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преобразования Лапласа  

© А.А. Валишин, М.А. Тиняев 
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При проектировании изделий из композиционных материалов, предназначенных для 

эксплуатации в сложных условиях неоднородных деформаций и температур, важно 

учитывать вязкоупругие, в том числе спектральные и динамические, свойства                    

связующего и наполнителей. В статье рассмотрены динамические характеристики 

(комплексный модуль, комплексная податливость, их действительные и мнимые   

части, тангенс угла потерь) и спектральные характеристики релаксации и                          

ползучести и их зависимость друг от друга. Для всех известных типов ядер                        

ползучести и ядер релаксации были найдены упомянутые выше характеристики. 

Для нахождения спектральных характеристик был использован один из численных 

метода обращения преобразования Лапласа — метод квадратурных формул                      

с равными коэффициентами. Составлены алгоритмы и компьютерные программы 

для реализации этого метода. Полученные графики достаточно точные                  

(максимальная погрешность вычислений в среднем не превосходит 5%), несмотря 

на то что на начальных участках времени погрешность очень заметна.  

 

Ключевые слова: вязкоупругость, релаксация, ползучесть, динамические                         

характеристики, спектральные характеристики, преобразование Лапласа, метод 

квадратурных формул 

 

Введение. При проектировании изделий из композиционных       

материалов, предназначенных для эксплуатации в сложных условиях 

неоднородных деформаций и температур, важно учитывать                    

вязкоупругие свойства связующего и наполнителей [1–3]. Все вязко-

упругие характеристики как статические, так и динамические, выра-

жаются, в конечном счёте, через ядра релаксации и ползучести [4–18].  

Ядра релаксации и ползучести отражают специфические свойства 

конкретного материала. В литературе разбросано много предложен-

ных в разное время модельных вариантов таких ядер. Все они были 

систематизированы и сведены воедино в работе [11], и там же                     

установлена взаимная связь между ними. Альтернативный и обобщен-

ный подход состоит в определении спектральных характеристик                   

релаксации и ползучести — плотности спектра релаксации и спектра 

плозучести. Необходимо все определяющие вязкоупругие функции 

связать через спектральные характеристики, а также установить                     

взаимосвязь спектральной плотности релаксации и спектральной 

плотности ползучести.  
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Таким образом, плотность спектров релаксации, например,              

становится первичной и главной вязкоупругой характеристикой              

материала. Она специфична для каждого конкретного материала и 

подлежит экспериментальному определению в каждом конкретном 

случае. В настоящей работе предлагается частичная реализация этой 

программы. 

Математическая постановка задачи, принятые допущения. 

Для изотропных вязкоупругих материалов определяющие соотноше-

ния между тензорами напряжений и деформаций записываются так 
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где  G t  и  J t  — это функции релаксации и ползучести соответ-

ственно [1–11]. 

Функция  G t  описывает изменение напряжения со временем при 

постоянной деформации. Такой процесс называется релаксацией 

напряжения. В этом процессе напряжение убывает со временем, т.е. 

функция  G t  — убывающая. 

Функция  J t  описывает изменение деформации со временем при 

постоянном напряжении. Такой процесс называется ползучестью               

деформации. В процессе ползучести при постоянном напряжении               

деформация растёт, т.е. функция  J t — возрастающая. 

В теории упругости между упругим модулем G  и податливостью 

J  есть простая связь [1,2,5,6] 

 1.GJ    (2) 

Однако в теории вязкоупругости между функциями релаксации и        

ползучести такой простой связи нет.   

Запишем формулы (1) в пространстве изображений по Лапласу, 

используя теорему свёртки 

 
     

     

,

.

p pG p p

p pJ p p

 

 




  (3) 

Из формул (3) следует 

    2 1.p G p J p    (4) 
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Это выражение определяет зависимость между изображениями               

функций релаксации и ползучести. 

В теории преобразования Лапласа имеют место следующие пре-

дельные соотношения 
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то есть, соотношения типа (2) в теории вязкоупругости имеют место 

только в двух предельных случаях: при 0t    и при t  . 

Удобно функцию релаксации  G t  и функцию ползучести  J t  

представить в безразмерном виде. Для этого обозначим 
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Функции  t  и  g t  безразмерны, функция  t  называется ядром 

релаксации, а функция  g t  — ядром ползучести. 

В силу (2) и (5) будет 
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В пространстве изображений по Лапласу между изображениями без-

размерных функций  t  и  g t  имеет место соотношение типа (4):  

    2 1.p p g p    (8) 

Динамические характеристики вязкоупругих материалов и 

связь между ними. В качестве одной из таких характеристик                

выступает комплексный модуль  *G i , который связан с ядром       

релаксации  t  следующим образом:  

    *

0 ,G i i G      (9) 

где      
0

expt i t dt   


   есть не что иное как прямое преобра-

зование Фурье. 

Аналогично (9) через ядро ползучести  g t  определена другая         
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характеристика материалов — комплексная податливость  *J i : 

    *

0 ,J i i J g     (10) 

где      
0

expg g t i t dt 


  . 

Между (9) и (10) существует следующая связь [17,18] 

    * * 1,G i J i     (11) 

которую также называют формулой Гросса. 

У комплексного модуля и комплексной податливости, как следует 

из названия, есть действительные и мнимые части: 

            * ' '' * ' '',  ,G i G iG J i J iJ           (12) 

где  'G   и  ''G   — действительная и мнимая части комплексного 

модуля,  Па ;  'J   и  ''J   — действительная и мнимая части           

комплексной податливости, 1Па   . Обычно функцию  'G                   

называют модулем накопления, а функцию  ''G   — модулем потерь. 

Подстановкой формул (12) в (11) получим следующую систему 
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из которой можно получить важные соотношения: 
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где        
2 22

* ' ''G i G G    ;        
2 22

* ' ''J i J J    . 

Вернёмся к системе (13) и запишем второе её уравнение в виде 

        
1 1

'' ' '' ' ,G G J J   
 
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где величина    
1

'' 'G G 


   , по определению, называется тангенсом 

угла потерь tg , то есть 

    
1

'' 'tg .G G  


      (16) 

Тогда из (15) и (16) следует, что 
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    
1

'' 'tg .J J  


       (17) 

Спектры релаксации и ползучести и их связь с ядрами                  

релаксации и ползучести. В [9,10] функция релаксации  G t            

определена следующий образом: 

     1

0

exp ,G t H t d G  





       (18) 

где   tG G t  ,  H   — функция распределения времён                     

релаксации (спектр релаксации), 1Па с .     

С учётом (6), ядро релаксации  t  выражается через спектр             

релаксации  H   как 

      
1 1
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 
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 
   (19) 

Из этой формулы путём замены 1    можно получить выражение 

      2 1

0

0

exp ,H t d G t G    


 

     (20) 

в котором интегральное выражение есть не что иное как прямое                      

преобразование Лапласа. Это означает, что функция  2 1H                              

является оригиналом, а функция  0G t G   — изображением.                 

Обращением преобразования Лапласа можно определить  2 1H    

через  t  и тогда путём обратной замены 1    находим  H  :  

       2 1 1

0 ,H G t G      


  
 

  (21) 

где 1  — оператор обратного преобразования Лапласа;  1    — 

дельта-функция Дирака,  c . 

Поскольку величина G  является константой, слагаемое 

 2 1G   

  при 0     равно нулю. Тогда (21) принимает более 

простой вид: 

     2 1

0 .H G t      (22) 

В [9,10] функция ползучести  J t  определена как  
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     1

0

0

1 exp ,J t j t d J  


        (23) 

где  j   — функция распределения времён запаздывания, или спектр 

запаздывания (ползучести), 1 1Па с    . 

С учётом (6), ядро ползучести  g t  выражается через спектр пол-

зучести  j   как 

       1 1

0

0

1 1 exp .g t J j t d  


         (24) 

Заменой 1    получим выражение, аналогичное (20): 

      2 1

0

0

exp ,j t d J J g t   


 

     (25) 

где     0

0

tJ J t j d J 


    . 

Тогда из (25) обращением преобразования Лапласа находим   :j   

       2 1 1

0 .j J J g t     


  
 

  (26) 

Заметим, что слагаемое  2 1J   


 при 0     равно нулю, если 

const 0J    (вязкоупругое твёрдое тело). Тогда (26) записывается в 

виде 

     2 1

0 .j J g t       

Для случая, когда J    (вязкая или вязкоупругая жидкость),               

слагаемое  2 1J   


 не определено (неопределённость типа  0  ). 

Связь спектров релаксации и ползучести между собой.              

Согласно (8), в пространстве изображений Лапласа между ядром                

релаксации  t  и ядром ползучести  g t  существует взаимная связь. 

С учётом (19) и (24) становится очевидным, что функции спектра                

релаксации  H   и спектра ползучести  j   тоже являются                                

не независимыми. 

Определим формулы, связывающие спектры между собой.  

Начнём с того, что из (19) найдём изображение ядра релаксации: 
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        2 1

0 0 0

1
exp exp .

G
p H t d pt dt

G p
    

 

 
   

      
   

    (27) 

Затем, используя (8), находим изображение ядра ползучести: 

    
1

2 .g p p p


      (28) 

Применив оператор обратного преобразование Лапласа 1  к 

функции  1

0J p J g p

  , получим выражение (25), из которого, как 

было сказано выше, можно получить функцию  2 1j   . Обратной 

заменой 1    находим спектр ползучести  j  , а с учётом (5) и (7) 

итоговая формула имеет вид: 

 

     

   

12 1

1
2 2 2 2 1 ,

j G

p H G p

   

 

 




  



 


     

  (29) 

где 2  и 2  — операторы прямого и обратного преобразований 

Лапласа соответственно, применённые дважды. 

Аналогичным образом можно вывести формулу, выражающую 

спектр релаксации через спектр ползучести: 

      
1

2 2 122 2 .H J p p j   


   


  
 

  (30) 

Таким образом, через прямое и обратное преобразования Лапласа 

получают спектр ползучести из спектра релаксации, и наоборот. 

Известные типы функций релаксации и ползучести. В работе 

[11] были представлены в виде таблиц известные типы ядер                              

релаксации и ползучести и их производных (функции Абеля,                                    

Работнова, Ржаницына и др.). Используя эти данные, далее были 

найдены динамические и спектральные характеристики каждого из 

этих ядер.  

Динамические характеристики известных ядер ползучести и 

ядер релаксации. Используя данные таблиц из [11] и формулы                           

(9)–(17), были получены динамические характеристики известных 

ядер ползучести и ядер релаксации. Результаты показаны                                            

в таблицах 1–6. 

1) Функции Максвелла. В таблице 1 приведены динамические                             

характеристики ядер Максвелла. 
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Таблица 1 

Динамические характеристики ядер Максвелла  

№ Релаксация Ползучесть 

1 
1exp t     11 t    

2  
1

0 1G i i 


   1 1

0 1J i     

3  
1

2 2 2 2

0 1G    


  0J   

4  
1

2 2

0 1G   


  
1 1

0J      

5 1 1       0   

 

2) Функции Кольрауша. В таблице 2 приведены динамические                  

характеристики ядер Кольрауша. 

В таблице 2   принимает значения 0 1  , 
0 1b  , 

     
11

1

1 1 !
r

k

r r k

k

b k z k b






           , 1,2,...,r   ,    1z k k   , 

   1z r r   . При 0   характеристики Кольрауша переходят                        

в характеристики Максвелла. 

Таблица 2 

Динамические характеристики ядер Кольрауша 

№ Релаксация Ползучесть 

1 
       

1 1

1

0

exp ;

1 !
r z r z r

r

t

r t

 



 


 



  


        1

0

1
z r z r

r

r

b z r t
 





      

2 
   

 
 

 
0

0

1 1
exp

2!

r

z r
r

z r i z r
G

r









      
 
 

    
 

 0

0

exp / 2
z r

r

r

J b i z r 






     

3 
   

 
 

 
0

0

1 1
cos

2!

r

z r
r

z r z r
G

r









      
 
 

    
 

 0

0

cos / 2
z r

r

r

J b z r 






     

4 
   

 
 

 
1

0

0

1 1
sin

2!

r

z r
r

z r z r
G

r










      
 
 

    
 

 0

0

sin / 2
z r

r

r

J b z r 






      

 

3) Функции Абеля. В таблице 3 приведены динамические характе-

ристики ядер Абеля. 

В таблице 3   принимает значения 0 1  , а z r  . При 1   

характеристики Абеля переходят в характеристики Максвелла. 
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Таблица 3 

Динамические характеристики ядер Абеля 

№ Релаксация Ползучесть 

1    
1

0

1
r z z

r

z t 


 



           11 t      

2      0

0

exp / 2
r z

r

G i z  




          0 1 exp / 2J i


  


    

3      0

0

cos / 2
r z

r

G z  




          0 1 cos / 2J


  


   

4      0

0

sin / 2
r z

r

G z  




         0 sin / 2J


  


    

5         
1

1

sin / 2 cos / 2


   




       tg / 2   0 

 

4) Функции Работнова. В таблице 4 приведены динамические                   

характеристики ядер Работнова. 

В таблице 4   принимает значения 0 1  , а  1 1z r   , 

2z   . При 1   характеристики Работнова переходят в характери-

стики Максвелла. 

Таблица 4 

Динамические характеристики ядер Работнова 

№ Релаксация Ползучесть 

1     1 1
1

1

0

1 1 1
r z z

r

z t


 



          2 2
1

21 1
zz

z t
 

       

2        11

0 1 1

0

1 1 exp / 2
r z

r

G z i z 






 
  

 
       2

0 21 exp / 2
z

J i z    

3        11

0 1 1

0

1 1 cos / 2
r z

r

G z z 






 
  

 
       2

0 21 cos / 2
z

J z    

4        11

0 1 1

0

1 sin / 2
r z

r

G z z 






      2

0 2sin / 2
z

J z    

5       2
1

2 2sin / 2 cos / 2
z

z z  



     2tg / 2z   0 

 

5) Функции Ржаницына. В таблице 5 приведены динамические              

характеристики ядер Ржаницына. 

В таблице 5   принимает значения 0 1  , а 
1z  , 

2z r , 

   
1

1 1

0

, exp

t

t d



     



    — нижняя неполная гамма-функция 
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[19, 20],    arctg ,      2 21     . При 1                                       

характеристики Ржаницына переходят в характеристики Максвелла. 

Таблица 5 

Динамические характеристики ядер Ржаницына 

№ Релаксация Ползучесть 

1    
11

1 11 ,z t z 
         

11

2 2

1

1 ,
r

z t z 






      

2     1

0 11 exp
z

G iz   


             
2

0 2

1

1 exp
z

r

J iz   






 
        

 
   

3     1

0 11 cos
z

G z   


             
2

0 2

1

1 cos
z

r

J z   






 
        

 
   

4    
1

0 1sin
z

G z   


            
2

0 2

1

sin
z

r

J z   






          

5       1
1

1 1sin cos
z

z z     


                0 

 

6) Функции Гаврильяка-Негами. В таблице 6 приведены динами-

ческие характеристики ядер Гаврильяка-Негами 

В таблице 6  ,   принимают значения 0 1  , 0 1  , а 

 
1 2

1 2 1

1

1

0 0 0

r

r

k k rm

m j j

k k k j

D a k k








  

   ,  
 

 !

r
a r

r





 



, 0k m , 0rk  , 

 1z r    ,  2z r m    , 1,2,...,r   , 0,1,...,m   . 

При 1a   характеристики Гаврильяка-Негами переходят                                 

в характеристики Ржаницына, а при 1    они переходят в спектры 

Максвелла. 

Таблица 6 

Динамические характеристики ядер Ржаницына 

№ Релаксация Ползучесть 

1       1 1
1

1

0

1 1 1
r z z

r

a r z t


 



            2 2
1

2

1 0

1 1 1
m z z

m

r m

D z t
 

 

 

        

2 
   

  1

1
0

0

1
1 exp

2

r

z
r

a r i z
G










    
  

   
   

 

  2

2
0

1 0

1
1 exp

2

m

m

z
r m

D i z
J





 


 

    
  

   
   

3 
   

  1

1
0

0

1
1 cos

2

r

z
r

a r z
G










    
  

   
   

 

  2

2
0

1 0

1
1 cos

2

m

m

z
r m

D z
J





 


 

    
  

   
   

4      1 1

0

0

1 sin
2

r z

r

z
G a r








 
   

 
       2 2

0

1 0

1 sin
2

m z

m

r m

z
J D




 

 

 
  

 
   
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В таблицах 1–6 под номером 1 обозначены функции ядер, под                   

номером 2 — комплексный модуль и комплексная податливость                        

соответственно, а под номерами 3–4 — их действительные и мнимые 

части. Под номером 5 обозначены тангенс угла потерь и его предель-

ные значения при 0    и при   соответственно. 

Замечание. Формулы тангенса угла потерь tg  для ядер Абеля и 

Работнова были получены с помощью формулы (17), для ядер                           

Ржаницына — по формуле (16). Это обусловлено тем, что в первом 

случае функции  'J   и  ''J  , в отличие от  'G   и  ''G  ,                      

представляют собой аналитические выражения, а не бесконечные 

ряды, поэтому здесь удобнее использовать (17). Во втором случае всё 

наоборот. Для ядер Максвелла одинаково удобно использовать обе 

формулы, тогда как для ядер Кольрауша и Гаврильяка-Негами и (16), 

и (17) не дадут аналитического выражения tg . 

Также заметим, что из (14) можно получить следующие функции 

уже в аналитическом виде: 

1) модуль накопления и модуль потерь Абеля соответственно: 

 

 
        

        

 
    

        

0
'

22

0''

22

cos / 2
;

2 cos / 2

sin / 2
;

2 cos / 2

G
G

G
G

 

 



 

   


    

  


    

 


     




     

  

2) модуль накопления и модуль потерь Работнова соответственно: 

               

            

1
2'

0

1
2''

0

cos / 2 2 cos / 2 1 ;

sin / 2 2 cos / 2 1 ;

G G

G G

   

  

      

     





   

  

  

3) действительная и мнимая части комплексной податливости 

Ржаницына соответственно: 

             

          

1
'

0

1
''

0

cos 2cos ;

sin 2cos .

J J

J J

  

 

          

        







                      

                  

  

Спектральные характеристики известных ядер ползучести и 

ядер релаксации. Между спектрами и ядрами ползучести и                                

релаксации были установлены зависимости (22), (26). Используя                         

данные таблиц из [18] и формулы (22), (26), были определены                             

выражения соответствующих спектров ползучести и релаксации.               

Полученные результаты приведены ниже в таблицах 7–12. 
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1) Функции Максвелла. В таблице 7 приведены спектры и ядра 

Максвелла. 

Таблица 7 

Спектральные характеристики ядер Максвелла 

№ Спектр (оригинал) Ядро (изображение) 

1  2 1 1

0G t t      1exp p      

2    2 1 1

0 1J t t t      11 p    

 

2) Функции Кольрауша. В таблице 8 приведены спектры и ядра 

Кольрауша. 

В таблице 8   принимает значения 0 1  , 
0 1b  , 

     
11

1

1 1 !
r

k

r r k

k

b k z k b






          , 1,2,...,r   ,    1z k k  , 

        
1

sin 1s z r z r z r z r 


                   ,    1z r r   .            

При 0   спектры Кольрауша переходят в спектры Максвелла. 

Таблица 8 

Спектральные характеристики ядер Кольрауша 

№ Спектр (оригинал) Ядро (изображение) 

1         1
10

2
0

1 !
r z r z r

r

G
r z r t

t


 
 



       
       

1 1

1

0

exp ;

1 !
r z r z r

r

p

r p

 



 


 



  


  

2       1
10

2
0

z r z r

r

r

J
b s z r t

t


 
 



           1

0

1
z r z r

r

r

b z r p
 





      

 

3) Функции Абеля. В таблице 9 приведены спектры и ядра Абеля. 

В таблице 9   принимает значения 0 1  , а 

       
1

sin 1s z z z z 


       , z r  . При 1   спектры 

Абеля переходят в спектры Максвелла. 

Таблица 9 

Спектральные характеристики ядер Кольрауша 

№ Спектр (оригинал) Ядро (изображение) 

1    
12 1

0

0

r z z

r

G t s z t 


 



            
1

0

1
r z z

r

z p 


 



           

2     12 1 1 1

0J t t t    
            11 p      
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4) Функции Работнова. В таблице 10 приведены спектры и ядра                          

Работнова.  

В таблице 10   принимает значения 0 1  , а 

       
1

sin 1s z z z z 


       ,  1 1z r   , 2z   . При 1   

спектры Работнова переходят в спектры Максвелла. 

Таблица 10 

Спектральные характеристики ядер Работнова 

№ Спектр (оригинал) Ядро (изображение) 

1       1 1
1 110

12
0

1
r z z

r

G
t s z t

t
 


 



 
     

 
       1 1

1

1

0

1 1 1
r z z

r

z p


 



        

2     2 2
1 12 1

0 2

z z
J t t s z t 

           2 2
1

21 1
zz

z p
 

       

 

5) Функции Ржаницына. В таблице 5 приведены спектры и ядра 

Ржаницына. 

В таблице 11   принимает значения 0 1  , а    1 1 ,t th t     

 1 1h t    — функция Хевисайда,        
1

sin 1s z z z z 


       , 

1z  , 
2z r ,     

1

1 1

0

, exp

p

p d



     



    — нижняя неполная 

гамма-функция [19,20]. При 1   спектры Ржаницына переходят в 

спектры Максвелла. 

 Таблица 11 

Спектральные характеристики ядер Ржаницына 

№ Спектр (оригинал) Ядро (изображение) 

1      112 1

0 1 1
z

G t s z t t 
          

11

1 11 ,z p z 
      

2        212 1 1

0 2

1

1
z

r

J t t s z t t  


  



 
    

 
      

11

2 2

1

1 ,
r

z p z 






      

 

6) Функции Гаврильяка-Негами. В таблице 12 приведены спектры 

и ядра Гаврильяка-Негами. 

В таблице 12  ,   принимают значения 0 1  , 0 1  , а 

 
1 2

1 2 1

1

1

0 0 0

r

r

k k rm

m j j

k k k j

D a k k








  

   ,  
 

 !

r
a r

r





 



, 0k m , 

       
1

sin 1s z z z z 


       ,  1z r    ,  2z r m    , 
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1,2,...,r   , 0,1,...,m   . При 1   спектры Гаврильяка-Негами 

переходят в спектры Ржаницына, а при 1    они переходят в 

спектры Максвелла. 

Таблица 12 

Спектральные характеристики ядер Гаврильяка-Негами 

№ Спектр (оригинал) Ядро (изображение) 

1         1 1
1 110

12
0

1
r z z

r

G
t a r s z t

t
 


 



 
     

 
   

   

 

1

0 1

1
1

1

r z

r

a r p

z 





  
  

   
   

2       2 2
1 110

22
1 0

1
m z z

m

r m

J
t D s z t

t
 

 
 

 

 
      

 
   

 

 

2

1 0 2

1
1

1

m z

m

r m

D p

z 

 

 

  
  

   
   

 

В таблицах 7–12 под номером 1 обозначены спектры и ядра                             

релаксации, под номером 2 — спектры и ядра ползучести. Каждый 

спектр был получен обращением соответствующего ядра.                                              

В полученном обращении делали замену 1t t , и затем результат 

умножали на 2t . 

Численный метод решения задачи. Спектры релаксации и                          

ползучести, согласно (22) и (26), необходимо находить через ядра                       

релаксации и ползучести обращением преобразования Лапласа.                           

Данную задачу решим одним из численных методов обращения                        

преобразования Лапласа — методом квадратурных формул с равными 

коэффициентами [21]. Подробно этот метод был описан в предыдущей 

работе [11].  

Примеры численного решения задачи. Были написаны компь-

ютерные программы, реализующие метод квадратурных формул для 

нахождения спектров. Приведём несколько расчётов, полученных с 

помощью данных программ. 
На рис. 1–6 показаны графики, полученные методом                                  

квадратурных формул. 
Для построения функций спектров задали параметры:  

 
 

0 0

100 20 ,

0,5;

для спе

0,5

ктров Рабо

; 0,5;

т

1; 1;

о а 

.

н в

1h s G J

 

 

 

     
  

На рис. 1 приведён результат работы программы, определяющей 

функцию спектра релаксации Абеля, которую сравнивают с её                        

приближённым выражением в виде ряда 

    
50

12 1

0

0

.
r z z

r

G t s z t 
 



         
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Рис. 1. Спектр релаксации Абеля при 100, 0,05срn H   : 

— — численное решение; — — аналитическое решение 

 

На рис. 2 приведён результат работы программы, определяющей 

функцию спектра ползучести Абеля, которую сравнивают с её                               

аналитическим выражением 

     12 1 1

0 .J t t t    
           

 

Рис. 2. Спектр ползучести Абеля при 100, 0,008срn j   : 

— — численное решение; — — аналитическое решение 
 

На рис. 3 приведён результат работы программы, определяющей 

функцию спектра релаксации Работнова, которую сравнивают с её 

приближённым выражением в виде ряда 

       1 1

50
1 12 1

0 1

0

1 .
r z z

r

G t t s z t 
  
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Рис. 3. Спектр релаксации Работнова при 100, 0,025срn H   : 

— — численное решение; — — аналитическое решение 

 

На рис. 4 приведён результат работы программы, определяющей 

функцию спектра ползучести Работнова, которую сравнивают с её 

аналитическим выражением 

     2 2
1 12 1

0 2 .
z z

J t t s z t 
         

 

 

Рис. 4. Спектр ползучести Работнова при 100, 0,006срn j   : 

— — численное решение; — — аналитическое решение 

 

На рис. 5 приведён результат работы программы, определяющей 

функцию спектра релаксации Ржаницына, которую сравнивают с её 

аналитическим выражением  
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Рис. 5. Спектр релаксации Ржаницына при 100, 0,007срn Н   : 

— — численное решение; — — аналитическое решение 

 

На рис. 6 приведён результат работы программы, определяющей 

функцию спектра ползучести Ржаницына, которую сравнивают с её 

приближённым выражением в виде ряда 

        2
100

12 1 1

0 2

1

1 .
z

r

J t t s z t t  
  



 
    

 
   

 

Рис. 6. Спектр ползучести Ржаницына при 100, 0,0027срn j   : 

— — численное решение; — — аналитическое решение 

 

Все необходимые вычисления были выполнены в системе                    

компьютерной алгебры Wolfram Mathematica. 

Выводы. Проанализировав результаты, делаем следующие                       
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1) графики спектров релаксации и ползучести были получены                

достаточно точно (максимальная погрешность вычислений в среднем 

не превосходит 5%), несмотря на то что на начальных участках               

времени погрешность очень заметна. Численное нахождение функций 

спектров ползучести Кольрауша и Гаврильяка-Негами вызвало                  

трудности, связанные со сложной рекурсивной формулой в этих                  

ядрах; 

2) для всех ядер (кроме ядер Кольрауша и Гаврильяка-Негами) 

были получены их динамические характеристики в виде аналитиче-

ских функций, даже несмотря на то, что функции некоторых ядер 

представлены в виде приближённого бесконечного ряда; 

3) формулы, определяющие спектры друг через друга, на практике 

оказались не слишком эффективны (за исключением спектров                   

Максвелла). Не исключено, что для большей эффективности прямое и 

обратное преобразование Лапласа в этих формулах следует заменять 

на приближённое (подынтегральную функцию записывать в виде                  

приближённого бесконечного ряда).   
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Modeling of dynamic and spectral viscoelastic                             

characteristics of materials based                                                        

on numerical inversion of the Laplace transform 
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When designing products made of composite materials intended for use in difficult                     

conditions of inhomogeneous deformations and temperature, it is important to take into 

account viscoelastic, including spectral and dynamic, properties of the binder and fillers. 

The article considers dynamic characteristics (complex modulus, complex malleability, 

their real and imaginary parts, loss angle tangent) and spectral characteristics of                  

relaxation and creep and their dependence on each other. The characteristics mentioned 

above were found for all known types of creep kernel and relaxation kernel. To find the 

spectral characteristics, one of the numerical methods of inverting the Laplace transform 



Моделирование динамических и спектральных вязкоупругих характеристик… 

61 

was used — the method of quadrature formulas with equal coefficients. Algorithms and 

computer programs for the implementation of this method have been compiled.                   

The obtained graphs are quite accurate (the maximum error of calculations in the average 

does not exceed 5%), despite the fact that the error is very noticeable in the initial time 

segments.   
 
Keywords: viscoelasticity, relaxation, creep, dynamic characteristics, spectral                     
characteristics, Laplace transform, method of quadrature formulas 
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