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В статье представлено продолжение обзора работ, посвященных исследованиям 

свойств упругопластических материалов. В первой части были рассмотрены                 

универсальные законы деформирования, содержащие менее четырех формальных 

параметров. В результате обзора были сформулированы требования к формули-

ровке эмпирических законов деформирования упругопластических материалов.                    

В том числе, был сделан вывод о том, что закон деформирования должен быть, как 

минимум четырех-параметрическим. Во второй части данной статьи                               

рассмотрены и проанализированы эмпирические законы деформирования, содержа-

щие четыре и более параметров. Сравнение рассмотренных эмпирических кривых с 

выборкой экспериментальных точек осуществляется стандартной процедурой        

минимизации суммарного квадратичного отклонения и использованием метода                

градиентного спуска для определения минимума функции многих переменных. Для 

оценки предсказательной силы моделей на соответствие эксперименту,                            

использована представительная выборка из 158 экспериментальных точек кривой 

деформирования российского титанового сплава ВТ6. Универсальные эмпирические 

законы деформирования, содержащие четыре формальных параметра, позволяют 

описать кривую деформирования с заданными на концах кривой напряжением и           

касательным модулем. Этот факт позволяет утверждать, что упругопластиче-

ские свойства материалов могут быть выражены через геометрические                          

параметры кривой деформирования. В свою очередь связь между упруго-                        

пластическими свойствами материала и геометрией кривой деформирования, 

можно трактовать, как принцип «геометризации» упругопластических свойств 

материалов. 

 

Ключевые слова: эмпирические кривые напряжения-деформации, нелинейный закон 

упругости, упругопластические свойства материала, физические параметры                      

упругопластических материалов, обработка экспериментальных данных 

 

Введение. Универсальные эмпирические модели нелинейного       

поведения упругопластических материалов, рассмотренные в первой 

части данной статьи [1] представлены законами, содержащими один, 

два или три формальных параметра. В результате анализа были                     

сделаны следующие выводы: «Для того, чтобы обеспечить аппрокси-

мацию с достаточной точностью кривых деформирования материалов, 

подобных сплаву ВТ6, эмпирические законы деформирования должны 

обеспечить: 

 ненапряженное начальное состояние материала; 
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 непрерывность кривой деформирования; 

 неположительную кривизну кривой деформирования вплоть до 

разрушения; 

 значения касательных модулей в начальной и конечной точках 

кривой деформирования должны быть независимыми физиче-

скими параметрами.  

Последнее требование приводит к тому, что закон деформирова-
ния должен быть, как минимум четырех-параметрическим». 

В этой части статьи, с учетом сформулированных требований,                     
будут проанализированы универсальные модели деформирования, 

представленные законами, содержащими четыре и более формальных 
параметра. 

В обзор включены параболический закон Ходкинсона (1849)                     
[2, 3], закон Рамберга-Осгуда (1943) [4] и закон Людвигсона (1971) [5].  

Все уравнения, соответствующие законам деформирования,                     

приведены к безразмерному виду так, чтобы все кривые проходили     

через точки  0;0  и  1;1 . Для этого напряжения 𝜎 нормированы на 

предел прочности с : 

*

c





 ,                      (1) 

а деформации   на относительную деформацию, соответствующую 

пределу прочности с : 

 *

c





 , (2) 

0E   нормированный касательный модуль упругости в начальной 

точке  0;0  кривой деформирования: 

 * 0
0

c

c

E
E




 , (3) 

1E   нормированный касательный модуль упругости в конечной 

 1;1  точке истинной кривой деформирования: 

 * 1
1

c

c

E
E




 . (4) 

Сравнение выборки экспериментальных точек с эмпирическими 

кривыми осуществляется стандартной процедурой минимизации  

среднеквадратичного отклонения и использованием метода градиент-
ного спуска для определения минимума функции многих переменных. 
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Для сравнения предсказаний моделей с экспериментом, использована 

представительная выборка экспериментальных точек кривой                                
деформирования российского титанового сплава ВТ6. 

Модель Ходкинсона (Hodgkinson). В 1849 году Ходкинсон             

сформулировал [2, 3] четвертой степени параболический закон: 

 2 3 4

0 1 2 3a a a a        . (5) 

Здесь 0a ; 1a ; 2a  и 3a   параметры материала. 

После нормировки закон Ходкинсона принимает вид: 

 * * * *2 *3 *4

0 1 2 3( ) A A A A          (6)    

Здесь 0A ; 1A ; 2A  и 3A   безразмерные параметры материала. 

Условие прохождения нормированной кривой напряжение-              

деформация через начальную  0;0  и конечную  1;1  точки, дает: 

 
*

*

0 1 2 3

(0) 0
(1) 1.A A A A



 
     

 (7) 

Касательный модуль в начальной и конечной точках: 

 * * * * * *2 *3

0 1 2 3( ) ( ) 2 3 4E A A A A          , 

 
* *

0 0
* *

0 1 2 3 1

(0)

(1) 2 3 4 .

E A E

E A A A A E

  


    
 (8) 

Условия (7) и (8) позволяют выразить зависимости между пара-

метрами: 

 *

1 2 3 01A A A E    , 

 * *

1 2 3 1 02 3 4A A A E E    . 

Однако условий недостаточно, чтобы выразить все четыре                         

безразмерных параметра через физические параметры материала. Для 

определения четвертого параметра будет использовано дополнитель-

ное условие нулевой кривизны в начальной точке. 

Кривизна кривой деформирования будет определяться: 

 * * * * * *2

1 2 3( ) ( ) 2 6 12E A A A         . (9) 

В точке  0;0 : 

 *

1(0) 0E A   . (10) 

Тогда с учетом (7), (8) и (10) параметры материала будут опреде-

лены: 
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*

0 0

1
* *

2 0 1
* *

3 0 1

0

3 4

2 3

A E
A

A E E

A E E

 
 
    


  

. (11) 

Теперь закон Ходкинсона может быть записан: 

 * * * * * * *3 * * *4

0 0 1 0 1( ) ( 3 4) (2 3)E E E E E            . (12) 

Учтем, что кривизна кривой напряжение-деформация должна 

быть отрицательной на всей области определения:  

 * * * * * *2

2 3( ) ( ) 2 <0E A A        , (13) 

 *

2 32 <0A A , 

 *

3 22 <A A  , 

 * 2

3

<
2

A

A
  , 

 
* *

* 0 1

* *

0 1

3 4
<

4 2 6

E E

E E


 

 
. 

Кривизна кривой напряжения-деформации в зависимости от                    

физических параметров конкретного материала может оказаться                        

положительной на участке, где: 

 
* *

*0 1

* *

0 1

3 4
< <1

4 2 6

E E

E E


 

 
. 

Иначе, кривая будет иметь точку перегиба, где кривизна поменяет 

знак на положительный. Наличие этой точки определяется                                   

неравенством: 

 * *

0 12 <E E . 

Можно выполнить требование отрицательной кривизны, но это не 

будет гарантировать минимума среднего квадратичного отклонения 

теоретической кривой от выборки экспериментальных значений. 

Четырех-параметрический параболический закон Ходкинсона 

обеспечивает прохождение кривой деформирования через начальную 

 0;0  и конечную  1;1  точки, выполнение гипотезы о недеформиро-

ванном состоянии в начальной точке, а также дает ненулевое значение 

касательного модуля в начальной точке. Закон не обеспечивает                            

отрицательную кривизну кривой деформирования на всей области  

определения. Можно добиться, чтобы кривизна была отрицательной 

на всей области определения, но тогда суммарное квадратичное                           

отклонение не будет минимальным.    
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На рис. 1 показана кривая деформирования, построенная для                    

титанового сплава ВТ6 в соответствии с параболическим четвертой 

степени законом Ходкинсона. 
 

 
 

 Рис. 1 Экспериментальная кривая титанового сплава ВТ6 и теоретическая 

кривая по параболическому закону Ходкинсона 

 

Среднее квадратичное отклонение по напряжениям теоретической 

кривой от выборки экспериментальных точек составило 12,84 %. При 

этом оптимальное значение параметров материала 
0 2,79E  ; 

1 0,01E  . Параболический закон Ходкинсона описывает упругопла-

стические свойства титанового сплава ВТ6 с недостаточной                                      

точностью. 

Модель Рамберга-Осгуда (Ramberg-Osgood). Эмпирический                 

закон Рамберга-Осгуда [4] (1943) является наиболее популярным 

среди ученых, занимающихся моделированием свойств материалов    

[6-11], а также среди инженеров [12], решающих задачи проектирова-

ния конструкций из пластичных материалов. Рамберг и Осгуд предло-

жили эмпирическую модель для описания кривой деформирования с 

тремя параметрами. Вместо обычного описания кривой деформирова-

ния материалов по двум параметрам (модуль Юнга и предел                           

текучести), Рамберг и Осгуд предложили для эффективного                    

проектирования материала, не подчиняющегося закону Гука в общем 

случае следующее четырех-параметрическое соотношение: 

 
0 1 2( )na a a     , (14)    
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где 0a ; 1a ; 2a  и n   параметры материала. 

В нормированном виде закон Рамберга-Осгуда имеет вид: 

 * * * *

0 1 2( ) ( )nA A A      . (15) 

Здесь 0A ; 1A ; 2A  и n   безразмерные параметры материала. 

Условие, что кривая проходит через заданные начальную и конеч-

ную точки, дает: 

 
*

0
*

0 1 2

(0) 0

(1) 1.

A

A A A



  


   
 (16) 

Решая систему (16), получим: 

 0

2 1

0,
1 .

A
A A


 

 

В результате закон Рамберга-Осгуда приобретает вид: 

 * * * *

1 1( ) (1 )( )nA A      . (17) 

Оставшиеся два формальных параметра 1A  и n  можно определить 

из условий, что касательный модуль в начальной и конечной точках 

кривой имеет заданные значения. 

 
*

* *

* * ( 1)

1 1

1
( )

[ (1 ) ( ) ]n

d
E

d A A n




  
 

 
, (18) 

 

* *

0

1

* *

1

1 1

1
(0) , если  >1,

1
(1) .

[ (1 ) ]

E E n
A

E E
A A n


 


  

 

 (19) 

Решая эту систему, получим: 

 

1 *

0

* *

1 0

*

0

1
,

1 1

.
1

1

A
E

E E
n

E





   
  
 
 

 

 

Подставляя в (17), получим: 

 * * * *

* *

0 0

1 1
( ) (1 )( )n

E E
      . (20) 
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В формулировке (20) закон Рамберга-Осгуда относительно                       

нормированных переменных зависит от двух безразмерных                             

физических параметров 
0E  и  

1E   нормированных касательных                   

модулей в начальной и конечной точках кривой деформирования. 

Чтобы привести его к традиционному виду, выберем некоторую                   

конвенциальную точку  ;  

 
 на кривой напряжение-деформация. 

Такой точкой может быть любая ненулевая точка, на интервале                  

определения кривой, в частности, такой конвенциальной точкой                   

может служить точка условного предела упругости  ;p p   . Соотно-

шение (20) в этой точке дает: 

 * * *

* *

0 0

1 1
(1 )( )n

p p p
E E

     . (21) 

Используя (21), закон Рамберга-Осгуда (20) может быть преобра-

зован к традиционному виду: 

 

** *
* * *

* * *

0 0

( )

n

p

p

pE E

 
  



  
       

  

. (22) 

Требование отсутствия сингулярности закона Рамберга-Осгуда в 

начальной точке кривой деформирования накладывает условие 0n  . 

Существование в начальной точке ограниченного сверху                     

касательного модуля накладывает условие 1n  . 

Двойным дифференцированием (20) или (22) можно убедиться, 

что кривая деформирования имеет отрицательную кривизну на всем 

интервале определения 0 1    при    ;0 1;n    . 

 
* ( 2)2 *

* * 1

*2 * ( 1) 2

1 1

(1 ) ( 1)( )
( )

[ (1 ) ( ) ]

n

n

A n nd
E

d A A n




 





    
 

. (23) 

Следовательно, касательный модуль является монотонно убываю-

щей функцией. Кроме того, в начальной точке кривизна должна быть 

ограниченной, что влечет дополнительное условие 2n  .  

Таким образом, в законе Рамберга-Осгуда установлено ограниче-

ние на значение параметра n : 2n  . 

Кривая напряжение-деформации по закону Рамберга-Осгуда               

проходит через точки  0;0  и  1;1  и обеспечивает выполнени                               

е гипотезы о недеформированном состоянии в начальной точке.                     

Кривизна остается отрицательной в пределах всей области определе-

ния кривой.  

На рис. 2 показана кривая деформирования, построенная для                

титанового сплава ВТ6 в соответствии с моделью Рамберга-Осгуда. 
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Рис. 2 Экспериментальная кривая титанового сплава ВТ6 и  

теоретическая кривая по модели Рамберга-Осгуда 

 

Для выбранного материала подобраны оптимальные значения                  

параметров материала: 47n  ; 
0 3,10E  ; 

1 0,03E  . При этих                            

параметрах среднее квадратичное отклонение по деформациям                       

составило 2,9 %. 

Для данного материала модель Рамберга-Осгуда показывает 

весьма хорошее соответствие экспериментальным данным. 

Модель Людвигсона (Ludwigson). В 1971 году Людвигсон [5] 

предложил четырех-параметрический закон, который учитывает                   

отклонения при низких напряжениях, добавляя второе слагаемое в 

формуле степенного закона Людвика: 

 1 2 2

1

n a N
a e

  
  . (24) 

Здесь 1a ; 2a  и 1n ; 2n   параметры материала. 
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1 2 2**

1

n A n
A e

  
  . (25) 

Здесь  1A ; 2A  и 1n ; 2n   безразмерные параметры материала: 
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начало координат, так, как  0 0   . Скорректируем исходное                        

соотношение, добавив константу 0A : 

 
*

1 2 2** *

1 0( )
n A n

A e A
   

   . (26) 

Из условия  0 0   : 

 2 2*

0 0(0) 0
A A

e A A e      . (27) 

Теперь модифицированный закон Людвигсона:  

 
*

1 2 2** *

1( ) ( 1)
n A n

A e e
     . 

Нормированная кривая деформирования проходит через точку 

 1;1 , что приводит к результату:  

 2 2 2

2

* 1
1

1
(1) ( 1) 1

( 1)

A n A

n

A
A e e e

e



     


 (28) 

или: 

 2 2

1 1 ( 1)
A n

A e e   . 

Теперь закон Людвигсона приобретает вид: 

 

*
2

1

2

** *

1 1

( 1)
( ) (1 )

( 1)

n
n

n

e
A A

e



  


  


. (29) 

Из определения касательного модуля следует: 

 

*
2

1

2

*( 1)* * * 2
1 1 1( ) (1 )

( 1)

n
n

n

n e
E A n A

e



      


. (30) 

Касательный модуль в начальной  0;0  и конечной  1;1  точках: 

 2

2 2

* *2
1 0

* *

1 2 1 1 1

(0) (1 )
( 1)

(1) ( ( ) )

n

A n

n
A E

e

n e e n n n E





    


     

 (31) 

С учетом (31) касательный модуль (30) будет: 
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1 2*( 1)* * * *

1 1 0( )
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В точке  1;1 :  
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С учетом чего, получаем: 

 
*

2 1 2*( 1)* * * * * * *

1 0 0( ) ( ) ( )
n n nE E E e E e         . (32) 

Требование монотонного убывания касательного модуля, эквива-

лентное требованию отрицательной кривизны на области определения 

кривой, даёт: 

 
*

2 1 2*( 2)* * * * *

1 0 1 0 2( ) ( )( 1)
n n nE E e n E n e         . 

Таким образом, четырех-параметрический закон Людвигсона               

сводится к модифицированному закону с независимыми параметрами 

Физические параметры 
0E ; 

1E ; 1n ; 2n  удовлетворяют соотношениям 

(3.4), (3.5) и (3.8), что соответствует заданию напряжения и касатель-

ного модуля в начальной и конечной точках кривой деформирования. 

На рис. 3 показана кривая деформирования, соответствующая                      

закону Людвигсона. 

Теоретическая кривая построена для ВТ6 при оптимальных                         

значениях параметров материала: 1 1,1n  ; 2 5,7n   , *

0 2,2E  , 

*

1 0,01E  .  При этих параметрах среднее квадратичное отклонение          

составило 5,3%. 
 

 
Рис. 3 Экспериментальная кривая титанового сплава ВТ6 и 

теоретическая кривая по закону Людвигсона 
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Рамберга-Осгуда. Для титанового сплава ВТ6 этот закон показывает 

наилучшее соответствие экспериментальным данным. Однако для 

других материалов результат может оказаться иным.  

В работах таких ученых, как Bowen and Partridge (1974) [13], 

Papirno (1982) [14], Rasmussen (2003) [15], Gardner and Nethercot (2004) 

[16] Abdella (2011) [17], Quach and Huang (2014) [18], авторы                     

отмечают, что закон Рамберга-Осгуда, несмотря на его точность, не 

отражает свойств материала в зоне больших пластических деформа-

ций, в том числе в окрестности точки предела прочности. Поэтому 

начиная с середины ХХ века для описания свойств упруго-                                   

пластических материалов разработан ряд многозвенных эмпириче-

ских моделей деформирования, анализ которых будет представлен в 

третьей части данного обзора. 

Основной результат данного обзора, заключается в следующем: 

«для того, чтобы обеспечить аппроксимацию с достаточной                                

точностью, кривых деформирования материалов, подобных сплаву 

ВТ6, универсальные эмпирические законы деформирования, должны 

содержать не менее четырех формальных параметров». Их, индивиду-

альные для каждого материала, значения определяются заданными на 

концах кривой деформирования напряжением и касательным                      

модулем. Это позволяет утверждать, что упругопластические свойства 

материалов могут быть выражены через геометрические параметры 

кривой деформирования. В свою очередь это можно трактовать, как 

«геометризацию» упругопластических свойств материалов. 
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Analysis of empirical models of deformation curves                      
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This article is a continuation of the review of works devoted to the study of the properties 
of elastic-plastic materials. In the first part, universal laws of deformation containing less 
than four formal parameters considered. As result of the review, requirements for the               
formulation of empirical laws of deformation of elastic-plastic materials formulated.                   
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In particular, it concluded that the deformation law must be at least four-parameter. In the 
second part of this paper, empirical laws of deformation containing four or more                          
parameters considered and analyzed. Comparison of the considered empirical curves with 
a sample of experimental points carried out according to the standard procedure of mini-
mization of the total quadratic deviation and using the method of gradient descent to                  
determine the minimum of a function of many variables. A representative sample of 158 
experimental points of the deformation curve of the Russian titanium alloy VT6 used to 
evaluate the predictive ability of the models for experimental agreement. Universal                      
empirical strain laws containing four formal parameters allow describing the strain curve 
with specified stresses and tangential moduli at the ends of the curve. This fact allows us 
to state that the elastic-plastic properties of materials can expressed through the geometric 
parameters of the strain curve. In turn, the relationship between the elastic-plastic                       
properties of the material and the geometry of the strain curve can interpreted as the                   
principle of "geometrization" of the elastic-plastic properties of materials. 
 

Keywords: empirical stress-strain curves, nonlinear elasticity law, elastoplastic properties 

of a material, physical parameters of elastoplastic materials, processing of experimental 

data 
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