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В данной работе рассматривается оптимизация перелета космического аппарата 

с Земной орбиты на орбиту Венеры с помощью ионных двигателей. Первый полет 

к планете состоялся в 1961 году советской автоматической межпланетной              

станцией «Венера-1», которая прошла в 100 000 километрах от Венеры. Кроме 

этого, в 1962 году был совершен полет американской станцией «Маринер-2».                 

Самый последний корабль, запущенный к планете, был «Венера Экспресс»                            

Европейского космического агентства в 2005 году, который долетел до Венеры за 

153 дня. При решении текущей задачи были приняты следующие допущения:                    

рассматривается межорбитальный перелет без учета притяжения планет, а                

орбиты планет считаются круговыми и лежащими в одной плоскости. В качестве 

управления был выбран угол между касательной скоростью космического аппарата 

и направлением тяги. Оптимизация управления проводилась с использованием                 

принципа максимума Понтрягина. Полученная краевая задача для системы обыкно-

венных дифференциальных уравнений решалась численным методом — методом 

пристрелки. Для решения систем нелинейных алгебраических уравнений использо-

вался метод Ньютона. Программа расчета была написана с использованием языка 

программирования С++. В результате работы удалось минимизировать время                   

перелета между орбитами, таким образом была показана работоспособность               

метода пристрелки для решения задач оптимизации 

 

Ключевые слова: оптимальное управление, перелет между орбитами Земли и                 

Венеры, метод пристрелки, ионные двигатели, принцип максимума Понтрягина, 

численные методы, краевые задачи обыкновенных дифференциальных уравнений 

 

Введение. Изучение Венеры всегда занимало важное место в            

программе планетных исследований Солнечной системы. Венера 

находится гораздо ближе к Солнцу, чем Марс, поэтому ей достается 

больше солнечной энергии, помимо этого на границе атмосферы этой 

планеты есть ионизированный слой, который создает достаточную             

защиту от солнечной радиации. Исследование этой планеты начались 

в 1961 году с полета советской автоматической межпланетной станции 

«Венера-1», которая пролетела в 100 тысячах километрах от планеты. 

Помимо серии «Венера» к планете направлялись такие аппараты как 

«Маринер» (Америка), «Магеллан» (Америка), «Венера-экспресс» 

(Европа), «Акацуки» (Япония). В 1970 году космический аппарат (КА) 

«Венера-7» впервые совершил на планету мягкую посадку, а в 1975 

«Венера-9» передала на Землю панорамные изображения поверхности 
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Венеры [1]. Для получения изображения поверхности планеты в месте 

посадки КА была установлена панорамная камера в герметичном           

приборном отсеке, в котором были учтены суровые венерианские 

условия: давление до 100 атм. и температура до +500°С. Запечатлён-

ные развалы камней могут быть результатом смещений в коре, что 

подтверждает факт тектонической активности на планете [2].                       

Несмотря на то, что сегодня ученые в основном занимаются изуче-

нием Марса, венерианская одиссея еще не завершена. В настоящий 

момент в разработке находится российская автоматическая                         

межпланетная станция (АМС) «Венера-Д» («Венера-Долгоживущая»), 

которая является усовершенствованным аналогом советских аппара-

тов серии «Венера». Запуск аппарата запланирован на 2029 год для 

изучения структуры минералогического и химического состава                      

поверхности Венеры, а также процессов взаимодействия атмосферы и 

других свойств планеты [3]. 

Ионный двигатель является одним из самых используемых для 

управления ориентацией и положением на орбите космических                     

аппаратов. Такой двигатель может создать очень большой удельный 

импульс, но очень маленькую тягу, обусловленную массой выбрасы-

ваемых частиц. Его главным достоинством является время его работы, 

так как он может работать очень долго благодаря низкому потребле-

нию газа, и все время своей работы будет уходить на разгон аппарата. 

Поэтому ионные двигатели используются только в космосе, где нет 

сопротивления воздуха и на небольших объектах вроде спутников. 

Принцип работы данного двигателя основан на создании реактивной 

тяги на базе ионизированного газа, разогнанного до высоких                            

скоростей в электростатическом поле, и разгона космического корабля 

согласно третьему закону Ньютона [4]. 

Математическая модель минимизации времени перелета космиче-

ского аппарата на орбиту Венеры представляет собой краевую задачу 

для системы обыкновенных дифференциальных уравнений,                  

состоящую из уравнений движения и сопряженной системы. Краевая 

задача была получена при использовании принципа максимума                 

Понтрягина и в дальнейшем решена методом пристрелки.  Данный            

метод состоит в сведении краевой задачи к задаче Коши, для решения 

которой существо много приближенных методов, позволяющих                   

получать результат с необходимой точностью [5]. Система уравнений 

движения взята из работы [6]. Помимо данной задачи, метод                       

пристрелки также применим для задач оптимального управления с                 

переключением [7]. 

Математическая постановка задачи. Рассматривается задача 

перелета космического аппарата с Земной орбиты на орбиту Венеры. 

При решении текущей задачи принимаем следующие допущения:  
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 рассматривается межорбитальный перелет без учета притяже-

ния планет, т.е. гелиоцентрический участок полета; 

 орбиты планет считаются круговыми и лежащими в одной 

плоскости; 

 абсолютное значение массы КА не учитывается. 

В рамках этих допущений движение КА задается следующей си-

стемой уравнений: 
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где t   время, с; u   скорость движения КА вдоль радиуса, м / с;                  

v   скорость движения КА по касательной к окружности с центром в 

Солнце, м / с; R   расстояние до Солнца, м;    полярный угол                     

положения КА, рад; 0R   начальное положение радиуса Земной                   

орбиты, м;    угол между касательной к окружности с центром в 

Солнце и направлением тяги, рад; 0
0 2

0 0

,cF M
A G

m R
 

2м / с ;   0F   сила 

гравитационного притяжения в начальный момент времени, Н;                           

0m   масса КА, кг; G   гравитационная постоянная, 3 2м / с кг;                  

cM  масса Солнца, кг; 0/отнQ Q m   отношение расхода топлива 

двигателя к исходной массе, 
1сутки
; 0/отнT T m   отношение тяги 

двигателя к исходной массе, 2м / с .   

На рис. 1 представлена схема перелета КА с орбиты Земли на                  

орбиту Венеры с учетом допущения о круговых орбитах. Эксцентри-

ситет планет достаточно близок к круговым. Так эксцентриситет                 

Венеры равен 0,0067, а эксцентриситет Земли  0,0167. В качестве 

управления при решении данной задачи был выбран угол   между              

касательной скоростью и направлением тяги. 

Требуется минимизировать функционал задачи оптимального 

управления (ОУ), который имеет вид: 

 1

0

t

J dt t min   . (2) 
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Рис. 1. Схема перелета между орбитами  

 

Метод решения задачи. Задача ОУ решалась с использованием 

принципа максимума Понтрягина, который дает возможность среди 

всех допустимых процессов выделить те, которые могут претендовать 

на роль оптимальных [8]. Тогда функция Понтрягина для текущей            

задачи будет иметь вид: 
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где , , ,u v R       сопряженные переменные.  

Для получения оптимального управления вычислим производную 

по   от функции Понтрягина и приравняем ее к нулю: 
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Таким образом, получаем оптимальное управление: 
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из которого выводятся следующие выражения:  
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Данные знаки у выражений выбраны с учетом максимума функ-

ции Понтрягина: 

 
2

2
( sin( ) cos( )) 0
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. (7) 

Таким образом, получаем, что: 
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u

v

sign sign

sign sign





 

 
 (8) 

Запишем сопряженную систему: 
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Пи-система (система уравнений движений и сопряженная си-

стема) будет иметь вид: 
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По условию трансверсальности получаем, что 
1( ) 0t  . Поэтому 

из пи-системы было исключено дифференциальное уравнение 

/ 0d dt  , а также все слагаемые, содержащие переменную 
 . 

Краевые условия для данной задачи: 
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 0 0u  ; 0 29,8v  ; 6

0 149,6 10R   ; 

 0 0  ; 1 0u  ; 1 35v  ; 6

1 108,2 10R   . 

Из условий трансверсальности: 1( ) 0H t  , 
1( ) 0t  . 

Алгоритм численного решения задачи. Алгоритм численного 

решения данной задачи состоит из нескольких этапов: во внутреннем 

цикле проводится интегрирование системы обыкновенных дифферен-

циальных уравнений методом Рунге-Кутта четвертого порядка [9], при 

котором образуются так называемые невязки  расхождения решения 

на правом конце. Далее во внешнем цикле применяется модифициро-

ванный метод Ньютона для решения системы нелинейных алгебраи-

ческих уравнений невязок [10]. Для улучшения сходимости метода 

Ньютона использовалась локальная норма, введенная Федоренко Р.П. 

в [11]. Полученная СЛАУ решалась с использованием LU-разложения 

[12]. Схема алгоритма решения данной задачи представлена на рис. 2. 
 

 

Рис. 2. Блок-схема численного алгоритма 

 

Результаты численного моделирования. Для расчета постав-

ленной задачи была написана программа на языке программирования 

С++. Были использованы следующие исходные данные: 

 начальные условия (известные значения для Земли):  
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 граничные условия (известные значения для Венеры): 
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Параметрами пристрелки будут недостающие начальные условия: 
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Уравнения невязок: 
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 (11) 

Точность решения в методе Ньютона была выбрана равной
610  . Начальный угол 45   . Для численного решения системы 

ДУ методом Рунге–Кутта было выбрано 1000 шагов. Таким образом, 

для нахождения решения потребовалось 10 итераций метода Ньютона. 

По итогу параметры пристрелки получились равными: 

 (0) 621,04u   ; (0) 911,06v   ;  

(0) 0,0022R   ; 1 139,9t  . 

На рис. 3–4 изображены графики изменения фазовых переменных, 

полученных при решении данной задачи. 
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Рис. 3. График изменения скорости космического аппарата: 

а  радиальная скорость;  б   касательная скорость 
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Рис. 4. График изменения: 

а  радиуса от Солнца;  б   полярного угла 
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На рис. 5–6 изображены графики изменения сопряженных                         

переменных. 
 

 
 

а 

 
 

б 

Рис. 5. График изменения: 

а  сопряженной переменной u ;  б   сопряженной переменной v   

 

 
 

Рис. 6. График изменения сопряженной переменной R   
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Для проверки оптимальности решения воспользуемся тем, что 
функция Понтрягина в конце процесса равна нулю, а также частная 
производная от функции Понтрягина равна ее полной производной: 

 1( ) 0H t  , 
H dH

t dt





. (12) 

Частную производную можно вычислить аналитически по                   
формуле: 

 
2

( sin( ) cos( ))
(1 )

отн отн
u v

отн

T QH

t Q t
   


 

  
. (13) 

Полную производную вычисляем численно, используя левую раз-
ностную схему: 

 1i iH HdH

dt t





. (14) 

На рис. 7а представлен график изменения функции Понтрягина в 

оптимальном процессе, на рис. 7б  совместный график производных 
функции Понтрягина. Изменение управления в течение всего процесса 
изображено на рис. 8. 
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Рис. 7. График изменения: 

а  функции Понтрягина;  б   производных функции Понтрягина 
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Рис. 8. График изменения управления 
 

Для построения траектории перелета космического аппарата с ор-
биты Земли на орбиту Венеры, использовался полярный угол и изме-
нение радиуса. На рис. 9 в соответствующем масштабе синим цветом 

изображена орбита Земли, темно-желтым  орбита Венеры. В точке 
начала координат находится Солнце, а красной пунктирной линией 
показана траектория полета космического аппарата. 

 

 

 

Рис. 9. Траектория перелета космического аппарата 

с орбиты Земли на орбиту Венеры: 

---   траектория спутника,    орбита Земли;  

  орбита Венеры;    Солнце 
 

Заключение. Предложена модель реализации перелета космиче-

ского аппарата с Земной орбиты на орбиту Венеры с помощью ионных 

двигателей при отсутствии притяжения других планет, показана         

работоспособность метода пристрелки для решения данной задачи. 

Для отыскания решения понадобилось 10 итераций метода Ньютона.  

При проверке корректности решения было проведено сравнение               

полной и частной производной функции Понтрягина в полученном         

оптимальном процессе. Совпадение эти величин во всех точках                   

0      25    50    75      100    125 ,  суткиt

, градусы 150

100

50

0

50

100







1110 , м 1,5

1,0

0,5

0

0,5

1,0

1,5

y 






111,5 1,0 0,5 0 0,5 1,0 1,5 10 , мx   



Моделирование и оптимизация управления полетом космического… 

101 

интегральных кривых не противоречит необходимому условию                   

оптимальности процесса. Согласно проведенным расчетам, в рамках 

сделанных допущений, для осуществления перелета космического              

аппарата с Земной орбиты на орбиту Венеры при оптимальном                 

управлении потребовалось около 140 суток. 
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Simulation and optimization of spacecraft flight control 

from Earth orbit to Venus orbit using ion thrusters 

 T.Yu. Mozzhorina, А.A. Zakurazhnaya                                            

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 

In this paper, optimization of the flight of a low-mass satellite from Earth orbit to the orbit 

of Venus using ion engines is considered. The first flight to the planet took place in 1961 

by the Soviet automatic interplanetary station "Venus-1", which passed 100,000 kilometers 

from Venus. In addition, in 1962, the American station "Mariner-2" was flown. The most 

recent spacecraft launched to the planet was the European Space Agency's Venus Express 

in 2005, which flew to Venus in 153 days. When solving the current problem, the following 

assumptions were made: an interorbital flight is considered without taking into account 

the attraction of the planets, and the orbits of the planets are considered circular and lying 

in the same plane. The angle between the tangential velocity of the spacecraft and the thrust 

direction was chosen as the control. Optimization of satellite control was carried out using 

the Pontryagin maximum principle. The resulting boundary value problem for a system of 

ordinary differential equations was solved by a numerical method — the targeting method. 

Newton's method was used to solve systems of nonlinear algebraic equations. The                          

calculation program was written using the C++ programming language. As a result of the 

work, it was possible to minimize the flight time between orbits, thus the operability of the 

shooting method for solving optimization problems was shown. 
 

Keywords: optimal control, flight between the orbits of Earth and Venus, shooting method, 

ion thrusters, Pontryagin maximum principle, numerical methods, boundary value                 

problems of ordinary differential equations 
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