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Для решения проектной задачи разработана математическая модель функциони-

рования системы синхронизации исполнительных органов на основе дроссельного 

делителя потока. Приводится решение задачи оптимизации времени рассогласова-

ния относительного перемещения исполнительных органов при наличии внешних 

знакопеременных силовых воздействий, выполненное с помощью генетического           

алгоритма и уточненное с помощью метода Нелдера-Мида 
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Введение. Системы синхронизации широко применяются для 

обеспечения одновременного перемещения двух или более исполни-

тельных органов, которые совершают вращательное или поступа-        

тельное движения. Такими системами могут быть конвейерные                    

механизмы для передвижения изделий, элементы подачи заготовок  

деталей в узел обработки станкостроительного оборудования,                     

подсистемы раскрытия крыльев летательных аппаратов и панелей    

солнечных батарей космических аппаратов. 

В частности, подобные системы используются для регулиро-          

вания перемещения рабочих органов станков и технологического                      

оборудования [1], в агрегатах выпуска-уборки шасси самолета [2], в 

транспортной, дорожной и строительной технике [3]. 

В общем случае на исполнительные органы могут оказывать      

воздействие внешние, различные по направлению и модулю, в том 

числе случайные, силовые воздействия, которые оказывают влияние 

на динамические характеристики системы синхронизации в целом. В 

этих условиях задача поддержания одновременного перемещения     

нескольких исполнительных органов может решаться методами       

гидравлической синхронизации с использованием различных 

устройств: стабилизаторов расхода рабочей жидкости, дроссельных 

шайб, делителей потока [4], [5], [6].  

Актуальность работы вызвано не только широким исполь-                   

зованием систем синхронизации в технике, но и недостаточно                       

представленным в литературе математическим моделированием                   

таких систем с использованием современных методов оптимального 

проектирования. Некоторые исследования в этом направлении                         
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приводятся в статьях [7], [8]. 

В данной работе предлагается методика решения проектной                    

задачи выбора оптимальных конструктивных параметров гидравли-

ческой системы синхронизации исполнительных органов на основе 

дроссельного делителя потока. Критерием процедуры оптимизации 

выбрано время рассогласования относительного перемещения                        

исполнительных органов при эксплуатации. 

Расчетная схема гидравлической системы синхронизации. 

Ниже представлена расчётная схема гидравлической системы                    

синхронизации, которая разделена на две части: дроссельный                    

делитель потока изображен на рисунке 1 слева и система исполни-

тельных органов изображен на рисунке 1 справа. 

Жидкость поступает в первую полость, затем по каналам посту-

пает во вторую и третью полости, из которых в дальнейшем                           

поступает в силовые цилиндры, воздействующие на исполнительные 

органы 11, 12. Исполнительные органы также подвержены различ-

ным внешним силовым воздействиям.                         

Граничным значением параметра начального соотношения сил  

является то его значение, при котором к концу противоборства будут 

полностью выведены из строя обе противоборствующие группиров-

ки. Значения 0æ при различных   и   приведены на рисунке 1.                   

Красные линии соответствуют значению 2  , синие  4  .             

Верхние линии соответствуют упреждающему воздействию стороны 

X  при 0,5ct  , средние  одновременному воздействию обеими            

сторонами, нижние  упреждающему воздействию  стороны Y  при 

0,5ct  .  

 

 
 Рис. 1 Расчетная схема дроссельного делителя потока и системы исполни-

тельных органов 1, 2, 3, 4, 5, 6, 7  полости, 8, 9, 10  плунжеры,  

11, 12  исполнительные органы 
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Расчетная схема гидравлической системы синхронизации. 

Представленная математическая модель является упрощением иссле-

дуемой системы. Принимаются следующие допущения [9], [10], [11]: 

 гидравлическая жидкость является несжимаемой; 

 температурные эффекты, проявляющиеся при течении жид-            

кости через гидравлические сопротивления, не учитываются; 

 не учитывается эффект вязкости рабочей жидкости; 

 не учитываются характеристики источника питания; 

 внешние силовые воздействия  постоянные. 

При решении задачи необходимо также учитывать, что плунжер       

имеет ограничение по перемещению: max| |x x . 

С учетом вышеописанных допущений было получено 11 диффе-

ренциальных уравнений, которые описывают математическую                  

модель представленной системы: 
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Уравнения (1) – (3), (8), (9) являются следствием закона сохране-
ния масс [12,13, 14, 15], а уравнения (4) – (7), (10), (11) являются               
следствием уравнения движения, полученного на основе уравнения 

Лагранжа второго рода. Здесь 
1V ,  1 t ,  1p t   объем, плотность и 

давление гидравлической жидкости в первой полости,   
10 , 

10p   

начальная плотность и давление гидравлической жидкости в первой 

полости,  x t   перемещение плунжера,  4p t   давление от                

силового цилиндра системы исполнительных органов, который              

соединен со второй полостью,    коэффициент расхода между               

второй полостью и соединенным с ней силовым цилиндром,  f x   

площадь поперечного сечения канала между второй полостью и              

левым силовым цилиндром,  2V x ,  2 t ,  2p t   объем,                   

плотность и давление гидравлической жидкости во второй полости, 

20 , 
20p   начальная плотность и давление гидравлической                    

жидкости во второй полости,     коэффициент расхода между        

третьей полостью и соединенным с ней силовым цилиндром,                       

f   площадь поперечного сечения канала между третьей полостью и 

соединенным с ней силовым цилиндром,  3V x ,  3 t ,  3p t   

объем, плотность и давление гидравлической жидкости в третьей      

полости, m   масса плунжера,  v t   скорость движения                      

плунжера, k   коэффициент вязкого трения, d   диаметр                    

гидроцилиндра, L   длина силового цилиндра дроссельного                      
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делителя потока от его края до начала плунжера (когда плунжер              

находится в состоянии покоя)  и его диаметр D ; 
cl   диаметр 

стержня, который соединяет плунжер и исполнительный орган               

системы,  4 t ,  4p t   плотность и давление гидравлической жид-

кости в четвертой полости;  6 t ,  6p t   плотность и давление              

гидравлической жидкости в шестой полости; 
40 , 

40p   начальная 

плотность и давление гидравлической жидкости в четвертой полости;

60 , 
60p   начальная плотность и давление гидравлической                          

жидкости в шестой полости. 

Задача оптимизации. Основная цель данного исследования  

оптимизация времени рассогласования относительного перемещения 

исполнительных органов гидравлической системы, которая включает 

в себя дроссельный делитель потока. 

Особенность рассматриваемой задачи состоит в том, что целевая 

функция не явно зависит от решения системы нелинейных                                  

дифференциальных уравнений (1) – (12), описывающих динамиче-

ское состояние системы синхронизации. Кроме того, в общем случае, 

на исполнительные органы могут оказывать влияние внешние                      

случайные силовые воздействия. Заранее предсказать характер                  

экстремума целевой функции затруднительно.  Поэтому актуальной 

задачей является разработка эффективных алгоритмов решения                  

поиска глобального минимума.  

В настоящее время в этом направлении предлагаются различные 

способы решения задач оптимизации [11], эффективные современные 

программные системы автоматической настройки оптимизационных 

алгоритмов [12], перспективные методики, использующие теоретиче-

ский аппарат нечёткой логики и нейронных сетей, а также различные 

эвристические методы, среди которых широкое распространение             

получили эволюционные (генетические) алгоритмы оптимизации  

[13], [14]. 

Задача оптимизации состоит в поиске экстремума функции: 

      1 2 1 2max , min , min
dd D

Ф d T T T T


     , 

где 

  1 2,d d d , 
1

2

:d

d d d
D

d d d

 

 

  


 

, 1,5 мм, 5 ммd d   , 

1T   конечный момент времени работы 1-ого исполнительного                 

органа, 2T   конечный  момент времени  работы  2-ого  исполнитель-  
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ного органа,  1 2,d d d   вектор конструктивных (управляемых)             

параметров (
1d  ширина первого перекрывающего отверстия                  

дроссельного делителя потока, 
2d   ширина второго). 

В данной работе предлагается комбинированная стратегия                  

поиска оптимального решения: на первом этапе применяется генети-

ческий алгоритм (ГА) с вещественным кодированием, отсеиваются все 

возможные локальные минимумы, на втором этапе с помощью                    

алгоритма метода деформируемого многогранника находим оконча-

тельное решение с заданной точностью. 

Целевая функция в ГА эквивалентна природному понятию                      

приспособленности живого организма. При решении задачи исполь-

зуются конечные наборы возможных решений 

   1 2, , 1,k k k

dI d d d k m D     

называемые популяциями, где kd   особь с номером k , m               

размер популяции, k

id   ген с номером i .  Задается начальная              

популяция, затем ГА исследует допустимое множество 
dD  при                  

помощи перехода от одной популяции к другой. При этом                              

используются следующие операции: селекция, скрещивание,                      

мутация. Селекция осуществляет случайный равновероятный отбор 

особей для последующего скрещивания. Особь участвует в селекции с 

вероятностью 
1

m
. Скрещивание позволяет получить новые особи, в 

данной работе в качестве скрещивания используется плоский кроссо-

вер. Мутация поддерживает разнообразие особей в популяции,                         

используется случайная мутация с вероятностью 
1

n
[15]. Иными           

словами, происходит эволюция начальной популяции 

   0 1 2, , 1,k k k

dI d d d k m D     

где размер популяции 5m  , количество популяций равно 14.                

Условием окончания алгоритма является формирование заданного           

количества популяций.  

Классический генетический алгоритм с вещественным кодирова-

нием решает задачу поиска максимума. Поэтому задача поиска                  

минимума целевой функции сводится к задаче поиска максимума         

путем следующей замены: 

       * * *min max
d dd D d D

Ф d Ф d Ф d
 

     (13) 
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На втором этапе используется стандартный метод Нелдера-Мида 
деформируемого многогранника (ДМ) [16]. Суть метода заключается 
в последовательном перемещении и деформировании множества           

точек (являющихся вершинами выпуклого многогранника                 
симплекса), вокруг точки экстремума. В данной работе количество          
точек симплекса равно 3. 

Программный комплекс. С использованием среды разработки 
Microsoft Visual Studio и пакета прикладных программ MATLAB      
разработан программный комплекс для компьютерного моделирова-
ния физических процессов функционирования дроссельной системы 
синхронизации, позволяющий получать, сохранять для последующей 
обработки и визуализации динамические характеристики (линейные 
перемещения и проекции векторов скоростей плунжеров, давления и 
плотности рабочей жидкости в СЦ от времени) в процессе                        
выполнения численного эксперимента. 

Вычислительное ядро программного продукта, построенное            
методологией объектно-ориентированного подхода, содержит дина-
мическую математическую модель функционирования указанной     
системы на основе уравнений (4) – (7), (10), (11) Лагранжа второго 
рода и уравнений (1) – (3), (8), (9) закона сохранения масс, для                     
решения которой использован классический численный конечно-          
разностный метод Рунге-Кутты четвертого порядка аппроксимации 
[17].  

Результаты исследований. С помощью разработанного                     
программного комплекса решена модельная задача выбора опти-      
мальных размеров отверстий дроссельного делителя потока.                                             
В вычислительных экспериментах используются следующие                         
исходные данные (обозначения соответствуют, приведённым в               
математической модели), представленные в безразмерном виде: 
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Внешние силовые воздействия на исполнительные органы:    

1 0F  , 2 0F  . 

В качестве давления 0p , изображённого на рисунке 2, использу-

ются данные модели газогенератора, заимствованные из работы [18], 
отражающий характер давления жидкости на входе делителя потока.  

В результате вычислительного эксперимента получены данные 
для скорости плунжера и перемещения плунжера дроссельного дели-
теля потока, давлений в первой полости, второй, третьей полостях, 
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скоростей первого и второго исполнительного органа, давлений в              
полостях гидроцилиндров первого и второго  исполнительного                
органа, перемещений первого и второго исполнительного органа.  

 

 

Рис. 2 График входного безразмерного давления от времени 

Наиболее характерными являются графические иллюстрации            
перемещений первого и второго исполнительного органа в зависимо-

сти от времени (рис. 3), а также зависимость ширины первого 
1d  и 

второго 
2d  отверстий от номера итерации генетического алгоритма 

(рис. 4). 
 

 
 

Рис. 3 Графики перемещений первого и второго исполнительного 
органа от времени 
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На рис. 4 изображена зависимость ширины первого отверстия от 

итерации генетического алгоритма синим цветом и зависимость                       

ширины второго отверстия от итерации генетического алгоритма                

зеленым цветом. Как видно из рисунка, к двадцатой итерации комби-

нированного алгоритма находиться оптимальное решение с заданной 

точностью.   
 

 
 

Рис. 4. Зависимость ширины первого отверстия от итерации алгоритма (синий) и 

зависимость ширины второго отверстия от итерации алгоритма (зеленый).  

До 15 итерации применен ГА, далее ДМ 

 

До применения комбинированного метода было найдено                   

значение времени рассогласования и соответствующие значения              

конструктивных параметров:  

0,007Ф   сек, 1 2,9d    и 2 5d   (безразмерные значения). 

В результате оптимизации на первом этапе, с помощью генетиче-

ского алгоритма получены значение критерия оптимизации 

0,00548Ф   сек с решением 1 1,6d  , 2 3,5d  . 

На втором этапе локальным методом деформируемого много- 

гранника находим окончательное решение:  

0,0054Ф   сек, 1 1,5d  , 2 3,3d  . 

Для иллюстрации процесса сходимости алгоритма комбинирован-

ного метода поиска оптимального решения на рис. 5 представлена                          

зависимость значения критерия оптимизации (времени рассогласова-

ния относительного перемещения двух исполнительных органов) от 

номера итерации. 
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Рис. 5. Зависимость времени рассогласования относительного перемещения двух 
исполнительных органов от номера итерации комбинированного метода поиска. До 

15 итерации применен ГА, далее ДМ. 
 

Выводы. Предложена методика оптимального проектирования 
системы синхронизации исполнительных органов на примере                   
гидравлической схемы двух силовых цилиндров для перемещения       
исполнительных органов с дроссельными устройствами регулирова-
ния. Подход основан на применении разработанного компьютерного 
программного комплекса, реализующей численное решение задачи 
анализа процессов в системе и задачи оптимизации, использующей 
комбинированную стратегию поиска. На первом этапе применяется 
ГА с вещественным кодированием, отсеиваются все возможные                      
локальные минимумы, на втором этапе локальным методом Нелдера-
Мида находиться окончательное оптимальное решение с заданной 
точностью. Подтверждена эффективность данной процедуры опти-
мизации. Построенный гибридный алгоритм позволяет уменьшить 
значение целевой функции на 23 %. 
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Mathematical modeling hydraulic systems for synchronous 

movement of actuators based on a throttle flow divider 

© А.Yu. Bushuev, N.A. Danilov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
 
 
 

A mathematical model of functioning of synchronization systems of actuators based on a 
throttle flow divider was developed to solve design problem. The solution of the optimiza-
tion problem of a mismatch time of movement of actuators operating under conditions of 
external alternating-sign force effects is given, performed using the genetic algorithm and 
refined using the Nelder-Mead algorithm 

 
Keywords: hydraulic synchronization systems, throttle flow divider, mathematical                      
modeling, genetic algorithm, Nelder-Mead algorithm 
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