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В данной работе рассматривается задача устойчивости тонкостенной                          
оболочечной конструкции с двумя полусферическими днищами одинаковой                         
толщины, частично заполненной жидкостью, которая погружена во внешнюю 
жидкую среду и находится под действием гидростатического давления. Получены 
динамические характеристики такой конструкции, содержащей ограниченный 
объем жидкости, находящейся под внутренним давлением и гидростатическим 
давлением. Разработанная программа для расчета динамических характеристик 
осесимметричных оболочечных конструкций, содержащих жидкость, основана на 
методе конечных элементов. Конечные элементы имеют кольцевую форму при                          
вращении вокруг оси симметрии. Программа реализована в среде табличного                     
процессора Excel на языке Visual Basic for Applications (VBA). Она позволяет рассчи-
тывать собственные частоты тонкостенных упругих конструкций, взаимодей-
ствующих с произвольным количеством ограниченных объемов жидкостей                               
с учетом влияния статического напряженно-деформированного состояния,                  
вызванного гидростатическими внутренним давлением и прочими внешними си-
лами, не нарушающими осевую симметрию задачи. 
При фиксированном значении внутреннего давления выполняется расчет низших 
собственных частот колебаний с различными числами волн по окружности.                     
Последовательным уточнением определяется критическая толщина оболочки, при 
которой хотя бы одна из собственных частот достигает нулевого значения.                 
Внутреннее давление р изменяется от 0 до 1 атм. с шагом 0,1 атм. и расчеты                       
повторяются для получения каждого критического значения. При каждом значении 
давления на графике «количество волн — собственная частота» строятся кривые. 
Построены графики, иллюстрирующие процесс получения этого критического                       
значения. На координатной плоскости «давление — толщина оболочки» построена 
граница области неустойчивости 
 
Ключевые слова: динамические характеристики, собственные частоты, осесим-
метричная оболочка, метод конечных элементов, подводный аппарат, упругая обо-
лочка с жидкостью 

 
Введение. Рассматривается задача моделирования устойчивости 

тонкостенных конструкций, частично заполненных жидкостью, при 
гидростатическом воздействии внешней жидкой среды. Цель                        
статьи — разработка механико-математической модели для расчетов 
устойчивости конструкции в трехмерной постановке задачи. Исследо-
вание устойчивости предлагается осуществлять динамическим                    
методом, основываясь на разработанной программе расчета собствен-
ных частот колебаний осесимметричных оболочечных конструкций, 
содержащих жидкость, реализованной в среде табличного процессора 
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Excel на языке Visual Basic for Applications (VBA). Программа                    
основана на использовании метода конечных элементов, теоретиче-
ские основы ее содержатся в работах [1–4]. 

Возможность применения этой программы к решению                          

поставленной задачи обеспечивается тем, что программа позволяет 

рассчитывать собственные частоты осесимметричных тонкостенных 

упругих конструкций, взаимодействующих с произвольным                                  

количеством ограниченных объемов жидкостей с учетом влияния                

статического напряженно-деформированного состояния, вызванного 

гидростатическим и внутренним давлением и прочими внешними                

силами, не нарушающими осевую симметрию задачи. 

Модель динамической устойчивости конструкции в трехмер-

ной постановке. Рассматривается общий принцип построения конеч-

ных элементов для расчета собственных колебаний упругих систем с 

учетом влияния статического напряженно-деформированного                             

состояния посредством нелинейности деформаций. 

В общем случае для упругих оболочек используется нелинейная 

теория тонких упругих оболочек [5–8]. Колебания упругого тела                    

описываются геометрическими, физическими соотношениями и гра-

ничными условиями. Жидкость полагается идеальной и несжимаемой. 
 

 

Рис. 1. Конструкция и обозначения 

 

На рис. 1. обозначим Q   и 0Q  — объемы, занятые упругим телом 

и жидкостью, S  — поверхность упругого тела, 0S  — поверхность             

полости, смоченная жидкостью объема 0Q , pS  — поверхность               

полости, подверженная действию избыточного внутреннего давления 
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газов 0p , uS  и S  — участки поверхности, на которых заданы                    

кинематические и динамические граничные условия. Область над                     

поверхностью жидкости не именуется, поскольку динамика газов,                 

создающих избыточное статическое давление, в рассматриваемом 

низкочастотном диапазоне не учитывается. Границу жидкой массы   

составляют свободная поверхность   и контактная поверхность 0S . 

Введены вектор u  и  U  — смещения точек упругого тела и жидкости, 

G  — вектор ускорения гравитационных сил, 
0n  — вектор нормали к                 

поверхности 0S . 

Конструкция находится в однородном гравитационном поле с      

вектором ускорения свободного падения G , который ортогонален 

свободной поверхности жидкости в невозмущенном состоянии. В             

соответствии с формулировкой работы [3] поле малых перемещений 

частиц жидкости представлено градиентом скалярного поля: 

 0   в  Q ,U   (1) 

где Φ — потенциал смещений. Граничное условие на смоченной          

поверхности имеет вид условия непротекания: 

 
0 0( , ) на   .S

n






 u n   (2) 

Из условия несжимаемости следует уравнение Лапласа для потен-

циала смещений: 

 00  в   Q .    (3) 

На свободной поверхности жидкости должны быть выполнены 

условия: 

 на ,
n







    (4) 

 0 на ,G     (5) 

где   — нормальные смещения точек свободной поверхности,    

G  G . 

Для описания движения деформируемого упругого тела исполь-

зуем нелинейные геометрические соотношения [5–8], записанные в 

виде: 

 ( ) ( ) ( , ),L NL   u u u u   (6) 

где L  — линейный дифференциальный оператор, NL  — билинейный 
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симметричный дифференциальный оператор, а компоненты деформа-

ций представлены векторами-столбцами. 

Физическое соотношение полагаем линейным:  

 ,  D   (7) 

где D  — матрица модулей упругости, а   — вектор компонент              

тензора напряжений. В настоящей работе упругое тело представлено 

тонкой упругой оболочкой [6], что не меняет формальную запись              

(6)–(7).  

Полное перемещение точек упругого тела запишем в виде суммы 

статической и динамической составляющих следующим образом: 

 .

0( ) ( ).полн t t u u u   (8) 

Подставляя сумму малой динамической составляющей и (вообще 

говоря, не малой) статической составляющей (8) в уравнение (6), 

можно с учетом свойств обозначенных выше дифференциальных опе-

раторов переписать (6) в виде: 

 
( ) ( ) ( ) ( , )

2 ( , ) ( , ).

L L NL

NL NL

   

 

    

 

0 0 0 0

0

u u u u u u

u u u u
  (9) 

Выражение для полной потенциальной энергии деформации 

имеет вид: 

 T

0 0

1
( ) ( ) ,

2

полн

Q

Q

V dV  ε u u Dε u u   (10) 

где Q  — область пространства, занятая упругим телом, которое в           

данной работе является упругой оболочкой. 

Полагая статическую составляющую поля перемещений заданной 

(предварительно вычисленной), после подстановки (4) в (5) и                          

раскрытия всех скобок с целью формулирования задачи о собственных 

формах колебаний (около этой статической компоненты) оставляем в 

выражении (5) только члены второго порядка, зависящие от времени. 

В результате получается формула для потенциальной энергии колеба-

ний упругого тела: 

 
   

T

0 0

T
0

1
( ( ) 2 ( , ) ( ) 2 ( , )

2

2 ( ) ( , )) .

L NL L NL

Q

Q

NL

V

dV

      
   



 ε u ε u u D ε u ε u u

ε u Dε u u

  (11) 

В целом колебания рассматриваемого типа конструкции описыва-

ется совокупностью трех функций, каждая из которых определена на 

своей поверхности или в области пространства. Это векторное поле 
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перемещений точек упругого тела u , скалярное поле потенциала              

смещений частиц жидкости   и поле вертикальных перемещений ча-

стиц на поверхности жидкости  .  

В работе [3] показано, что потенциальная энергия колебаний                    

гидроупругой системы состоит из потенциальной энергии деформа-

ции упругого тела, потенциальной энергии колебаний свободной              

поверхности жидкости и потенциалов сил контактного взаимодей-

ствия тела с жидкостью, нагруженной гравитационными силами, и 

давлением газа, находящегося в полости: 

 Q .G PV V V V V      (12) 

Потенциальная энергия жидкости, связанная с изменением формы 

свободной поверхности, вычисляется по формуле: 

 
2

0

1
.

2
V G dS 



    (13) 

Потенциал сил контактного взаимодействия тела с жидкостью 

определяется формулой: 

 

 
0S

0

1

2

( , ) , ,

G gV P

d d

 

 

 

  

    
         

    

 


u u

u r r

G u u r r

  (14) 

где   и   — координаты на контактной поверхности (не обязательно 

ортогональные),  , r r  — радиус-вектор точки на поверхности и 

касательные к координатным линиям векторы    r r ,        

   r r . Здесь гидростатическое давление на смоченную поверх-

ность 

  0 0, ,gP  G r x   

где 0x  — произвольная точка свободной поверхности жидкости. 

Потенциал давления газа равен 

 

0 p

0

S S

1
,

2
PV p d d   

 


   
       

   


u u
u r r   (15) 

где область интегрирования включает смоченную жидкостью поверх-

ность в соответствии с законом Паскаля. 

Кинетическая энергия гидроупругой системы может быть вычис-

лена по формуле: 
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  
0

2

0

Q Q

1 1
.

2 2
T dV dV    

2
u   (16) 

Однако при попытке использовать функционал Лагранжа в виде 

L T V   для конечно-элементного моделирования собственных               

колебаний конструкции и вычисления ее собственных частот                     

возникнут трудности с обеспечением выполнения кинематических 

ограничений, налагаемых уравнениями (2), (3) и (4). 

В работах [1–3] предложена модификация лагранжиана, в которой 

изменено выражение кинетической энергии в виде: 

 

 
0

0

2

0

Q Q

0 0 0

S

1 1
+

2 2

+ ( ) + .

T dV dV

dS dS

 

  





  

  

 

 

2
u

u n

  (17) 

Выражение (17) в точности равно кинетической энергии конструк-

ции, если присутствующие в нем поля удовлетворяют указанным         

ограничениям. В то же время, численные решения, полученные с               

использованием модифицированной формулы лагранжиана 

 ,L T V     (18) 

автоматически этим ограничениям удовлетворяют. 

Осевая симметрия конструкции ведет к важному следствию. А 

именно, спектр конструкции распадается на множество подспектров 

по признаку числа волн смещений на окружностях горизонтальных ее 

сечений [9]. Сказанное означает, что в цилиндрической системе                        

координат Or z , ось которой совпадает с осью симметрии конструк-

ции, любая собственная форма колебаний может быть представлена в 

виде (условно нумеруем ее n ): 

 

( , ) cos ;
2

( , )sin ;
2

( , ) cos ;
2

( , ) cos ;
2

( , ) cos ,
2

n n n n

n n n n

n n n n

n n n n

n n n n

u u r z m i

v v r z m i

w w r z m i

r z m i

r z m i














  

 
  

 

 
  

 

 
  

 

 
    

 

 
  

 

  (19) 
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где перемещения , ,u v w  представляют радиальное, окружное и             

осевое направления, параметр nm  — представляет число волн в 

окружном направлении, а перед тригонометрическими функциями 
стоят амплитудные значения соответствующих величин. Особо надо 

отметить роль параметра ni , который может принимать значения 0 или 

1. В случае неосесимметричной формы колебаний  0nm  , ), когда 

каждая собственная частота имеет кратность 2, он позволяет различать 
две линейно независимые собственные формы, соответствующие            
одной собственной частоте. В случае осесимметричных колебаний 

 0nm   очевидным образом значение 0ni   соответствует про-

дольно-радиальным, а 1ni   крутильным колебаниям конструкции.  

Благодаря указанному обстоятельству задача вычисления                 
собственных форм для конкретно заданного числа волн по окружно-
сти становится двумерной с областью определения искомых                       

амплитудных функций, расположенной в правой полуплоскости Orz . 
Алгоритм численного решения. Далее все выкладки проводятся 

применительно к расчету собственных частот и форм колебаний с               

заданным числом волн по окружности m . В соответствии с                            
основными принципами метода конечных элементов [10–16], малые 
динамические перемещения аппроксимируются на конечном элементе 
с помощью формулы: 

 ( ) ( ) ,u x N x δ   (20) 

где δ  — вектор-столбец дискретных узловых параметров элемента, а 

( )N x  — матрица функций формы, которую можно представить в виде 

совокупности столбцов ( k  — размерность вектора δ ): 

  1( ) ( ) ( ) .kN x n x n x   (21) 

С помощью вектора-столбца узловых параметров конечного               

элемента δ  выражение для потенциальной энергии малых колебаний 
можно записать в матричном виде: 

 T1
,

2
e eV  δ K δ   (22) 

где eK  — матрица жесткостей конечного элемента, вычисляемая по 

формуле: 

 T ) ,

e

e

Q

dV   K B(x) DB(x) S(x   (23) 

в которой ( )B x  получается из первого слагаемого подинтегрального 

выражения в формуле (11): 
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0

1 0 1 0

( ) 2 ( , )

( ) 2 ( , ) ( ) 2 ( , ) ( ) ,

L NL

L NL L NL

k k

 

     

ε u ε u u

ε n ε u n ε n ε u n δ B x δ
  (24) 

а компоненты матрицы  S r  получены из второго слагаемого там же:  

 T

0( ) 2 ( ) ( , ).NL

ij i js x ε u Dε n n   (25) 

В приведенных выше формулах статическая составляющая                   

перемещений 
0 ( )u r  вычисляется на элементе через полученные                      

заранее узловые параметры статической деформации элемента 0δ  по 

формуле, аналогичной (20). 

В формуле (23) учтено наличие статического напряженно-дефор-

мированного состояния, и ее можно использовать для расчета малых 

колебаний в окрестности этого состояния. На выражение для матрицы 

масс наличие статического напряженно-деформированного состояния 

влияния не оказывает. Матрица масс получается на основе выражения 

(17), в котором кроме аппроксимации перемещений аналогично (20) 

добавляются члены, аппроксимирующие значения потенциала                           

смещений и вертикальных перемещений точек свободной                                    

поверхности жидкости. Очевидно, что кроме элементов упругого тела 

в этом выражении должны участвовать элементы жидкости и                         

элементы свободной поверхности. 

Таким образом, после объединения матриц отдельных элементов 

получаем задачу определения собственных частот и форм колебаний 

конструкции с матрицей масс M  и матрицей жесткостей K  в виде: 

   0, K M δ   (26) 

Собственные значения задачи (26) образуют дискретный ряд: 

 1 2 3 ...       

и, соответственно им, вычисляются собственные вектора: 

 1 2 3, , ,...,δ δ δ   

представляющие собственные формы колебаний. 

Угловая собственная частота   определяется как корень квадрат-

ный из  , и тогда справедлива формула 

  2 0, K M δ   (27) 

а собственная частота колебаний в Гц kf  определяется из формулы 

 2 .k kf    (28) 
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Изменение матрицы жесткостей при учете статического                 

напряженно-деформированного состояния конструкции может                

привести к тому, что один или несколько членов последовательности 

k  станут отрицательными. В таком случае статическое состояние 

конструкции оказывается неустойчивым, и каждый из векторов kδ  

представляет одну из возможных форм потери устойчивости. 

Поскольку уравнения собственных колебаний осесимметричной 

конструкции распадаются на группы с заданным числом волн по 

окружности m , то для каждого целого значения m  матрицы K  и M  

вычисляются отдельно. Соответственно, для каждого значения m             

образуется отдельный ряд возрастающих собственных значений 

 k m , 1,2,...k  . В результате выбор наименьшего собственного      

значения min  можно осуществить только путем перебора m  в                   

диапазоне от 0 до определенной величины, начиная с которой 

наименьшие (для данного m ) собственные значения начинают                    

монотонно возрастать. При этом необходимо для каждого значения m 

вычислять соответствующие матрицы масс и жесткостей и с их                     

использованием вычислять наименьшее собственное значение  1 m . 

Это заметно усложняет задачу вычисления min . Однако это усложне-

ние несущественно по сравнению с задачей трехмерного моделирова-

ния таких конструкций. 

Для расчета устойчивости осесимметричных тонкостенных                  

упругих оболочечных конструкций, полости которых могут содержать 

идеальную несжимаемую жидкость, разработан в среде табличного 

процессора Excel файл-шаблон, содержащий проект на языке VBA. 

Для снижения трудоемкости расчетов в этом проекте реализована 

надстройка, позволяющая эффективно автоматизировать указанный 

этап исследования. 

Результаты расчета. Рассмотрим оболочечную конструкцию с 

полусферическими днищами и толщиной h , заполненную жидкостью 

и погруженную в воду (рис. 2). Радиус оболочки 1 мR  , высота 

1 мH  , характеристики материала: 11 22 10 Н мE   , 0,3v  , 
37800 кг м  . Плотность жидкости внутри оболочки 

3

1 800 кг м   и глубина жидкости 1 2 мH  . Цилиндр заполнен                  

водой вне оболочки высотой 2 15 мH  . 

Расчеты были выполнены при различных величинах внутреннего 

давления оболочки от 0 до 1 атм с шагом 0,1 атм. Результаты расчетов 

для исследованных значений давления представлены в виде зависимо-

стей собственных частот колебаний от числа волн m при различных 

толщинах оболочки, включая критическое значение толщины. 
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Рис. 2. 3D и конечно-элементная модель конструкции 

 

 
Рис. 3. График зависимости собственной частоты  1f m   

от количества волн m  при внутреннем давлении 0p   
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внутреннем давлении 0p  , где  1f m  — низшая собственная частота 
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некоторое собственное значение 1 0  , то на графике рис. 3 отклады-

вается величина 
1 2a    . В этом случае однородное уравнение 

собственных колебаний имеет два независимых решения ate   и             
ate  , из которых первое реализует форму потери устойчивости.   

Аналогично результаты получены для всех исследованных                            

величин внутреннего давления до 1 атм и построен график критиче-

ских значений толщины оболочки (рис. 5). Этот график представляет 

собой границу области устойчивости на плоскости p h . 

 

 
Рис. 4. График зависимости собственного значения  1 m   

от количества волн m  при внутреннем давлении 0p   

 

 
 

Рис. 5. График зависимости критической толщины оболочки h   

от внутреннего давления p   
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Выводы. В данной работе разработана математическая модель и 
численный алгоритм исследования устойчивости тонкостенной                          
конструкции, частично заполненной жидкостью и погруженной во 
внешнюю жидкую среду. Получены собственные частоты и формы    
колебаний конструкции при действии внутреннего давления и                  
гидростатического внешнего давления с использованием программы 
расчета динамических характеристик осесимметричных оболочечных 
конструкций, содержащих жидкость, основанной на методе конечных 
элементов. 

Построена область устойчивости на координатной плоскости двух 

параметров: p  — внутреннее давление и h  — толщина оболочки. 

Часть плоскости ниже границы соответствует область неустойчивости. 
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Modeling of dynamic stability of thin-walled structures        

partially filled with liquid under hydrostatic action  

© SongYi Park, V.G. Grigor’ev 

Moscow Aviation Institute (National Research University), Moscow, 125993, Russia 
 
In this paper, we consider the problem of stability of a thin-walled shell structure with two 
hemispherical bottoms of the same thickness, partially filled with liquid, which is immersed 
in an external liquid medium and is under hydrostatic pressure. The dynamic characteris-
tics of such a structure containing a limited volume of liquid under internal pressure and 
hydrostatic pressure are obtained. The developed program for calculating the dynamic 
characteristics of axisymmetric shell structures containing liquid is based on the finite                  
element method. The finite elements have an annular shape when rotated around the axis 
of symmetry. The program is implemented in Excel spreadsheet using Visual Basic for                       
Applications (VBA). It allows to calculate the natural frequencies of thin-walled elastic 
structures interacting with an arbitrary number of liquids, considering the influence of the 
static stress-strain state caused by hydrostatic and internal pressure and other external 
forces that do not violate the axial symmetry of the problem. 
At a fixed value of the internal pressure, the calculation of the lowest natural frequencies 
of vibrations with different numbers of waves along the circumference is performed. By 
successive refinement, the critical thickness of the shell is determined, at which at least one 
of the natural frequencies reaches zero. The internal pressure p varies from 0 to 1 atm. in 
increments of 0,1 atm. and the calculations are repeated to obtain each critical value. At 
each pressure value, curves are plotted on the graph "number of waves — natural                             
frequency". On the coordinate plane "pressure — shell thickness" the boundary of the                            
instability region is constructed. 
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Keywords: dynamic characteristics, natural frequency, thin-walled axial symmetric                      
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