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Рассматривается задача о построении теории расчета напряженно-

деформированного состояния тонких многослойных упругих пластин, у которых 

на границе раздела слоев заданы линеаризованные условия проскальзывания.                  

Решение данной задачи строится с помощью асимптотического анализа общих 

уравнений трехмерной теории упругости с условиями неидеального контакта  

слоев. Асимптотический анализ проводится по малому геометрическому пара-

метру, представляющему отношение толщины пластины к ее характерной длине.               

Получены рекуррентные формулировки локальных квазиодномерных задач теории 

упругости с проскальзыванием. Для этих задач получены явные аналитические 

решения. Представлен вывод осредненных уравнений упругого равновесия много-

слойных   пластин с учетом проскальзыванием слоев. Показано, что за счет             

эффекта проскальзывания слоев система осредненных уравнений теории много-

слойных пластин имеет повышенный — пятый порядок производных, в отличие от 

классического четвертого порядка, который имеет место в теории пластин 

Кирхгофа–Лява.  Показано, что асимптотическая теория позволяет получить 

явное аналитическое выражение для всех шести компонент тензора напряжений 

в слоях пластины.  Как частный случай рассмотрена задача о расчете напряжен-

но-деформированного состояния четырехслойной пластины при изгибе равномер-

ным давлением, с одним коэффициентом скольжения. Получено полное аналитиче-

ское решение этой задачи, в том числе — получены явные выражения для всех                        

ненулевых компонент тензора напряжений. Проведен численный анализ решения 

осредненной задачи для композитной пластины, у которой слои представляют 

собой однонаправленно-армированные волокнистые материалы, ориентированные 

под разными углами. Проведен сравнительный анализ влияния углов армирования 

волокон и коэффициента скольжения слоев на перемещения пластины и распреде-

ление напряжений в слоях. Показано, что задача об изгибе пластины с проскаль-

зыванием допускает существование спектра критических значений коэффициен-

та скольжения, при переходе через которые перемещения и напряжения в слоях 

пластины существенным образом меняются, причем эти критические значения 

зависят от угла армирования слоев композита.   

 

Ключевые слова: асимптотическая теория, малый параметр, тонкие пластины, 

композиты, проскальзывание слоев, угол армирования, изгиб 

  

Введение. Для ряда инженерных конструкций существует про-
блема расчета прочности деталей, работающих в условиях                   
неидеального контакта с другими элементами конструкций. Напри-
мер, некоторые типы многослойных рессор функционируют в усло-
виях проскальзывания слоев друг относительно друга, за счет чего 
достигается дополнительный эффект рассеивания энергии деформи-
рования [1]. Расчет многослойных пластин и оболочек с проскальзы-
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ванием слоев является неклассической задачей, существует лишь 
ограниченное число работ, в  которых строится модель, обобщающая 
классические теории типа Кирхгофа–Лява и Тимошенко на случай  
слоев с неидеальным контактом [2–6]. Обоснование допущений, на 
которых основаны эти теории, является существенно более сложной 
проблемой, чем для случая идеального контакта слоев [7–10].            
В работе [11] впервые была предложена теория тонких двуслойных 
пластин с условиями проскальзывания слоев, которая основана на 
строгом анализе общих трехмерных уравнений теории упругости с 
учетом условий неидеальности контакта. Эта теория содержит лишь 
геометрическое допущение о тонкостенности пластин и допущении о 
малости нагрузки, действующей на пластину. Решение трехмерной 
задачи теории упругости с неидельным контактом в этой теории 
строится с помощью метода асимптотических разложений, который 
был эффективно развит для большого числа задач механики тонко-
стенных пластин и оболочек [12–20]. Разработанный вариант асимп-
тотической теории пластин является достаточно универсальным, он 
применим для пластин с различными свойствами, в том числе и                    
с нелинейными.  Этот метод позволяет   получать формулы для всех 
6 напряжений с использованием только решений для осредненной 
теории пластин. Точность этого метода, подтвержденная сравнением 
с точной трехмерной теорией, очень высокая [16]. 

Цель настоящей работы — дальнейшее развитие асимптотиче-
ской теории пластин для случая многослойных пластин с проскаль-
зыванием всех слоев относительно друг друга, а также анализ                   
особенностей теории на частном примере задачи об изгибе                   
многослойной пластины равномерным давлением. 

Постановка 3-х мерной задачи теории упругости для много-
слойной пластины с проскальзыванием слоев. Рассмотрим в               
рамках трехмерной теории упругости [21] задачу о деформировании 
тонкой многослойной упругой анизотропной пластины с наличием 
проскальзывания слоев друг относительно друга при воздействии 
поперечных и сдвиговых нагрузок на боковых поверхностях, с усло-
виями закрепления на краях пластины: 
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Здесь 
{ }m

ij  — компоненты тензора напряжений; { }m

kl  — компоненты 

тензора малых деформаций; { }m

iu  — компоненты вектора перемеще-

ний; / jj x     — оператор дифференцирования по декартовым      

координатам 
jx  (ось 3Ox  направлена по нормали к поверхностям 

пластины); 
{ }m

ijklC  — компоненты тензора модулей упругости слоев; 

 m  — индекс слоев 1,2,...,m N ;  33 2x h     — внешняя и 

внутренняя поверхности пластины; h  — суммарная толщина 

многослойной пластины; T  — торцевая поверхность пластины; 

{ }

3 3{ }m

mx x   — поверхности контакта слоев; { }m  — коэффициенты 

скольжения слоев друг относительно друга, { } 0m  . 

Система уравнений (1) включает в себя уравнения равновесия, 

соотношения Коши, обобщенный закон Гука, условия на поверхно-

стях контакта слоев m  (неидеальный контакт с наличием                    

скольжения), на внешних поверхностях пластины 
3  (на них заданы 

векторы усилий 
iS 

 и 
iS 

) и на торцевой поверхности T  (заданы 

векторы пермещений 
eiu ). Все слои пластины полагаем моноклин-

ными материалами, поэтому тензоры 
{ }m

ijklC  содержат не более 13 

ненулевых констант [22]).  

Запишем систему уравнений (1) в безразмерном виде, для этого 

введем характерные значения: L  — длину пластины и 
0  —              

напряжений. Напряжения  
{ }m

ij  и модули упругости 
{ }m

ijklC  делим  на 

0 , координаты kx  и перемещения — делим на L , а коэффициенты 

скольжения в (1) обезразмериваем следующим образом:
{ } { }

0 /m m L   . В результате получим безразмерные переменные, 

сохраним для них те же обозначения, что и для размерных величин, 

за исключением координат: /k kx x L , тогда система уравнений (1) в 

безразмерном виде формально сохраняет свой вид. 

Асимптотические разложения для пластины с проскальзы-

ванием. Введем малый параметр / 1h L   , как отношение общей 

толщины пластины h  к длине пластины L , а также введем также гло-

бальные kx  и локальную   координаты: 

 
3/ , / , 1,2,3.k kx x L x k      (2) 

Координата   по толщине пластины изменяется в диапазоне 

0,5 0,5   , а поверхности контакта слоев имеют координаты 
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{ }

3 /m

ma x h   , 1,2,..., 1m N  , 0 0,5a   , 0,5Na  . Обозначим 

толщины слоев в безразмерных координтах 

 1 1,2,..., .,m m m mh a Na      

Полагаем, что на внешних поверхностях 
3  пластины заданы 

давления p
 имеющие порядок малости 3( )O  , тогда   векторы усилий 

iS   имеют следующий вид:   

 3

3( ) .i I iS p x      (3) 

Решение задачи (1) будем искать в виде асимптотических разло-

жений по параметру 𝜅 в виде функций, зависящих от глобальных и 

локальных координат 

                0 1 22, , ...,
m m m

k k I k I k Iu u x u x u x         (4) 

где 1,2; 1,2,..., ; 1,2,3I m N k   . 

Подставляя разложения (3) в соотношения Коши в системе (1), с 

учетом  правила дифференцирования функций локальных координат 

[15], получим асимптотические разложения для деформаций 

           0 1 22 ...,
m m m m

ij ij ij ij          (5) 

где 
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  (6) 

Здесь и далее введены следующие обозначения для производных: 

   
  

  
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1 1

/3 ,, ,
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а также введены операции осреднения по толщинам слоев  
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Подставляя выражения (6) в закон Гука в системе (1), c учетом 

моноклинности материалов слоев, получаем асимптотические               

выражения для напряжений: 

           0 1 22 ...,
m m m m

ij ij ij ij          (8) 

где  
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Локальные контактные задачи. Подставляя разложения (4), (5) 

и (7) в уравнения равновесия и граничные условия системы (1), и 

приравнивая в уравнениях равновесия члены при 1   к нулю, а при 

остальных степенях от   к некоторым величинам (0) (1) (2), ,i i ih h h  , не 

зависящим от l , получим рекуррентную последовательность локаль-

ных контактных задач теории упругости. 

Задача для нулевого приближения имеет вид: 
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Задачи для более высоких приближений имеют вид: 

 

               

            

            

                   
     

      

1 1

3/3 , 3 3 3 3

33 33

33 33 3333 33

1

, , 3 3, /3

1

33 3/3

3 3 3

1

3

; ;

;

;

; ;

; 1, 2,.

2

1 1

2 2

:   :

.., ;

;

m n m n n m n m m n

i iJ J i I I k k

m n m m n m m n

IJ IJKL KL IJ

m n m m n m m n

KL KL

m n m n m n m n m n m n

IJ I J J I I I I

m n m n

n n

i i

N

i

h C

C C

C C

u u u u

u

S

m N

   

  

  

 



 

 





  

  

 

 

   



  



   

           

        

1 1 1

3 3 3 3

1 1 1{

3

1

1 }

:  ,

;

1, 2,.

   ,  

,

.. 1.,

m m m

m

n n

i

n m n n n

m i i

n n m nm

I I I

m

S

N

u u

u u

m

 

 



  

  

















 



  












  (11) 

Здесь 
 

3,  1,2,3....
n

ni iS S n     

Уравнения равновесия в системе (1) после введения функций    
 0

ih , 
 1
ih , 

 2

ih  принимают вид: 

 
     0 1 22 ... 0.i i ih h h       (12) 

Решением локальной задачи нулевого приближения (10)                        

являются функции         1 0 0
,   ,  ,

m m m

j kl iju    зависящие от локальной               

координаты   и входных данных этой задачи — перемещений 

    0m

j Ju x . Решением задачи (11) являются функции 

        1
,   ,  ,

m n m n m n

j kl iju  


 а функции         1 1
, ,  

m n m n m n

j kl iju  
 

 в этой                   

задаче — входные данные. 

Решение задачи нулевого приближения. Решение уравнений 

равновесий с граничными условиями в локальной задаче нулевого 

приближения (10) имеет вид: 

 
  0

3 0,    0,5 ξ 0,5.
m

i       (13) 

Подставляя  (13) в определяющие соотношения системы (3) для 
  0

3

m

i , получим: 

 
             0 0 0

3 3 3 33 3333 330, .
m m m m m

I k k KL KLC C C      (14) 

Отсюда находим  
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  

      

     

0

3

0 0

33 3

1

3 3333 33

0,

  ,

.

m

I

m m

KL KL

m m m

KL KL

Z

Z С C



 





 



  (15) 

Подставляя (15) в определяющие соотношения для 
  0m

IJ ,             

находим 

 
       0 0 0

,
m m

IJ IJKL KLС    (16) 

 
        0

33 3 . 
m m m m

IJKL IJKL IJ KLС C C Z    (17) 

Подставляя (15) в соотношения Коши для 
  0

3

m

I , 
  0

33

m
  в системе 

(10), находим уравнения для перемещений 
  1m

Iu  и 
  1

3

m
u   

 

    

      

1 0

/3 3,

1 0

3/3 3

 

  .

, 
m

I I

m m

KL KL

u u

u Z 

 

 
  (18) 

Проинтегрируем эти уравнения по    

 

      

        

1 0

3.

1 0

3 3 3

,

,

m m

m

I I I

K

m

L KL

m

u u U

u Z U



 

  

  
  (19) 

где 
   

3,I

m m
U U  — константы интегрирования. Для их определения 

подставим (19) в граничные условия системы (10) на поверхностях 

раздела ma  , а также в условие нормировки [11, 15] (1) 0iu  ,      

тогда для 
 m

IU , 
 
3

m
U  получим систему следующего вида: 

 

      

 

         

     

1{ }
3

0

1

1

1 1

3
1

3 3 3 3

0

3

( ),

0,

( ) ,

.

m m

mI I

N
m

mI

m

mm
I

K

m m m m

m

N

LKL KL

K

m m

LKLm

m

U U a

U

U U Z Z

U Z

h

a

h





 



 



 

 

 

 

  





  (20) 

Решая систему этих уравнений, находим 
 m

IU  и 
 
3

m
U   

 
        

1
{ }

3
1

1 0{ }
3 ( ), ,

N
m k mk

k KLI
m

kmI KL

k

U a UH B




       (21) 

где введены обозначения       
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     

1

1
1

3 3 3
{ }

1

1,2,..., 1, 1,2,.
1, 1 ;

, ,

,

( )

., ;

.

.
k

km
k

N

k m

m k

N
m m mm

k KL KL Lm mL

k
KK

H k m

H k m

h

B H

k N mH

H

Z Z Za

N

 






  

 

 




  

 









  (22) 

Подставляя константы (21) в (19), находим выражения для переме-

щений в слоях 

 

       

    

 

1 0 1{ }
3, 3

1 0

3
{ }
3

{ }
3 3

1

1

{ }

( ),

.

,

m k
kI I I

m

K

N
k

km

m
KL

m
K

L

K LL

k

L

m m
K

H

u

U

u a

U

u

Z B





   



 





  (23) 

Решение локальных задач для высших приближений.              
Рассмотрим локальные задачи (11) для более высоких приближений. 

Решение уравнений равновесия в (11) вместе с граничными                           

условиями 
  

3 23

1

i

n

i np     имеет вид: 

 

{ }( 1) { }( ) ( )

3 3 2 ,

0,5

( 0,5),

0,1, 2,..., 1, 2,..., .

m n m n n

i i n iJ J ip d h

n m N



     





    

 

   (24) 

Подставляя (24) в граничное условие 
  

3 23 ii

N n

np                                  

на поверхности 0,5   получаем соотношения для нахождения 

функций ( )n

ih   

 

0,5

{ }( ) ( )

_ 3 2 , 3 2

0,5

.m n n

i n iJ J i i np d h p     



       (25) 

Отсюда находим 

 
( ) { }( )

3 2 , ,n m n

i i n iJ Jh p         (26) 

где обозначен перепад давления 

 .p p p      (27) 

C учетом (26) выражения (24) принимают вид 
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    { }( 1) { }( )

3 , _ 3 20,5 ,

0,1,2,..., 1,2,..., .

m n m n

i iJ J i np p

n m N


         

 
  (28) 

Формулы (27) являются рекуррентными, подставляя последова-

тельно эти формулы друг в друга при различных n , вычислим 

напряжения { }( 1)

3

m n

i
  до третьего  приближения 

 

   

      
    

     

{ }(1) { }(0) { }(2) { }(1)

3 , 3 ,

{ }(1) { }(0) { }(2) { }(1) { }(0)

33 3 , 33 3 , ,

{ }(3) { }(2)

33 3 , _

{ }(1)

,

, ,

0, ,

0,5

0,5 ,

1,2,..., .

m m m m

I IJ J I IJ J

m m m m m

J J J J IJ IJ

m m

J J

m

IJ IJ

p p

p p

m N

 

   



 

   

    

  

 

   

     

      

    



  (29) 

В эти выражения входят напряжения { }(0)m

IJ  и { }(1)m

IJ . Подставляя 

формулу (16) для { }(0)m

IJ  в выражения (28) (29) для сдвиговых                 

напряжений, находим 

 

   

    

{ }(1

,

0)

)

3

0

(

1, 2,..., ;

.

,
m

IJKL KL J

IJKL IJ

I

m

m

KL

m
A

A m N

С


   


  (30) 

Для вычисления { }(1)m

IJ  используем определяющие соотношения в 

задаче (11) при 1n    

 
         { }(1 1 1

3 3

)

3 3 1,2,.., ., .
m m m m

IJKL KL IJ J

m

I C m NC      (31) 

Чтобы найти деформации { }(1)

33

m , то получаем аналог формулы 

(15) для первого приближения 

 { }(1) { } { }(1) { } { }(1)

33 33 3333 33 .m m m m m

KL KLC C      (32) 

Так как согласно (29)  { }(1)

33 0m  , то получаем аналог формулы 

(15) для первого приближения 

 { }(1) { } { }(1)

33 3 .m m m

KL KLZ     (33) 

Подставляя (33) в соотношение (31), находим аналог формулы 

(16) для первого приближения  

 { }(1) { }(0) { }(1).m m m

IJ IJKL KLС    (34) 
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Деформации { }(1)m

IJ , входящие в эту формулу, находим из кинема-

тических соотношений в системе (11) 

 { }(1) { }(1) { }(1)

, ,

1
( ).

2

m m m

IJ I J J Iu u     (35)  

Подставляя формулу (23) в (34), получаем 

 
     

{ }(1) { }(1) { }(1)

, ,

(0) 1 1
1

1

{ }

3, 3,3,

1
 ( )

(

2

1

2
( ) ( )).

N
k

km k

kk

I J

m m m

IJ

k

I J

k

J I

IJ J Iu H a a

u u

  









   

 


  (36) 

С помощью формул (30) найдем сдвиговые напряжения 
  1

3 ( )
k

I ka  на поверхностях раздела слоев, входящие в уравнение (36) 

    { }(1 0

,

)

3 ( ) ( ) , 1,2,..., .IJKL KL J

k

k k

k

I a aA k N      (37) 

Подставляя (37) в (36), получаем 

 
{ }(1) (0) { } (0)

3, , , 1,2,..., ,m m

IJ IJ IJMKLN KL MNu Ф m N        (38) 

где обозначены 

    
1

1

{ } { } ( ) ( ) ).
1

(
2

kk

I

m

IJMKLN

N
k

km k JN k INL JMKL

k

MK aФ A AH a 




    (39) 

Подставляя теперь формулу (38) в (34), находим напряжения  

 
{ }(1) { }(0) (0) { } (0)

3, , , 1,2,..., ,m m m

IJ IJKL KL IJMKLN KL MNС u W m N        (40) 

где  

 { } { }(0) { } .m m m

IJMKLN IJSP SPMKLNW С Ф   (41) 

Если подставить формулу (40) в выражения (29) для { }(2)

3

m

I , то по-

лучим 

    { }(2) { }(0) (0) { } (0)

3 3, , , 1,2,..., .m m m

I IJKL KLJ IJMKLN KL MNJС u W m N
 

       (42) 

Вводя обозначения 

 
      ) }0 } {( {, m m

IJMKLNIJKL IJK

m

IJMKLN

m

L W WV С


    (43) 

формулы (42) для сдвиговых напряжений второго приближения 

можно записать следующим образом: 

  { }(2) (0) { } (0)

3 3, , , 1,..., .m m

I KLJ IJMKLN KL MNL

m

JIJKV u W m N      (44) 
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Подставляя формулу (16) в выражения (29) для { }(2)

33

m , получим             

выражение для поперечных напряжений второго приближения 

     { }(2) 2

33

0

, , 1,..., ,
mm

IJKL KL IJ mE N    (45) 

где обозначено 

        2 0
1,., .., .

m m

IJKL IJKL mС NE
 

   (46) 

Подставляя формулу (40) в выражения (29) для { }(3)

33

m , получим 

выражение для поперечных напряжений третьего приближения 

 
  

{ }(3) { }(3) (0) { }(3) (0)

33 3, ,

{1} 0,5 , 1,..., ,

m m m

IJKL IJKL IJMKLN KL MNIJU u

p Np m

W  



   

  
  (47) 

где обозначены  

      { }(3) { }(0) { }(3) { }, .m m m m

IJKL IJKL IJMKLN IJMKLNU С W W
  

    (48) 

Напряжения в слоях пластины. Сохраним в выражениях (8) 

для напряжений только главные члены: для { }m

IJ   это будут члены до 

первой степени малого параметра  , для сдвиговых напряжений  
{ }*

3

m

I  — это члены до второгого порядка малости, а для { }*

33

m  —          

третьего порядка 

 

       

          

             

0 1

0 1 22

3 3 3 3

0 1 2 32 3

33 33 33 33 33

,

,

.

m m m

IJ IJ IJ

m m m m

I I I I

m m m m m

  

    

      

 

  

   

  (49) 

Подставляя в первую формулу выражения (16) и (40), получаем 
выражение для продольных напряжений в слоях 

 
       { }(0) (0) { } (0)0

3, ,

0

1,. .

,

..,

m

IJ

m m

IJKL

m

IJ K KL IJMKLN KL MNL KL С u

N

WС

m

     


  (50) 

Подставляя во вторую формулу в (49) выражения (13), (29) и 
(44), получаем выражение для сдвиговых напряжений в слоях 

 
        (0)2 2

3

0

,

{ } (0)

3, ,

1,..., .

,m

KLJ IJMKL

m

IJKL KL J IJ N KL MNI L

m m

K J

m N

A V u W      


  (51) 

Подставляя в третью формулу в (48) выражения (13), (27), (28), 

(45) и (47), получаем выражение для поперечных напряжений                          

в слоях 
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      

  

2 32 0

,

{ }(3) (0)

3,

{ }(3) (0) {1}

,

33

3 3 1,0, .. ,5 , . .

m

IJKL I

m

IJKL K JKL

m

IJMKLN KL

L I

MNIJ

J

m
E u

W m Np p

U  

   

 

   






  (52) 

Осредненные уравнения равновесия для многослойной пла-

стины c неидеальным контактом слоев. Подставляя выражения 

(26) в асимптотическое разложение (12) уравнений равновесия пла-

стины, получим   

 
{ }(0) { }(1) 2 { }(2)

, , , 3( ) ... 0.m m m

iJ J iJ J iJ J ip                  (53) 

Домножая асимптотическое разложение уравнений равновесия 

пластины (1) на   и интегрируя  их по толщине, получаем следую-

щее вспомогательное уравнение  

 
{ }(0) { }(1) 2 { }(1) { }(2)

, 3 , 3( ) ( ) ... 0.m m m m

IJ J I IJ J I                  (54) 

Здесь учтено, что { }(1) { }(1)

3/3 3

m m

I I     , { }(2) { }(2)

3/3 3

m m

I I      в 

силу граничных условий на {1}( )

3 3: 0n

I   и { }( )

3 3: 0.N n

I    

Введем стандартным образом [13–19] усилия 
IJT  моменты 

IJM  и  

перерезывающие силы 1Q  в пластине 

 

{ }(0) { }(1) 2

{ }(1) 2 { }(2)

3 3

{ }(0) 2 { }(1) 3

...,

...,

....

m m

IJ IJ IJ

m m

I I I

m m

IJ IJ IJ

T

Q

M

   

   

    

     

      

      

  (55) 

Тогда из (53) и (54) получаем уравнения равновесия и моментов 

для двухслойной пластины, которые совпадают с соответствующими 

уравнениями для пластин без трения 

 , , ,0, , 0,IJ J J J IJ J IT Q p M Q       (56) 

здесь обозначено 
2p p   . 

Подставим в формулы (55) для 
IJT  и 

IJM  выражения для напря-

жений { }(0)m

IJ  и { }(1)m

IJ , вычисляемых по формулам (16) и (40), тогда 

получим определяющие соотношения для пластины со проскальзы-

ванием слоев 

 

(0) (0)

,

(0) (0)

,

,

.

IJ IJKL KL IJKL KL IJKLMN KL MN

IJ IJKL KL IJKL KL IJKLMN KL MN

T C B H

M B D F

  

  

  

  
  (57) 

Здесь обозначены 
IJKLC  — мембранные, 

IJKLB  — смешанные,             

IJKLD  — изгибные жесткости пластины, которые совпадают с класси-
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ческими жесткостями пластин без трения, а также жесткости пласти-

ны IJKLMNH  и IJKLMNF , обусловленные  проскальзыванием слоев 

{ }(0) { }(0)

2 2 { }(0)

{ } 2 { }

, ,

,

, .

m m

IJKL IJKL IJKL IJKL

m

IJKL IJKL

m m

IJKLMN IJMKLN IJKLMN IJMKLN

C C B C

D C

H W F W

 

 

  

    

  

     

         (58) 

В (57) введены также обозначения для компонент тензора            

искривлений пластины KL , KL , которые вместе с соотношениями 

для деформаций (0)

IJ  замыкают осредненную систему уравнений (5) и 

(56) 

 

(0)

3,

(0) (0) (0)

, ,

,

1
( ).

2

KL KL

IJ I J J I

u

u u





 

 
  (59) 

После подстановки  (59) в (57), и (57) в (56), получим систему 

трех уравнений относительно 3 неизвестных функций — прогиба (0)

3u  

и продольных перемещений (0)

Iu , как и в классической теории               

пластин Кирхгофа–Лява (ТПКЛ) с идеальным контактом слоев.            
Однако в отличие от ТПКЛ, система уравнений асимптотической 
теории пластин с проскальзыванием слоев (АТПП) имеет более              
высокий  (пятый вместо третьего) порядок производных относитель-

но продольных перемещений (0)

Iu  функций. 

Решение задачи изгиба четырехслойной пластины с учетом 

проскальзывания слоев. Рассмотрим частный случай, когда 4N  , 
т.е. когда имеется четырехслойная  пластина прямоугольной формы.. 
Будем полагать, что слои 1 и 2 пластины, а также 3 и 4 соединены 
идеальным контактом, а между слоями 2 и 3 имеется проскальзыва-
ние, т.е. 

 
{1} {3} {2}0, 0.         (60) 

Матрица kmH  в (22) для  случая четырех слоев  имеет следующие 

компоненты  

 
21 22 2 1 2

23 24 2 1 2

1 ,

1 ( ).

H H H h h

H H H h h

    

     
  (61) 

С учетом (60) и  (61) компонента { }

111111

mФ  тензора   
 m

IJKLMNФ  прини-

мает  вид    

 
 2{ } { } {{2}

2

}

111111 21111( ), , 1,...,4.m m m

mФ Ф mA a HФ    (62) 
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Будем полагать, что все слои пластины являются ортотропными 

материалами [22], с главными осями ортотропии { }m

iOx , 1,..., 4m  , 

причем  все оси { }

3 3

mOx Ox  — совпадают с осью 
3Ox , ортогональной 

к плоскости слоев пластины.   Оси  { }

1

mOx  образуют угол { }m  с осью 

1Ox  единой декартовой системы координат 
iOx . Будем полагать, что 

углы поворота главных осей ортотропии слоев 1 и 2, а также 3 и 4  

отличаются только знаком: {2} {1}   , {3} {4}   . Тогда компоненты 

тензора модулей упругости слоев 
{ }m

ijklC  вычисляются по формуле [22]   

 
{ } 0 { } { } { } { } ,m m m m m

ijkl snpq is jn kp qC C Q Q Q Q   (63) 

здесь 
{ }m

qQ  — элементы матрицы поворота слоя с номером m  на 

угол { }m , а 
0

snpqC  — компоненты  тензора модулей упругости  слоев  в 

главных осях анизотропии { }m

iOx , полагаем эти тензоры совпадаю-

щими для всех слоев. 

Если толщины слоев 1h , 2h , а также 3h , 4h  — попарно                    

совпадают, то пластина в целом является ортотропным материалом, а 

осредненные тензоры с компонентами 
IJKLC , 

IJKLB , IJKLD  — являются 

ортотропными [22]. 

Рассмотрим задачу изгиба четырехслойной пластины равномерно 

распределенным давлением p . Граничные условия выберем                     

соответствующими условиям шарнирного закрепления краев                             

пластины: 

  0 (0) (0)

3 11 1 1,1110: 0, 0, 0, 0,x u M u u       (64) 

  0 (0)

3 11 11 1,1111: 0, 0, 0, 0,x u M T u       (65) 

 
(0) (0) (0)

2 2 2 2,222 22 3,20 и : 0, 0, 0, 0,x x b u u M u        (66) 

здесь 1x x  — безразмерная продольная координата пластины, b  — 

безразмерная ширина пластины. 

Решение системы  уравнений (56)-(59) с  граничными условиями 

(64)–(66) будем искать в виде: 

              0 0 0 0 0

1 1 3 3 2, , 0.u u x u u x u     (67) 

С учетом ортотропии пластины тождественно ненулевыми будут 

следующие функции: 11 , 
(0)

11 , 
11T , 

22T , 
11M , 

22M  — все они зависят 

только от координаты x . Тогда система уравнений (56)–(59)                  

сводится к системе двух уравнений  
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      0 0 0

1111 1,11 1111 3,111 1,1111 0,C u B u Hu    (68) 

      0 0 0

1111 1,111 1111 3,1111 1,11111 0.DB u u u pF     (69) 

Здесь использованы формулы  (41) и  (58), которые с учетом (62) 

представлены в виде  

 
   { }(0) { } 2 { }(0) { }

11

111111 111111

2 2

211 11111 11111 211( ), ( )

,

.

,

m m m mH С Ф A

H F F

a F С Ф A

H

a

 

      






 (70) 

Граничные условия (66) с учетом (67) удовлетворяются тожде-

ственно, поэтому к системе (68),(69) присоединяем только условия 

(64), (65).   

Система уравнений (68), (69) имеет 5-й порядок производных от-

носительно функции 
 0

1u , поэтому граничные условия (64),(65) до-

полним еще одним — условием нулевой деформации    0 0

11 1,1u   на 

защемленном торце: 

  0

1,11 0 0.:x u    (71) 

Выражая из уравнения (69) производную  0

3,1111u  и подставляя ее в 

первое уравнение этой системы, продифференцированное предвари-

тельно по x , получим следующее уравнение для продольного пере-

мещения (0)

1u : 

 
   0 0

1,111 1,11111 0,Сu pFu S     (72) 

где обозначены коэффициенты 

 

1111
1111

1111

1111 1111

1111 1111

2)
,

.

(

,

D

F

B
С C

B B
SF

D D
H



 





  (73) 

Обозначая  0

1,111v u , уравнение (72) перепишем в виде 

 ,11 .Fv С Sv p     (74) 

Рассмотрим случай, когда 
0 0F F   . Случай 0F   был рас-

смотрен ранее. Общее решение уравнения (69) при 0F  , когда 

p const  , имеет следующий вид 

 0 1 2sin cos ,v V x V S px      (75) 
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где   

 2

0 0

, ,
S С

S
F F




    (76) 

а 0 1,V V  — константы интегрирования. 

Тогда, решая уравнение  0

1,111u v  c учетом  (75), находим общий 

вид функции 
 0

1u   

 

 0 0 1
1

2 2 2

3

3

3 4

3
sico n

6 2

s

,px x V x V

V V
u x x

S V

 
  

   



  (77) 

где 2 3 4, ,V V V  — константы интегрирования. 

Подставляя функцию (77) в уравнение (69), получим уравнение 

относительно 
 0

3u   

  0

3,1111 0 1 1sin o ,c su V Z x pV Z x Z      (78) 

где обозначены константы 

 

2

1111111111

1111

1 1111

1111

2(1

1
( ),

1
).

Z B F

Z B

D

S
D



 



  (79) 

Интегрируя уравнение (78), находим общее его решение 

 

 0 0 1

4

4

3

3 2

0

4

1 3

1
2

sin cos

24 6 2
,

V Z V Z
u x x

CZ
px x x C x C

C

 
  

     



  (80) 

где 0 3...C C  — константы интегрирования. 

Найдем теперь общее выражение для усилия 11T  и момента 11M . 

Для этого подставим формулы (67) в определяющие соотношения 

(57) 

 

     

     

0 0 0

11 1111 1,1 1111 3,11 1,111

0 0 0

11 1111 1,1 1111 3,11 1,1

111111

111111 11

,

.

T C u B u u

M B u u

H

D F u

 

 




  (81) 

Подставляя формулы (75) и (80) в (81), находим  



Ю.И. Димитриенко, Е.А. Губарева 

46 

 
11111111 0 0 1 1

1111 1111 111

2

1 1113 21

2

2 3

)( sin cos ) (

( () ),

T R V x V x R

C B

H S

V C V CCx B

x p   







  
  (82) 

 11111111 0 0 1 1

1111 1111 111

2

1 1113 21

2

2 3

)

) )

( sin cos ) (

( ( .

N S

V D

M V x V x N F

B BC V D C

x p

x

   







  
  (83) 

Здесь введены следующие коэффициенты: 

 
0 1111 1111 1 1111 1111

0 1111 1111 1 1111 1111

2

111111 2 1

2

111111 2 1

( (

(

) / , ) / 2,

) / , ) / 2.(

R C B R C B

N B F N B S

Z H S Z

D Z D Z





  





  

 
  (84) 

Подставляя выражения (77) и (80) в граничные условия (64) и 

(71) при 0x  , находим часть системы уравнений для констант           

интегрирования  

 

4
3

4

2

2

111111 2 3 2

0 1

1 1

0 1 1111 11

0

1

3

1

0,

0, 0,

0.

0

)

,

(

V

S

N S V D C

C
Z

V p

p

V V

V V

V F B






 

  

 

  

  

  (85) 

Из этой системы находим константы 0C , 2C , 1V  и 3V , а константу 

4V  выражаем через 0V   

 

02
2 24 2 3

2

2

0 1

111111 11

1

11 0

1

2

3 4

11

1
/ )

,

(

, , ,

.

Z
C p V

F

VS
S S

C N S
D

B

V p p V

p

  





 

      



  (86) 

Подставляя выражения (77) и (80) в граничные условия (65) при  

1x  , находим оставшуюся часть системы уравнений для  констант 

интегрирования 

 

4 4

11111

0 1 2
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 
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111 11113 2 ) 0.V D C 

  (87) 

Подставляя (86) в (87), из первого уравнения этой системы       

находим константу 0V , а затем и 4V   
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4 23
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n
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  (88) 

После подстановки (86) и (87) в третье и четвертое уравнения си-

стемы (87), получаем два уравнения для вычисления констант 2V  и 

3C , решая которые, находим  
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  (89) 

где обозначены 
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  (90) 

Поскольку константы 0V , 1V , 3V  и 2C  уже вычислены                         

(см. формулы (86) и (88)), то U и W  в (84)  можно считать                          

вычисленными.   

Из второго уравнения системы (87) находим последнюю             

константу 1C   

 32 1
0 141 0 sin cos ).

2 6 24
(C C p

CC Z Z
V V 


         (91) 

После этого решение задачи (64), (65), (68), (69) и (71) полностью 

найдено. 

Напряжения в пластине при изгибе.  Запишем формулы (50)–(52) 

для случая изгиба пластины, тогда, применяя формулы (67),                         

получаем выражения для напряжений в слоях пластины 
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  (92) 
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Здесь использованы формулы (41), (43) и (48), которые с учетом 

(62) представлены в виде  

      

{ } { } { } { } { }(3) { }(3)

111111 111111 111111

{ } { }(0) { } { } { } { }2 (3) { }

1111111 21 ( )

, ,

, .,

,m m m m m m

m m m m m m m

W W W W W W

W W W W WaС Ф A
  

    

  
 (93) 

Поскольку перемещения  0

1,1u  и  
(0)

3,11u  определены явным образом 

по формулам (77), (80), в которых 9 констант 0V ,…, 4V , 0 4...C C  —          

вычисляются по  формулам (86), (88)- (91), то напряжения в слоях 

пластины также вычисляются явным образом по формулам (92).   
Оценка значений параметра скольжения слоев. В данной         

работе рассматривается модель с заданным значением коэффициен-

тами скольжения слоев друг относительно друга, { } 0m  . Для              

оценки диапазона возможных значений { }m  рассмотрим дополни-
тельное условие контактного трения слоев 

 { } { } { }

33 ,m m m

T     (94) 

здесь { } { }2 { }2

13 23

m m m

T     — модуль сдвиговых напряжений, { }

33

m  — 

нормальное напряжение, { }m  — коэффициент трения слоев. При 

условии 

 { } { } { }

33 ,m m m

T     (95) 

проскальзывания слоев не происходит, и реализуются условия            

идеального контакта слоев m  и 1m , т.е. в этом случае { } 0m  .  
Если выполняется условие (94) в какой–либо точке поверхности 

контакта слоев, то в этой точке возникает проскальзывание слоев и 
{ } 0m  . 

Условие (94) образует уравнение для нахождения коэффициента 
скольжения. рассмотрим это уравнение для задачи об изгибе    четы-
рехслойной пластины. Подставим в (94) выражения (92) для напря-

жений 
 
13

m
  и 

 
33

m
 , тогда получим 
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
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Поскольку перемещения 
(0)

3,111u  и 
 0

1,11u  через параметр   (76)       

зависят от  , то (96) представляет собой сложное нелинейное алгеб-
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раическое уравнение для определения значений коэффициента 

скольжения  . 

Для приближенной оценки  возможных значений   использует 

другой алгоритм. Подставляя в (94) условие проскальзывания из     

системы (1), получаем уравнение  

 

{ } 2 { } 2

1 2{ }

{ } { }

33

[ ] [ ]
.

m m

m

m m

u u


 


   (97) 

Здесь { } { 1} { }[ ]m m m

I I Iu u u   — скачок перемещений слоев при скольже-

нии. Для рассматриваемой задачи об изгибе пластины уравнение (97) 

примет вид 
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1{ }

{ } { }

33

[ ]
.

m

m

m m

u
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 
   (98) 

Рассмотрим монотонный процесс скольжения слоев при некото-

ром постоянном значении давления: { }

1[ ]mu vt , v  — скорость               

проскальзывания слоев друг относительно друга, t  — время. Извест-

но, что коэффициент трения зависит от скорости скольжения, причем 

при относительно малых значениях скорости  эту зависимость можно 

считать линейной: { } 0

0

m v
v


  , 0v  — характерное значение скорости, 

на котором достигается характерное значение коэффициента трения 

0 . Подставляя выражения для { }

1[ ]mu  и 
{ }m  в формулу (97),                       

получаем 

 { } 0

{ }

0 33

.m

m

v t


 
   (99) 

Так как 
{ }m  — безразмерная величина, то 0  и t  также полагаем 

безразмерными, отнесенными  к 0 0 0 /v v t L , 0/t t t , где 0t  —               

характерное время, а 0v  и t  — соответствующие размерные величи-

ны скорости и времени. 

Полагая, например, { } 4

33 10m  , 
0 1 ГПа  , 0 0,5  , 1 мL  , 

3

0 10  , получаем, что 

 
{ } 20 , 0 1.m t t      

Таким образом, при очень малых значениях скорости скольжения 

слоев, например, 3

0 10 м/сv   за время 0 1t   коэффициент скольже-
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ния 
{ }m  достигает значения 20. Согласно приближенной формуле 

(99) коэффициент скольжения возрастает со временем, от 0 до                

максимальных значений. Используем эти оценки при численных    

расчетах.  

Результаты численного моделирования. Численные расчеты 

были проведены для четырехслойной композитной пластины,                 

каждый слой которой представлял собой однонаправленный                      

материал (1D материал), армированный системой нитей, ориентиро-

ванной  под углом  { }m  — так, как указано выше. Компоненты               

тензора 
0

snpqC  1D материала вычислялись обращением тензора упру-

гих податливостей: 
0 0 1( )snpq snpqC П  . Компоненты тензора 

0

snpqП                 

вычислялись через технические константы упругости 1D материала: 

lE  — продольный модуль упругости нити в направлении ее укладки, 

tE  — поперечный модуль упругости, l  — продольный коэффици-

ент Пуассона, t  — поперечный коэффициент Пуассона, lG  —                   

продольный модуль сдвига, 
 1 1

t
t

t

E
G





 — поперечный модуль 

сдвига, по известным формулам [21]. Технические константы                      

упругости 1D материала, в свою очередь были вычислены через                 

характеристики матрицы и волокон: 
fE , 

f  — модуль упругости и 

коэффициент Пуассона волокон, mE , m  — модуль упругости и                    

коэффициент Пуассона матрицы, 
f  — относительное объемное               

содержание волокон в 1D материале по формулам Фойгта-Рейсса 

[23].  

При проведении численных расчетов были приняты следующие 

значения, примерно соответствующие стеклянным волокнам и                      

полиамидной матрице: 

 
{1} {2}

200 ГПа, 0,25, 1 ГПа, 0,

45 , 4

35,

., 50 6,

f f m m

f

E E



 

 



   

 

 


   

Численные расчеты проводились при значении параметра 

0,02  . Значения давлений были выбраны следующими: 

 2 410 ГПаp  ,  1
0p  . Относительные толщины слоев были вы-

браны равными: первого слоя — 0, 25mh  , 1,..., 4m  . Углы армиро-

вания {1}  и 
{2} 1 и 2 слоя были фиксированными  и равными 45  и 

45  , а углы армирования 3 и 4 слоя {3} {4}    варьировалась в 

диапазоне от 15  до 60 . 
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Значение безразмерного параметра   скольжения слоев также 

варьировалось в диапазоне от 0  до 
310 , в соответствии с проведен-

ными выше оценками. Рассматривался также вариант расчета при 

идеальном контакте слоев, когда 0  . 

Результаты расчетов перемещений пластины  представлены на 

рис. 1–3. На рис. 1 показана зависимость прогиба пластины 
 0

3u  от 

продольной координаты 1x  для различных значений коэффициента 

скольжения   при разных схемах армирования пластины. Было     

установлено, что при увеличении значений   от 0  до примерно 0,1 

прогиб пластины немного уменьшается, затем, по мере приближения 

к некоторому критическому значению 
1кр , прогиб резко изменяет 

свои значения: сначала заметно уменьшается, а потом, наоборот,    

существенно возрастает. 
 

 

 

 

 

а б 

 

 

 

 

в г 

Рис. 1. Зависимость прогиба двухслойной композитной пластины   

c проскальзыванием,  от продольной координаты 1x , цифры у кривых — 

 значения коэффициента скольжения  , для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     

 

  Существование критических значений параметра скольжения 
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с проскальзыванием было установлено в работе [11]. При приближе-

нии к критическим значениям  решение задачи, в частности                      

максимальный прогиб 
 0

3u  резко возрастает по абсолютной величине. 

На рис. 2 показана зависимость максимального прогиба пластины от 

значений параметра скольжения для разных схем армирования слоев 

пластины. Из этого графика видно, что критические значения 
кр   

параметра скольжения смещаются в сторону более высоких                

значений с увеличением угла армирования {3}  от 15  до 60  по            

модулю, т.е. с уменьшением общей изгибной жесткости двухслойной 

пластины в целом.  

В работе [11] было отмечено, что существование критических  

значений 
кр  является специфической особенностью деформирова-

ния пластины с проскальзывающими слоями. Проведенные выше 

оценки значений параметра скольжения показали, что  при отсут-

ствии идеального контакта слоев коэффициент скольжения   при 

постоянном давлении p меняется с течением времени непрерывно. 

При переходе через критические точки 
кр  двухслойная пластина  

перестает деформироваться квазистатически, происходит быстрое, 

динамическое изменение прогиба и всех других параметров задачи. 

Динамическое  решение не описывается системой (64), (65), (68),(69) 

и  (71) , поэтому пики прогиба W , уходящие в бесконечность при 

кр  , являются не физическими, однако информация о их суще-

ствовании важна  с точки зрения оценки допустимых значений коэф-

фициента скольжения  , при которых реализуется  квазистатическое 

деформирование (рис. 2). 
 

 
 

Рис. 2. Зависимость максимального прогиба 
 0

3 (0,5)W u  от коэффициента 

скольжения   для двухслойной композитной пластины c различными 

 схемами армирования: 
1 — [ 45 / 15 ]    ; 2 — [ 45 / 30 ]    ; 3 — [ 45 / 40 ]     
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На рис. 3 показано распределение продольного перемещения  0

1u  

в зависимости от координаты 1x  для различных значений параметра 

скольжения   при различных схемах армирования слоев.                         
C увеличением   от 0 до значений 0,1 максимум абсолютного                

значения перемещения 
 0

1u  возрастает для всех схем армирования. 

Для значений угла армирования {3} 15 ,30 ,40      перемещения 
 0

1u  

в этом диапазоне   — положительные, а для угла {3} 60    —                   

перемещения 
 0

1u  — отрицательные. При дальнейшем увеличении  

параметра скольжения   до значений 1...10  , близких к критиче-

ским 
кр , перемещения  

 0

1u  резко возрастают по абсолютной                     

величие, и меняют знак при переходе   через критическое значение 

кр . При    значения перемещений 
 0

1u    стабилизируются и они 

становятся меньше соответствующих значений при 0  . 
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Рис. 3. Зависимость продольного перемещения  

двухслойной композитной пластины от продольной координаты 
1x ,  

цифры у кривых — значения коэффициента скольжения  , 
 для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     
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На рис. 4–10 показаны распределения напряжений 11 , 13  и 33  

по толщине пластины для разных значений координаты 1x  при               

разных схемах армирования слоев.  

При малых значениях коэффициента скольжения 0,001            

распределение изгибных напряжений 11  имеет «классический»                 

характер: они достигают максимальных абсолютных  значений на 

внешних поверхностях   пластины при 0,5   в средней ее части 

при 1 0,5x   для всех схем армирования (рис. 4). 
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Рис. 4. Распределение по толщине изгибных напряжений 

   в двухслойной композитной пластине  

для разных значений координаты  1 0; 0,12; 0,25x , 

при значении коэффициента проскальзывания слоев 0,001 , 

 для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     

 

При повышении значений коэффициента скольжения   характер 

распределения напряжений 11  по толщине пластины существенно 
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практически как два раздельных слоя, в результате максимальные по 

абсолютной величине значения изгибных напряжений 11  в каждом 

слое возрастают. 
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Рис. 5. Распределение по толщине изгибных напряжений 

 в двухслойной композитной пластине  

для 
1 0x  , цифры у кривых — значения коэффициента скольжения  , 

 для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     

 

При малых значениях коэффициента скольжения 0,001              
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(рис. 6).  
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[ 45 / 30 ]    , для которой значение 0,01  близко к критическому 

1кр . В этом случае напряжения 13  достигают максимальных значе-

ний на границе раздела слоев (рис. 7б). 

На рис. 8 показаны распределения напряжений 13  по толщине 

при различных коэффициентах скольжения. При приближении             

значений коэффициента скольжения   к критическим значениям 
1кр  

напряжения 13  достигают максимальных значений на границе             

раздела слоев. При более высоких значениях коэффициента скольже-

ния слои пластины  деформируются  практически  как независимые, 

поэтому в каждом из слоев возникает свой локальный максимум          

распределения по толщине, для всех схем армирования.  
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Рис. 6. Распределение по толщине напряжений межслойного сдвига  

в двухслойной композитной пластине  

для разных значений координаты  1 0; 0,12; 0,25x  

при значении коэффициента проскальзывания слоев 0,001 , 

 для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     

 

0

0,3

0,6

0,9

0,12









13 , ГПа

0,4 0,2 0 0,2 0,4   0,4 0,2 0 0,2 0,4  

0,375

0,25

0,125

0
0,4 0,2 0 0,2 0,4  

13 , ГПа
0

0,3

0, 6

0,9

0,12









0,4 0,2 0 0,2 0,4  

0

0,3

0,6

0,9

0,12









13 , ГПа
0

0,3

0, 6

0,9

0,12









13 , ГПа

0,375

0,25

0,125

0

0,375

0,25

0,125

0

0,5

0,25

0,125

0

0,5



Асимптотическая теория многослойных тонких упругих пластин… 

57 

 

  
 

 

 
 

а б 

 

 
 

 

 

в г 

Рис. 7. Распределение по толщине напряжений межслойного сдвига  
в двухслойной композитной пластине  

для разных значений координаты  1 0; 0,12; 0,25x  

при значении коэффициента проскальзывания слоев 0,01 , 

 для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     
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достигают максимальных значений внутри одного из слоев, а не на 

внешней поверхности 0,5 , где действует давление. При высоких 

значениях коэффициента скольжения распределения 
33( )   стабили-

зируются, и практически не зависят от  . 
 

  

 
 

 

 
 

а б 

 

 
 

 

 
 

в г 

Рис. 8. Распределение по толщине напряжений межслойного сдвига  
 в двухслойной композитной пластине  

для 
1 0x  , цифры у кривых — значения коэффициента скольжения  , 

 для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     
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Рис. 9. Распределение по толщине изгибных напряжений 
в двухслойной композитной пластине для разных значений 

 координаты  1 0; 0,12; 0,25x при значении коэффициента  

проскальзывания слоев 0,001 , для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     
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Рис. 10. Распределение по толщине  поперечных  напряжений  

 в двухслойной композитной пластине  для 
1 0x  , цифры у кривых — 

 значения коэффициента скольжения  ,  для различных схем армирования: 

а — [ 45 / 15 ]    ; б — [ 45 / 30 ]    ;  

в — [ 45 / 40 ]    ; г — [ 45 / 60 ]     
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Выводы. Предложена асимптотическая теория многослойных 

тонких упругих пластин с эффектом проскальзывания слоев, которая 

обобщает ранее разработанную теорию двухслойных пластин                         

с проскальзыванием. 

Получена рекуррентная последовательность локальных задач 

теории упругости для многослойной пластины с проскальзыванием 

всех слоев. Найдено аналитическое рекуррентное решение этих               

задач, которое позволяет определить все компоненты тензора    

напряжений в пластине.   

Выведена осредненная система уравнений теории тонких                  

многослойных пластин с проскальзыванием слоев, которая имеет    

повышенный (пятый) порядок частных производных по сравнению с 

теорией пластин с идеальным контактом.  Осредненные уравнения 

содержат 1N   коэффициент скольжения, где N  — число слоев  с 

проскальзыванием.   

Рассмотрена задача об изгибе четырехслойной пластины                

с проскальзыванием двух слоев из них, под равномерным давлением. 

Найдено аналитическое решение этой задачи для перемещений и 

всех компонент напряжений.  

Проведена оценка значений коэффициента скольжения слоев, а 

также проведен численный анализ решения задачи для случая                  

слоисто-волокнистой композитной пластины. Показано существова-

ние критических значений коэффициента скольжения, при переходе 

через которые решение задачи — перемещения пластины —                     

значительно возрастают, а распределения напряжений в пластине  

существенным образом меняют свой вид.  
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Asymptotic theory of multilayer thin 

 elastic plates with layer slip 

© Yu.I. Dimitrienko, E.A. Gubareva                                                              

Bauman Moscow State Technical University, Moscow, 105005, Russia                       
 
 
 
 

The problem of development a theory for calculating the stress-strain state of thin              
multilayer elastic plates, for which linearized slip conditions are specified at the interface 
between the layers, is considered. The solution of this problem is constructed using an 
asymptotic analysis of the general equations of the 3-dimensional theory of elasticity with 
the conditions of non-ideal contact of the layers. The asymptotic analysis is carried out 
with respect to a small geometric parameter representing the ratio of the plate thickness 
to its characteristic length. Recurrent formulations of local quasi-one-dimensional             
problems of the theory of elasticity with slip are obtained. Explicit analytical solutions 
are obtained for these problems. The derivation of the averaged equations of elastic equi-
librium of multilayer plates is presented, taking into account the slippage of the layers. It 
is shown that due to the effect of slippage of layers, the system of averaged equations of 
the theory of multilayer plates has an increased - 5th order of derivatives, in contrast to 
the classical 4th order, which takes place in the theory of Kirchhoff-Love plates. It is 
shown that the asymptotic theory makes it possible to obtain an explicit analytical ex-
pression for all 6 components of the stress tensor in the layers of the plate. As a special 
case, the problem of calculating the stress-strain state of a 4-layer plate under uniform 
pressure bending with one slip coefficient is considered. A complete analytical solution of 
this problem is obtained, including explicit expressions for all non-zero components of 
the stress tensor. A numerical analysis of the solution of the averaged problem for a 
composite plate is carried out, in which the layers are unidirectional reinforced fibrous 
materials oriented at different angles. A comparative analysis of the influence of the fiber 
reinforcement angles and the slip coefficient of the layers on the displacement of the plate 
and the distribution of stresses in the layers was carried out. It is shown that the problem 
of bending a plate with slip admits the existence of a spectrum of critical values of the 
slip coefficient, when passing through which the displacements and stresses in the layers 
of the plate change significantly, and these critical values depend on the angle of                 
reinforcement of the composite layers. 
 
 

Keywords: asymptotic theory, small parameter, multilayer thin plates, composites, layer 
slippage, reinforcement angle, bending 
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