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Метод нахождения недоминируемых решений в задачах 

декомпозиции моделей сложных систем  

© В.В. Киселев 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

В статье рассматривается метод нахождения оптимальных решений, при  

наличии модели сложной технической системы, в задаче оптимального 

проектирования. Метод основан на использовании недоминируемых,                                   

  оптимальных решений и является обобщением метода Краснощекова П.С., 

Морозова В.В., Федорова В.В. [1]. Метод позволяет во многих случаях (для              

 монотонных целевых функций) сократить количество вычислений и снизить 

размерность исходной задачи. Разработан численный метод построения                     

  оптимальных решений. Приводится численный пример, в котором показано, 

что количество   оптимальных решений состоит из одной точки, а 

множество Парето-оптимальных решений является некоторой кривой, на 

которой для нахождения оптимального решения необходимо строить  -сеть.  

 

Ключевые слова: математическое программирование, большая   размерность, 

Парето-оптимальность, декомпозиция, монотонность 

 

Введение. Проектирование сложной технической системы во 

многих случаях предполагает создание и исследование 

математической модели системы с целью выбора оптимального 

варианта. Модель реализуется в виде системы программных модулей. 

На вход модели подаются значения варьируемых конструктивных 

параметров, на выходе можно получить значение глобального 

критерия эффективности системы.  Поиск оптимальных решений в 

некоторых задачах экономики и техники является сложным 

итерационным процессом, в котором используются достаточно 

большие программные модули. Даже при использовании 

современной вычислительной техники время вычислений, 

необходимое для получения оптимального варианта с заданной 

точностью может быть очень большим. В некоторых случаях, при 

наличии известных свойств целевой функции, основную задачу 

оптимизации можно разбить на подзадачи и сократить количество 

вычислений. В работе [1] для снижения размерности задачи и 

сокращения количества вычислений используется свойство 

монотонности целевой функции и понятие оптимальности по Парето. 

Пусть  F x  — глобальный критерий эффективности сложной 

технической или экономической системы, который зависит от 

параметров Nx X R   и этот критерий желательно 

максимизировать, т.е. решается задача поиска вектора 
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  0x Arg max F x , x X.  (1) 

Если рассматриваемая система простая, то для поиска 

оптимального решения можно использовать обычные методы 

математического программирования, но для сложных систем такой 

подход не приводит к успеху в силу большой размерности задачи и 

значительного времени вычисления глобального критерия 

эффективности.  

Для решения задачи (1) Краснощеков П.С., Морозов В.В. и 

Федоров В.В. предложили выделять частные критерии 

эффективности iu (x),i 1,M  и рассматривать класс монотонных 

функций 

     F x u x  ,  (2) 

таких, что для любых 1 2x , x X  из условия 

    1 2u x u x   (3) 

следует  

      1 2u x u x  .  (4) 

Данный подход позволяет сократить количество вычислений, так 

как задача (1) заменяется задачей поиска оптимального вектора 

только на множестве Парето-оптимальных решений. Поскольку 

множество Парето–оптимальных решений часто значительно меньше 

множества X , то количество узлов  -сетки на множестве Парето–

оптимальных решений значительно меньше количества узлов                          

 – сетки на X .  

Если учесть, что время вычислений значения функции  F x  

большое, то такой подход позволяет значительно сократить общее 

время поиска оптимального варианта и получить этот вариант в 

заданные сроки. Другие подходы к решению задач большой 

размерности и декомпозиции исходной модели приведены в работах 

[2–9]. 

Постановка задачи. В данной работе используется свойство                

Λ–монотонности глобального критерия, которое обобщает обычное 

понятие монотонности и понятие  –оптимальности [10,11], которое 

обобщает понятие оптимальности по Парето. 

Для сложных систем, при решении задачи (1), часто единственно 

возможным методом решения является метод перебора узлов  –
сетки, построенной на множестве допустимых значений X .  

Если выполнены следующие условия: 
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1)  F x  допускает представление 

     F x u x  ,  (5) 

2) функция   u    — монотонна,  

то для решения задачи (1) достаточно перебрать только узлы, 

принадлежащие множеству недоминируемых решений.  

Формальные условия проверки  –монотонности   u x  

приведены в работе [12,13], иногда  –монотонность можно 

установить из общих свойств постановки экономической или 

технической задачи. Например, если Ф   — стоимость всей системы, 

а iu  — стоимость i –ой подсистемы, то  u  является монотонной 

функцией. 

Далее будем полагать, что множество допустимых значений X  

есть некоторое связное и ограниченное подмножество в NR . 

Определение 1. Непрерывная функция  u , определенная на 

множестве U , называется возрастающей по направлению 0S  , если 

для любой точки 0u U  выполняется неравенство 

    0u u    (6) 

если 

 0u u tS  , u U , t 0 .  (7) 

Определение 2. Непрерывная функция  u , определенная на 

множестве U, называется неубывающей по направлению 0S  , если 

для любой точки 0u U выполняется неравенство 

    0u u  ,  (8) 

если 

 0u u tS  , u U , t 0 .   (9) 

Определение 3. Если функция  u  является возрастающей на 

множестве U  по любому направлению S , принадлежащему конусу 

 , то  u  называется  –возрастающей функцией на U . 

Пример 1. Функция 

   1 22u u u   ,  (10) 

 –монотонна для следующих конусов: 

а)     , 0, 2, 2 ;
T

u S u S     
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б)  0, 1, ;   iu u i M  

в)         1 2 1 2, 0, , 0, 8, 2 , 1, 5 .
T T

u H u H u H H       

Пример 2. Функция  

   1 24 3u u u    .  (11) 

 –монотонна для следующих конусов: 

а)  0, 1, ;   iu u i M  

б)         1 2 1 2, 0, , 0, 5, 3 , 2, 8 .
T T

u H u H u H H           

Пусть на множестве X задана вектор-функция Mu(x), x X,u R .   

Определение 4. Точка x X называется  –оптимальной, если 

для всякого y X такого, что    u y u x  следует    u y u x . 

Множество всех  –оптимальных точек на X  будем обозначать 

X
. 

Множество  –оптимальных точек на  U u X  будем 

обозначать  U , U u X .    

Определение 5. Конус *  называется многогранным, если его 

можно представить в виде 

 
1

* , 0, , 1,
L

M

i i i i

i

z z H H R i L 


 
      

 
 .  (12) 

Векторы , 1,iH i L  называются генераторами конуса. 

Определение 6. Конус   называется сопряженным конусу * , 

если 

   , 0, * .u u z z      (13) 

Далее предполагается, что на основании анализа модели системы 

выделены агрегированные параметры  u x , Mu R , Nx X R  , 

,M N  и глобальный критерий допускает представление 

    F x u x  , где  u  является  –монотонной функцией для 

конуса  . Выберем произвольный многогранный конус 1  , 

   1 , 0, , 1,M

i iu u H H R i L       (14) 

и точку Е  внутри конуса intE  ( Е  можно получить, например, 

как решение задачи чебышевского приближения 
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 

min,   

, ,   1,   1, ).i iu H u i L



    
  (15) 

Метод нахождения недоминируемых решений. Поиск                          

 –оптимальных решений можно формулировать в минимаксной 

форме и использовать алгоритмы [14]. Более удобный способ 

приведен ниже. 

 Произвольную  -оптимальную точку можно получить, решая 

задачи математического программирования для различных 
MRP : 

     

max;

, 0, 1, ;

.

i

N

t

u x Et P H i L

x X R

 


   


 

  (16) 

Ниже приводится алгоритм решения задачи (16). 

Будем рассматривать следующую задачу математического 

программирования: область допустимых значений Х определена 

неравенствами   

   0ig x  , 1,i m , (17) 

где функциис  ig x  — выпуклые гладкие функции, причем 

множество X  регулярно по Слейтеру и ограничено. На множестве 

X  требуется максимизировать функцию  f x , то есть найти точку 

*x , для которой выполняется 

    * maxf x f x , x X ,  (18) 

поскольку множество X  содержит внутренние точки, то начальное 

приближение можно найти, решая задачу 

 
 

max

,  1, .ig x i m







 
  (19) 

Причем нет необходимости искать максимальное значение  ,  

достаточно найти некоторое начальное приближение 
1x  при котором  

0  .  

Для того, чтобы избежать слишком маленьких шагов, движения 

по зигзагам, на каждом k -ом шаге алгоритма задаются некоторые 

значения 0k   и далее точку 
kx  будем полагать принадлежащей 

поверхности ( ) 0ig x  , если 
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   0k

k ig x   ,  (20) 

множество активных ограничений, в этом случае будем обозначать  

 ,k

kI x  . 

Далее будем полагать, что 
1x  находится на границе области 

допустимых значений Х, так как в противном случае можно 

продвинуться до границы допустимой области по направлению 

 1f x . 

Теперь полагаем 1k   и алгоритм метода в общем виде можно 

сформулировать так: 

1. определение в полученной точке приближенного решения 
kx  

подходящего направления 
kS , указывающего наискорейшее 

возрастание функции  f x ; 

2. вычисление нового значения k ; 

3. вычисление длины шага перемещения и перехода в точку 
1.kx 

 

Изложим алгоритм детально: 

Этап 1. Определение подходящего направления. 

Подходящее направление 
kS  в точке 

kx  определим таким 

образом, чтобы в этом направлении возрастала функция  f x , то 

есть должно быть выполнено условие 

  , 0kf S  .  (21) 

Кроме того, направление должно вести внутрь области X , то 

есть выполняются неравенства 

  , 0k

ig S  ,  ,k

ki I x  .  (22) 

Для осуществления наискорейшего движения по направлению 

наискорейшего возрастания целевой функции с проникновением 

внутрь области X , необходимо чтобы меньшая из величин 

 
   

 

, , , ,

,

k k

i

k

k

f S g S

i I x 

 


 (23) 

принимала наибольшее значение.  

Данное направление может быть чебышевской точкой, 

записанной выше системы неравенств. Это эквивалентно 

следующей задаче линейного программирования: 
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  

    

max

, ,

, ,   ,

1 1,   1, .

k k

k k k

i k

k

j

f x S

g x S i I x

S j N





 



 

  

   

  (24) 

Задача (24) является задачей линейного программирования. На 

данном шаге вычисляются значения kS  и 
k . Вместо последнего 

ограничения задачи (24) иногда используется условие  , 1k kS S  . 

Этап 2. Вычисление значения k . 

Если k k  , то значение k  не меняется, полагаем 1k k   . 

Если k k  , то значение k  меняется. 

В случае, когда 0k k   , то полагаем
1k kc   ,  где 1 0c   и 

продолжаем процесс движения из точки kx  в направлении kS  

Если 0k  , то решается задача 

 

  

     

max

, ,

, ,   

1 1,   1, .

k k

k k k

i

k

j

f x S

g x S i I x

S j N









 

  

   

  (25) 

Если max 0  ,то kx  — решение, процедура останавливается. 

Если max 0  , то полагаем 
1k kc     и продолжаем движение в 

направлении kS . 

Этап 3. Вычисление шага. Если определены значени kS  и 
k , то 

осуществляется движение по направлению kS  по формуле 

 1 ,k k k

kx x S      

где k  является наименьшим из многочисленных значений 

корней уравнений 

   0k k

ig x S   , i I .  (26) 

Теперь определены значения 1kS   и 
1k 
, полагаем 1k k    и 

переходим к шагу 1. 

Численный пример. Пример 3. Множество допустимых 

значений X задано линейными неравенствами: 
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1 2 3

1 2 3

i

x x x 8,

4x x x 11,

x 0,i 1,2,3.

  


  
  

  (27) 

Это можно записать так 

 

 

 

 

 

 

1 1 2 3

2 1 2 3

3 1

4 2

5 3

8 0,

11 4 0,

0,

0,

0,

g x x x x

g x x x x

g x x

g x x

g x x

    


    


 
  


 

  (28) 

 { | 0, 1,5}iX x g x i   . 

Агрегированные переменные являются функциями от х  

 
 

 
3/2

4 2

1 1 2 3

2

2 1 2 3

5 2 3 ,

9 10 0,5 .

u х x x x

u х x x x

  

  
  (29) 

Глобальный критерий эффективности имеет вид 

 
      1 2

1 2

1 1 3 2 2 3

,

,   N

F х u х х

x X R x X R 

  

   
  (30) 

и его требуется максимизировать. Здесь выделена подзадача 

размерности 3.  

      Для нахождения максимума F(x)  требуется найти максимум 

функции 1 , которая является  –монотонной     функцией для 

конусам  , сопряженного конусу *  с генератором 

   1 25,4 , 4,5
T T

H H   (рис. 1). 

Для нахождения максимального значения  F х  необходимо 

найти максимальное значение   1

1 u x  на множестве 

недоминируемых решений. Здесь можно заметить, что размерность 

данной подзадачи меньше размерности исходной задачи. Конус   в 

данном случае включает R , поскольку  R , то множество              

 –оптимальных точек может быть уже, чем множество                 

Парето-оптимальных точек. Множеством Парето-оптимальных точек 

в данной задаче будет кривая, проходящая через точки  (рис. 2). 
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 16,00,  80,00
T

A  ,   19,00,  79,00
T

B  ,  285,96,  68,06
T

С  . 

 

 

Рис. 1. Фиксированный конус  . На рисунке вектора 1H  и 2H  являются 

генератором конуса * , голубым выделен конус   

 
Рис. 2. Парето-оптимальные и  -оптимальные решения 

 

Если использовать изложенный выше метод решения 

соответствующей задачи  А , то в результате вычислений будет 

получена только одна  –оптимальная точка  285,96,  68,06
T

C  , 

эти значения достигаются при  2,75,  0,00,  0,00
T

x  . 

Заключение. Метод, рассмотренный в статье, применим для 
случая, когда глобальный критерий эффективности является                   
 –монотонной функцией от выделенных агрегированных 
параметров. Поскольку обычная монотонность является частным 
случаем  –монотонности, то метод применим для более широкого 
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класса целевых функций, чем в работе [1], кроме того, метод 
позволяет выделять подзадачи меньшей размерности. Численный 
пример показывает, что количество Λ-оптимальных решений может 
быть значительно меньше, чем количество Парето–оптимальных 
решений. Можно заметить, что предложенный численный метод 
основан на методе возможных направлений [15,16] и его применение 
более ”удобно” для задач с линейными ограничениями. 
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The article discusses the method of finding optimal solutions in the presence of a model 

of a complex technical system in the optimal design problem. The method is based on the 

use of nondominable,   optimal solutions and is a generalization of the method of 

Krasnoshchekov P.S., Morozov V.V., Fedorov V.V. [1]. The method allows in many cases 

(for  monotone objective functions) to reduce the number of calculations and reduce 

the dimension of the original problem. A numerical method for constructing   optimal 

solutions has been developed. A numerical example is given in which it is shown that the 

number of   optimal solutions consists of a single point, and the set of Pareto–optimal 

solutions is a curve on which it is necessary to build an ε–network to find the optimal 

solution. 
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