r r

r

s s
k k

k r r k r r

r r

h

h

  

   

 



 

 

  

   



 

x x v z

v v z v z

 (3) 

где первые два слагаемых в выражении для вектора x  (соответствен-

но, первое слагаемое для v ) представляют явное решение Эйлера, 

удовлетворяющее начальным условиям (2), а заданные корректиру-

ющие функции )(r , sr ,,2,1  , удовлетворяющие начальным 

условиям 0)0( r , 0)0( 
r , берутся одинаковыми на всех шагах 

nk ,,2,1   и для всех переменных x ; )(k

rz   неизвестные векторы 

коэффициентов. 

Уравнения (1) на k -ом шаге ( kk ttt 1 ) будем удовлетворять 

приближенно в смысле слабого решения по методу Галеркина: 

    
1

0

, , , 0pt d   L x x x , 1,2, ,k n , 1,2, ,p s . (4) 

В результате получаем систему алгебраических уравнений на k -

ом шаге для векторов неизвестных коэффициентов 
)(k

rz , nk ,,2,1  , 

sr ,,2,1  . 

В случае нелинейных уравнений система (1) в виде (4) решается 

по методу последовательных приближений на каждом шаге: 

 
 n

x x , 
 1n

N N , 1,2,n  ; 
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в качестве первого приближения используется решение линейной  

задачи ( 1n , 
 1

x x , 
 0

0 N N ) или линеаризованные по   

значения вектора нелинейных частей. Во втором приближении                    

( 2n , )2(
xx ) нелинейные члены определяются по результатам 

первого приближения 
        1 1 1 1

, , , tN N x x x . Процесс повторяется 

до тех пор, пока не будет достигнута сходимость с заданной точно-

стью. Такой подход особенно удобен для физически (не численно) 

устойчивых слабонелинейных систем с гладкими решениями, для  

которых процесс итераций сходится достаточно быстро. 

Уравнения (4) с учетом (1) и (3) на каждом шаге nk ,,2,1   

можно записать в развернутом виде: 

 
         

1

, 1 1

1 0

s
k k k k

r p r p k p k p

r

d  



    α z σ x τ v X N , , 1,2,r p s , (5) 

где ][ )(

,,

)(

,

k

prij

k

pr α , ][ )(

,

)( k

pij

k

p σ , ][ )(

,

)( k

pij

k

r τ   определяемые на каж-

дом шаге интегрирования матрицы коэффициентов: 

 

   

     

1 1

, 2

0 0

1 1

0 0

1 1
;

, .

k

r p r r r p r r r p

k k

p p r p

d d
h h

d h d

         

    

 
       

 

  

 

 

α m d c m d c

σ c τ d c

 (6) 

Если функции  ijm  ,  ijd  ,  ijc   являются достаточно                      

гладкими и слабо изменяются в пределах шага h , то их на каждом 

шаге можно считать постоянными. 

После решения уравнений (5) с заданной точностью вычисления 

коэффициентов 
 k

rz  затем с использованием выражений (3)                    

определяются вектора x  и v  при 1  для момента времени ktt  : 

 

   

     

1 1

1

1 1

1 1

1 ;

1
(1) 1 .

s
k

k k k r r

r

s s
k k

k k r r k r r

r r

h

h



 

 



 

 

  

   



 

x x v z

v v z v z

 (7) 

Далее полученные значения векторов kx  и kv  используются в каче-

стве начальных условий для решения уравнений (5) на )1( k -ом  

шаге. 

Выбор корректирующих функций. В качестве корректирую-

щих функций  r  , уточняющих линейный закон изменения                
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переменных на малом временном шаге, в рядах (3) можно использо-

вать следующие наборы пяти ( 5,2,1,  spr  ) линейно-

независимых степенных функций, удовлетворяющих условиям 

 0 0r  ,  0 0r  . 

1) Базовые степенные функции: 

 2

1  , 3

2  , 4

3  , 5

4  , 6

5  . (8) 

2) Ортогональные полиномы, образованные из базовых степен-

ных функций (8): 

 

2

1

3 2

2

4 3 2

3

5 4 3 2

4

6 5 4 3 2

5

;

6 5 ;

28 42 15 ;

120 252 168 35 ;

495 1320 1260 504 70 .

 

  

   

    

     



 

  

   

    

 (9) 

Они удовлетворяют условиям 1)1( r , а также условиям 

 
1

0

0 приp rd p r     ,  

1

2

0

1

2 3
r d

r
  

 . 

3) Степенные полиномы, удовлетворяющие определенным     

условиям при 1 , упрощающие спряжения решений на соседних 

шагах (7): 

 

2 3

1 1 1

3 2

2 2 2

2 3 4

3 3 3

2 3 4 5

4 4 4

2 3 4 5 6

5 5 5

3 2 , (1) 1, (1) 0;

, (1) 0, (1) 1;

2 , (1) (1) 0;

4 5 2 , (1) (1) 0;

8 19 18 6 , (1) (1) 0.

    

    

     

      

       

   

   

    

     

      

 (10) 

Функции (9) и (10) линейно выражаются через базовые функции 

(8) с соответствующими матрицами преобразования. Поэтому при 

использовании функций (9) и (10) интегралы (6) для упрощения              

следует вычислить сначала для функций (8) и затем преобразовать их 

с соответствующими матрицами: 

 ) 1) 1) 2 3 4 5 6 ) ) ) ) ) )

1 2 3 4 5, [ ], [ ];i i i i i i i

i            φ Tφ φ φ  
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2 3

при 2,3:

1 0 0 0 0 3 2 0 0 0

5 6 0 0 0 1 1 0 0 0

,  .15 42 28 0 0 1 2 1 0 0

35 168 252 120 0 1 4 5 2 0

70 504 1260 1320 495 1 8 19 18 6

i i 

   
   
 

   
     
   
      
         

T

T T
 

Базовые функции (8) при большом их числе ( 8s ) приводят к 

плохобусловленным матрицам коэффициентов 
)(

,

k

prα , поэтому эти 

функции можно использовать только при малых s . Ортогональные 

полиномы (9) имеют большие коэффициенты и являются «колеба-

тельными» функциями на интервале 10  . Поэтому при вычисле-

ниях интегралов (6) с переменными коэффициентами  при большом 

числе s  они могут привести к численным погрешностям, например, 

за счет малых разностей больших чисел. 

Вычислительные эксперименты показывают, что при численном 

интегрировании на малых шагах h  сходимость с достаточно высокой 

точностью и с весьма близкими результатами обеспечивается при  

использовании четырех ( 4s ) корректирующих функций (9)–(10). 

Примеры расчета со сравнениями. В качестве примера                 

рассмотрим нелинейную консервативную систему с одной степенью 

свободы ( 1n ), свободные колебания которой описываются диффе-

ренциальным уравнением с начальными условиями 

 3100 200 0x x x   , (0) 1x  , (0) 0x  . 

Полная энергия этой системы: 100)(5021 422  xxxE  .           

Отсюда получается фазовая характеристика и период колебаний: 

 

2 4
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2 4 2
0 0

10 2 ;

4 4
0,40043095 .

10 102 2 sin

x x x

dx d
T

x x






   

  
  

 
 

Выполняется условие периодичности    x t mT x t   при 

,3,2,1m . 

Для сравнения приведем результаты численного решения данной 

задачи с постоянным шагом h  на больших интервалах времени для 

моментов 100t  и 1000t  по стандартным программам в PTC 

MathCad, реализующим метод Адамса (А) четвертого порядка и                  

метод Рунге-Кутта (Р.-К.) четвертого порядка, а также  по предла-
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гаемому в данной статье методу Галеркина с использованием 4s  

корректирующих функций в виде трех различных наборов: 1)  (8), 

Г1; 2)  (9), Г2; 3)  (10), Г3. 

В таблице 1 приведены результаты вычисления E , x  и x  с              

шагом 0,005h  , а в табл. 2  с шагом 0,001h  . При этом во всех 

случаях для решения нелинейных уравнений (5) с коэффициентами 

(6) с точностью до 10-6 требовалось не более четырех итераций. Как 

видно, результаты вычислений x  и x  по методу Адамса при 1000t  

сильно расходятся с результатами вычислений по методу Рунге-

Кутта и по методу Галеркина; последние два метода при 0,001h  , 

8000t  дают близкие результаты. При увеличении интервала                 

вычислений до 8000t  метод Рунге-Кутта при 0,001h   также 

начинает давать ошибочные результаты. 

Таблица 1 

Результаты вычислений при шаге h = 0,005 

Метод 
100t   1000t   

E  x  x  E  x  x  

А 100,0285 -0,0686 14,1274 100,2706 0,9819 3,3402 

Р.-К. 99,9746 -0,1441 14,0652 99,7474 -0,3454 13,6435 

Г1 100,0016 -0,1057 14,1023 100,0158 -0,5387 -12,7509 

Г2 100,0004 -0,1073 14,1010 100,0042 -0,3889 -13,5128 

Г3 100,0003 -0,1074 14,1009 100,0030 -0,3735 -13,5687 

Radau5 – – – – – – 

BDF 100,0575 -0,0278 14,1435 100,4619 -0,7599 10,4807 

Таблица 2 

Результаты вычислений при шаге h = 0,001 

Метод 
100t   1000t   8000t   

E  x  E  x  E  x  

А 100,0278 -0,0699 100,2747 0,9839 101,1724 -0,1051 

Р.-К. 100,0000 -0,1078 99,9999 -0,3322 99,9993 -0,9672 

Г1 99,9999 -0,1079 99,9994 -0,3252 – – 

Г2 100,0000 -0,1078 99,9998 -0,3301 – – 

Г3 100,0000 -0,1078 100,0000 -0,3333 100,0000 -0,9859 

Radau5 99,7810 -0,4164 98,2622 0,7068 – – 

BDF 100,0572 -0,0286 100,4680 -0,6917 – – 

 

На рис. 1 и рис. 2 приведены результаты вычислений )(tx  с                

шагом 0,001h   в пределах примерно одного периода колебаний 

вблизи моментов времени 16000t  и 32000t  по методам Адамса 

(кривые 1), Рунге-Кутта (кривые 2) и Галеркина (кривые 3). Резуль-

таты метода Галеркина в пределах масштаба графиков совпадают с 

численным решением задачи, полученным на первом периоде при 
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очень мелком ( 710h ) шаге, которое можно считать практически 

точным.  

 
 

Рис. 1. Результаты вычислений с шагом 0,001h   вблизи времени 16000t   

 

 
 

Рис. 2. Результаты вычислений с шагом 0,001h   вблизи времени 32000t   

 
Накопление глобальной ошибки вычислений по методам Адамса 

и Рунге-Кутта происходит в основном за счет сдвига по фазе кривых, 
представляющих колебания с медленным изменением периода T . 

При этом полная энергия E  и амплитуды x  и x  изменяются незна-
чительно. 

Численные решения рассмотренного выше дифференциального 
уравнения с кубической нелинейностью также были получены с               
помощью стандартных программ в PTC MathCad по методам Radau5 
(модифицированный метод Рунге-Кутта) и BDF (метод обратного 
дифференцирования), предназначенных для жестких и дифференци-
ально-алгебраических уравнений. Результаты расчетов приведены в 
таблице 1 и таблице 2 в двух нижних строчках. Эти методы                
обеспечили высокую точность только на сравнительно малых интер-
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валах времени (< 50 периодов колебаний при решении с шагом 

0,005h   и < 100 периодов колебаний при шаге 0,001h  ). Следует 

отменить, что при шаге 0,005h   решение по методу Radau5 не              

сходилось из-за нарушения вычислительной точности. На больших 

интервалах времени решения расходятся даже на шаге 0,001h  . 

Заключение. В работе рассмотрены системно-динамическое и               

агентное описание модели конкуренции, осуществлена попытка               

переноса прогнозов поведения непрерывной модели на дискретную 

модель. Проведённые имитационные эксперименты как показывают 

возможность применения прогнозов, полученных в одной модели, к 

другой, так и демонстрируют наличие ограничений при подобных                      

переходах. 

Предложен новый подход для численного решения начальной            

задачи, описываемой нелинейной системой обыкновенных                

дифференциальных уравнений второго порядка с переменными             

коэффициентами. На шаге интегрирования каждая искомая функция 

представляется в виде суммы явного линейного решения Эйлера, 

удовлетворяющего начальным условиям, и конечного ряда корректи-

рующих степенных функций или образованных из них полиномов с 

неизвестными коэффициентами. Методом Галеркина получаются  

алгебраические уравнения для определения неизвестных коэффици-

ентов на данном шаге с использованием в случае нелинейной                   

системы процедуры итераций. 

В качестве примера рассмотрено однородное дифференциальное 

уравнение с кубической нелинейностью по координате, которое при 

заданных начальных условиях имеет периодическое решение. Полу-

чены численные решения этой консервативной задачи на больших 

интервалах времени (до 80000 периодов колебаний системы) с               

использованием различных наборов корректирующих полиномов от 

второй до пятой степени включительно и двух различных постоян-

ных шагов, приблизительно равных 0,0125 и 0,0025 долей периода. 

Выполнены сравнения с численными решениями, полученными 

по стандартным программам в PTC MathCad, методами Адамса и 

Рунге-Кутта четвертого порядка на тех же самых постоянных шагах, 

а также методами Radau5 и BDF. 

Показано, что методом Галеркина задача решается на больших 

интервалах (включая 80000 периодов с шагом 0.0025 периода)              

практически точно. Методы Адамса и Рунге-Кутта в данном случае 

на интервалах более 8000 периодов дают неправильные результаты в 

основном за счет медленного уменьшения периода колебаний и     

сдвига по фазе при сохранении достаточно высокой точности ампли-

туд. Методы Radau5 и BDF обеспечивают высокую точность только 

на сравнительно малых интервалах времени, а на больших интерва-

лах их численные решения расходятся. 
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Application of the one–step Galerkin method 
 for solving a system of ordinary differential equations 

with initial conditions  

© S.V. Russikikh, F.N. Shklyarchuk 

Moscow Aviation Institute (National Research University), Moscow, 125993, Russia 
 
A nonlinear oscillatory system described by ordinary differential equations with variable 
coefficients is considered. It is assumed that in the time interval under consideration, the 
solution of the system is sufficiently smooth - without discontinuities, collisions and bifur-
cations. From an inhomogeneous system of equations, terms that depend linearly on        
coordinates, velocities and accelerations and terms that depend non-linearly on these 
variables are explicitly distinguished. A new approach is proposed for numerical solution 
by the step method of the initial problem described by such a system of ordinary differen-
tial equations of the second order. At the integration step, unknown functions are                        
represented as a sum of functions satisfying the initial conditions: a linear Euler solution 
and several given correcting functions in the form of polynomials of the second and        
higher degrees with unknown coefficients. The differential equations at the step are satis-
fied approximately in the sense of a weak solution by the Galerkin method on a system of 
corrective functions. Algebraic equations with nonlinear terms are obtained, which are 
solved by iteration, starting in the first approximation with a linear solution. The result-
ing solution at the end of this step is used as the initial conditions for the next step. As an 
example, we consider one homogeneous second-order differential equation without the 
first derivative with strong cubic nonlinearity in coordinate (at maximum amplitude, the 
nonlinear force is twice the linear force). This equation has an exact periodic solution in 
the form of an integral of the energy of a conservative system, which is used to estimate 
the accuracy of numerical solutions obtained by Galerkin, Runge-Kutta and Adams 
methods of the second order, as well as by Radau5 and BDF methods at various time 
intervals (up to 8000 periods of free oscillations of the system) using various constant 
integration steps (from 0.0025 fractions of a period). At the same time, in the Galerkin 
method, four identical correction functions were used at each step in the form of polyno-
mials from the second to the fifth degree. It is shown that for large time intervals of                      
calculations, the Galerkin method has a higher accuracy compared to other numerical 
methods considered. Therefore, it can be used for the numerical solution of nonlinear 
problems in which it is required to solve them over long time intervals; for example, 
when calculating steady-state limit cycles of nonlinear oscillations and chaotic nonlinear 
oscillations with strange attractors.   
 
Keywords: ordinary differential equations, nonlinear systems, initial problem, numerical 
solutions, one-step Galerkin method 
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