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В работе представлена математическая постановка и приведены результаты             
расчетов в задаче об определении поля температуры при деформировании полосы, 
изготовленной из алюминиевого сплава АД0, на литейно-ковочном модуле                    
вертикального типа новой модификации. Конструкция литейно-ковочного модуля 
предполагает, что из четырех стенок кристаллизатора одна неподвижна, вторая 
совершает вращательное движение на эксцентриковых валах, две другие                      
совершают движение в вертикальной плоскости, обеспечивая подачу деформиро-
ванной заготовки вниз. При решении задачи используется апробированный числен-
ный метод. Для движущейся среды уравнение теплопроводности записывается в 
конечно-разностном виде в криволинейной ортогональной системе координат.                
Решение задачи проводится итерационным методом. При расчете начального     
температурного поля и при его дальнейшем изменении учитывается теплоотвод 
на поверхностях контакта металла с инструментами деформирования. Результа-
том решения является поле температуры в пространственной области для                   
дискретных моментов времени, соответствующих шагам численного счета.                    
На каждом шаге определяется граница жидкого и затвердевшего металла. 
 

Ключевые слова: моделирование, кристаллизующийся металл, температура,                   
литейно-ковочный модуль, математическая модель, программный комплекс 
 

Введение. Получение непрерывного деформируемого металличе-
ского изделия, реализующего идею полного совмещения процессов 
кристаллизации жидкого металла и его последующего деформирова-
ния в заданный профиль, может производиться на устройстве в виде 
кристаллизатора с подвижными стенками. Стенки выполняют ряд 
функций: 

– отвод тепла из зоны кристаллизации; 
– подача металла в зону деформации; 
– обжатие металла в заданный профиль; 
– калибровка и выдача профиля. 
В настоящее время существует несколько модификаций такой 

конструкции [1, 2]. Профессором Одиноковым В.И. и в его научной 
школе ведутся теоретические и экспериментальные исследования     
конструкторско-технологических параметров и режимов работы 
устройств получения непрерывно-литых деформированных заготовок. 
Их краткий обзор представлен в работе [3]. За рубежом в последние 
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годы также ведутся исследования совмещенных процессов литья и                
деформирования [4–10]. 

В данной работе рассматривается тепловая задача: строится                  

математическая модель и проводятся исследования численных расче-

тов полей температур при получении листовой заготовки алюминие-

вого сплава на новой установке литейно-ковочного модуля (ЛКМ)      

вертикального типа [11]. 

Инженерная постановка задачи. На рис. 1 приведен внешний 

вид устройства. Из разливочного ковша 1 с погружным стаканом 2 

жидкий металл поступает в вертикальный кристаллизатор, включаю-

щий боковой боек 4 с наклонным и вертикальным участками,                        

вертикальной бойковой плиты 5, и пары рабочих стенок 6. Боковой 

боек 4 и рабочие стенки 6 приводятся в движение от приводных валов 

3 с соответствующими эксцентриками 1e , 2e  при этом стенки 6 приво-

дятся в движение только от нижнего вала 3 с эксцентриком 2e . 

Эксцентрик привода боковых стенок 6 повернут относительно 

привода эксцентрика бойка 4 на 90º. Тогда при сближении бойка 4 с 

плитой 5 рабочие стенки 6 будут подниматься вверх, а при раздвиже-

нии бойка 4 с плитой 5 — опускаться вниз, осуществляя тем самым 

подачу затвердевшего металла к выходу из установки. Попадая в               

кристаллизатор, жидкий металл охлаждается, при этом в объеме                

кристаллизатора наблюдаются три зоны: зона жидкого металла; зона 

жидкого металла с закристаллизовавшейся корочкой; зона твёрдого 

метала.   
 

 

Рис. 1. Схема конструкции литейно-ковочного модуля 

 

Математическая постановка задачи. Расчетная схема деформа-

ции с учетом плоскости симметрии 3 0x   представлена на рис. 2. Циф-

рами обозначены области: 1 — жидкий металл, 2 — твердый металл. 
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Рис. 2. Расчетная схема процесса деформирования 

с учетом симметрии в плоскости 
3 0x    

 

Весь цикл поворота эксцентрикового вала разбивается на m                    

шагов. Исследовался процесс деформации для угла поворота 180 .                 

Величина одного шага 180 /mp m . 

Уравнение теплопроводности на временном шаге m  в эйлеровой 

системе координат имеет вид: 

 div( grad ).c


   


  (1) 

Здесь ( )     — коэффициент теплопроводности,   — темпе-

ратура, c  — удельная теплоемкость,   — плотность. 

Начальные условия записывали следующим образом: 

 
0 0при 0: 0 , ,       (2) 

где 0  — начальный угол поворота эксцентрикового вала, 0  — 

начальная температура в исследуемой области при полном раскрытии 

бойков (
0 0  ). Температуру 0 , в отличие от 0  , необходимо найти. 

Граничные условия записывали из предположения, что граница 

исследуемой области описывается системой ортогональных поверхно-

стей (рис 2): 
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8

, 1 7, 0,
i

i
S S

i q        (3) 

8S
q  — тепловые потоки через поверхность 8S , являющуюся поверх-

ностью симметрии, i  — заданное поле температур на поверхностях. 

Зоны твердого и жидкого металла определяются по температуре: 

 кр

кр

—  жидкий металл,

—  твердый 

θ > θ

θ метθ алл,
  (4) 

где 
крθ  — температура кристаллизации металла. 

Определение начального поля температур. При установив-

шемся режиме изменение температуры в системе в процессе деформа-

ции происходит в течение одного цикла, то есть при повороте                       

эксцентрика от 
0 0   до 180   . Далее наклонный боек расходится 

от плиты, и следует продвижение металла вертикальными плитами 6 

(рис. 1). Угол   при этом изменяется от 180  до 360 . Это период                    

разгрузки. Считается, что за этот период происходит полная                               

рекристаллизация деформируемого металла, то есть следующий цикл 

начинается с начальных условий (2). Начальное поле температур                   

перед циклом будем определять из следующих предположений: 

1. боек считаем раскрытым (
0 0  ). Это предопределяет геомет-

рию системы; 

2. полагаем, что масса металла как бы течет в зеве между наклон-

ным бойком и вертикальной плитой. Скорость течения металла                   

определяется скоростью движения плит 6 (рис. 1), в сторону выхода. 

Таким образом, рассматривается стационарный процесс движения 

металла в замкнутом объеме. Тогда для движущейся среды уравнение 

теплопроводности запишем в следующем виде: 

 div( grad ),
d

c
d


   


  

где 

 v .i

i

d

d x

 
 

 
  

Так как процесс стационарный, то 0  . Тогда 

 v .i

i

d

d x

 


 
  

Если траектория движения зависит от одной координаты, напри-

мер 1x , то 
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1

1

v .
d

d x

 


 
  

Окончательно получим 

 
1

1

v div( grad ).c
x


   


 (5) 

При решении уравнения (5) задавались граничные условия (3). 

Численная схема и алгоритм решения температурной задачи. 

Решение задачи можно разбить на два этапа: 

1 этап — решение уравнения теплопроводности (5) на временном 

шаге с учетом начальных условий (2) и граничных условий (3); 

2 этап — решение уравнения теплопроводности на m  ом времен-

ном шаге с учетом найденного температурного поля, начальных и                

граничных условий. 

Реализацию решения указанной системы дифференциальных 

уравнений будем осуществлять численным методом. 

Для решения уравнения теплопроводности использовался                    

численный метод [12], согласно которому область разбивается на                 

конечное число ортогональных элементов. На рис. 3 приведена схема 

разбиения исследуемой области на ортогональные элементы (сечение 

в плоскости 3 constx  ).  

Область разбита на пять зон, в которых для описания геометрии 

приняты системы координат: прямоугольные (зоны I и V), бицилин-

дрические (зоны II и IV), цилиндрическая (зона III).  

 
 

 

Рис. 3. Схема разбивки области 
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Для каждого элемента в произвольной системе ортогональных ко-

ординат , 1, 2,3i i    (рис. 4) cоставляется тепловой баланс, из кото-

рого выводится уравнение теплопроводности в следующем виде [12]: 

 
12 1 11 1 22 2 21 2

*

32 3 31 3

( ) ( ) ( ) ( )

( ) ( ) .

k k k k

k k k k

t t t t

t t

   

 

           

        
 (6) 

Здесь 

 

1 21 1
11 1 12 1

21 21 21 21

1 21 2
21 2 22 2

12 12 12 12
1 2

3 3 1 3
31 32

23 23 23 23

12 13 21

2( ) 2( )
; ;

2( ) 2( )
; ;

2( ) 2( )
; ;

;

;
8

k k

k k

k k

k k k

k

j

i

t F A t F A
S S S S

t F A t F A
S S S S

F A F A
t t

S S S S

A
c V

S S S
V

F S

 

 

 

 

 

 

     
     

 

     
     

 

         
 

 




 




1 2

1 2 1 2

, ,  1,2,3; 1;

, ;

,

, ,

j j

ik ip

ij ij ij

ij ij ij ij ij ij

S i k p

S S S

S S S

i k p

S S S

j

     



  

 

 



 

 (7) 

где *

k  — средняя температура в k  ом элементе в начале временного 

шага m , в нашем случае m  — время поворота эксцентрикового 

вала на угол   на шаге m , , ,k k kc V  — соответственно удельная 

теплоемкость, плотность и объем k  го элемента, ,k k   — соответ-

ственно значения коэффициента теплопроводности и температуры в 

k м элементе в конце временного шага m , ,i i

    — соответ-

ственно коэффициент теплопроводности и температура в элементе, 

следующем за элементом k  по координате i , в отрицательную                

сторону, 
i

  и  
i

  — аналогичные параметры в положительном 

направлении, p

ijS  — средние значения от дуг ребер элементов. Так, 

например,  

  1

21 0 0 1 10,5 .S a b a b     

Тогда 21 31S S  и ,pi jiS S p j i   . 
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Рис. 4. Криволинейный ортогональный элемент   
 

Выражение (6) может рассматриваться как система уравнений, 

1,...,k n , где n  — число элементов, на которые разбита область. 

Перепишем систему (6) в виде 

 
*

12 1 11 1 22 2 21 2 32 3 31 3

12 11 22 21 32 31

.
1

k
k

t t t t t t

t t t t t t

                 
 

     
 (8) 

Положим const, const, constk k kc     . Тогда система (6) 

будет линейная и может быть решена итерационным методом. В 
работе [12] доказывается сходимость итерационной процедуры (8). 

В уравнении (5) выражение 
1

1

v
x




  представим в разностном виде 

 1
1 1 1

1 1 1

 
v v v .k

x x x

   
 

  
  

Время прохождения материальной точки через элемент k   
выражается как 

 1

1

= .
v

k

x
   

Так как компонента скорости 1v  сонаправлена с координатной            

1x , то окончательно получаем 

 1
1

1

 
v .k

kx

  


 
  

Таким образом, при расчете начального температурного поля 
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расчет температуры k  в области производим по итерационной 

формуле 

 1 12 1 11 1 22 2 21 2 32 3 31 3

12 11 22 21 32 31

.
1

k

t t t t t t

t t t t t t

                  
 

     
  (9) 

На оси симметрии в плоскости 3 0x    имеем 
3 k

   . Формула (9) 

имеет вид: 

 
3

*

12 1 11 1 22 2 21 2 32 3

0
12 11 22 21 32

.
1

k
k x

t t t t t

t t t t t

    



          
 

    
  (10) 

По формуле (10) при определении начального поля температуры
*

1k

   . 

Алгоритм решения температурной задачи. 1. Задается 

геометрия области при 0   , величина эксцентриков 1 2,e e , и 

производится ее разбивка на элементы ортогональной формы. 
2. Задается число шагов по углу поворота m, задаются начальные 

условия, а также , , , 1,...,k k kc k t   , i  на поверхности контура 

области, n  — число оборотов вращения эксцентриковых валов в 
минуту. 

3. Производится расчет начального температурного поля 0  по 

итерационным формулам (9), (10) с учетом заданного температурного 
поля на поверхностях контакта металла с инструментами деформации 

при *

1k

   . По соответствующим формулам вычисляются ( )k k      

для каждого элемента. Количество итераций 60, обеспечивается 
точность вычислений до пятого знака после запятой. 

4. Следует шаг по углу   (поворот эксцентрикового вала), 
высчитывается новая геометрия области и, в соответствии с формулой 

(8), где *

k  — вычисленное в п. 3 начальное температурное поле, 

находится   на первом временном шаге. В соответствии с (4), 
определяются границы жидкой фазы. 

5. Следует опять шаг  , и осуществляется насчет 

температурного поля с учетом предыдущего *

k  по новой геометрии 

области. 

6. Процедура, описанная в п. 5, повторяется m  раз. 
7. Конец счета. 
Результаты решения задачи. Геометрические параметры, 

использованные при расчетах (рис. 2): 0 32 ммh  , 1 8 ммh  , 

1 45 ммl  , 2 60 ммl  , 2 64 ммb  , 8  , 1 50 ммR  , 1 3 ммe  , 

2 10 ммe  , а 100 об минn   — частота оборотов приводных валов. 
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Физические характеристики разливаемого металла (АД0):

пл 750 С  , 
кр 680 С  , 

20,49 0,00046 0,00026 Вт м К      , 

310 Дж/(кг К)с   , 3 32,7 10 кг/м   . 

Определение начального поля температуры. Для определения 
начального поля температур необходимо задать граничные условия 
(3). Система охлаждения составных бойков кристаллизатора 
включает: число каналов в каждом бойке, по которым подается 
охлаждающая жидкость; водяной напор — количество жидкости, 
протекающей по каналу в единицу времени; температура 
охлаждающей жидкости. Все эти факторы, влияющие на температуру 
поверхностей бойков, можно изменять в широких пределах, тем 
самым, влить на температуру поверхности исследуемой области. 

Поэтому, зададим температуру на входе 
2

750 С
S

  , температуры на 

выходе поверхностей 
1 6 9

390 С
S S S

       и аппроксимируем 

температуры по поверхностям исследуемой области полилинейными 
функциями. 

По итерационным формулам (9), (10) получили начальное поле 
температур (рис. 5). Пунктиром условно обозначена граница жидкого 
и твердого металла.  

 

 
 

Рис. 5. Начальное поле температур 
 

Определение полей температур в области деформации. Весь 

процесс деформации разбивается на m  шагов по углу поворота 

эксцентричного вала 0 180   , то есть 180 /m m  . Принято 

6m  , следовательно, 30m  , что по времени при 100 об минn   

составляет 0,15 секm  . На рис. 6 представлены поля температур по 

шагам m .  
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Рис. 6. Распределение температур: 

а — шаг 1. 30  ; б — шаг 2. 60  ; в — шаг 3. 90  ; 

г — шаг 4. 120  ; д  — шаг 2. 150   

 

Из рис. 6 видно, что по мере сближения подвижного бойка с           

неподвижной плитой жидкая зона металла выжимается, а зона                

твердого металла увеличивается в объеме по сравнению с жидкой. 

При 180   подвижный боковой боек отходит от неподвижной 

плиты и затвердевший металл подается вниз вертикальными плитами 

6 (рис. 1). 

При этом заготовка (исследуемая область) будет находиться под 

действием неравномерного температурного поля, которое имелось на 

шаге 180   и температур плит с поверхностей 9S  (рис. 2). Степень 
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имеющейся неравномерности оценим по величине градиентов

i ix x

 


 
, 1,2,3i  . На рис. 7 приведены градиенты , 1,2

i

i
x





, по           

соответствующим сечениям I-I, II-II, III-III. 
 

 

 

Рис. 7. Градиенты 
ix




 по сечениям I-I, II-II, III-III: 

сплошная линия — 
1x




; пунктирная линя  — 

2x




  

 

Наибольшие значения (по абсолютной величине) имеет градиент

1x




, который, в свою очередь, достигает наибольших значений у               

поверхностей контакта с бойками. Градиент 
3x




 меньше, чем 

2x




 и 
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на графике (рис. 7) не показан. Видим, что градиент 
1x




 имеет макси-

мальные значения при выходе полосы на калибрующий участок. 

Выводы. 1. Построена математическая модель теплового режима 

работы литейно-ковочного модуля новой модификации.  

2. Программы расчета температурного поля могут применяться 

при моделировании напряженно-деформированного состояния                          

заготовки на литейно-ковочном модуле. 
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Modeling of the temperature field in the production 

of metal products on a casting and forging module 

with one-sided action of the side striker 

and fixed plate  

 E.A. Dmitriev, D.A. Potianikhin, V.I. Odinokov,                                                      

A.I. Evstigneev, A.E. Kvashnin  

Komsomolsk-na-Amure State University, Khabarovsk Territory, 

Komsomolsk-on-Amur, 681013, Russia 

 

The paper presents a mathematical statement and presents the results of calculations in 

the problem of determining the temperature field during deformation of a strip made of 

aluminum alloy AD0 on a vertical-type casting and forging module of a new modification. 

The design of the casting and forging module assumes that one of the four walls of the mold 

is stationary, the second performs a rotational movement on eccentric shafts, the other two 

move in a vertical plane, ensuring that the deformed billet is fed down. When solving the 

problem, a proven numerical method is used. For a moving medium, the heat equation is 

written in finite difference form in a curvilinear orthogonal coordinate system. The solution 

of the problem is carried out by the iterative method. When calculating the initial                        

temperature field and its further change, the heat removal on the contact surfaces of the 

metal with the deformation tools is taken into account. The result of the solution is the 

temperature field in the spatial domain for discrete times corresponding to the steps of the 

numerical calculation. At each step, the boundary of the liquid and solidified metal is                 

determined. 
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mathematical model, software package 
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