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Предложена теория термоползучести многослойных тонких пластин, основанная 
на анализе общих уравнений трехмерной нелинейной теории термоползучести с по-
мощью построения асимптотических разложений по малому параметру, представ-
ляющему отношение толщины пластины к характерной длине, без введения каких-
либо гипотез относительно характера распределения перемещений и напряжений 
по толщине. Сформулированы локальные задачи для нахождения всех шести компо-
нент тензора напряжений  во всех слоях  пластины, с точным учетом всех гранич-
ных условий. Выведены глобальные (осредненные по определенным правилам) уравне-
ния теории термоползучести пластин, показано, что эти уравнения близки по 
структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них 
наличием 3-го порядка производных от продольных перемещений. Показано, что 
предложенная теория позволяет вычислить с наперед заданной точностью все 
шесть компонент тензора напряжений, включая поперечные нормальные напряже-
ния и напряжения межслойного сдвига, для этого необходимо численно решить 
только глобальные уравнения теории термоползучести пластин, а остальные вы-
числения сводятся только к использованию аналитических формул. 
 
Ключевые слова: асимптотическая теория, асимптотические разложения, тон-
кие многослойные пластины, теория термоползучести, локальные задачи. 

 
Введение. Расчет напряженно-деформированного состояния (НДС) 

тонких тел: пластин, стержней, оболочек и комбинированных тонко-
стенных конструкций на их основе представляет особый класс задач 
механики деформируемого твердого тела, которые, как правило, явля-
ются более сложными в плане вычислений, чем задачи расчета НДС в 
трехмерных телах, геометрическая форма которых такова, что у нее 
нет какого-либо преимущественного направления. Прямые конечно-
элементные расчеты тонких тел как трехмерных объектов обычно 
приводят к неудачным результатам — или к очень большим вычисли-
тельным затратам, так как требуется очень мелкая сетка для получения 
требуемой точности расчета полного НДС, или не вполне удовлетво-
рительным результатам распределения напряжений по толщине тонко-
го тела. Поэтому для расчетов НДС тонких тел применяют специали-
зированные методы — особые типы конечных элементов [1] или 
двумерные теории пластин и оболочек [2]. 

Анализ первого направления не входит в задачи данной работы,  
а относительно двумерных теорий пластин и оболочек отметим наи-
более перспективное направление, которое развивается в последнее 
время, — асимптотическую теорию пластин и оболочек, основанную 
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на асимптотических разложениях трехмерных уравнений теории уп-
ругости по малому параметру, представляющему отношение толщи-
ны к характерной длине пластины [3–8]. Никаких гипотез относи-
тельно решения эта теория не использует. Данная теория была 
применена для упругих [9–11] и вязкоупругих [12] тел, а также для 
расчета и проектирования сотовых конструкций [13]. 

В статье предложено дальнейшее развитие этой асимптотической 
теории для пластин, обладающих нелинейными деформациями тер-
моползучести. Проблема исследования НДС тонких тел с учетом эф-
фектов термоползучести возникает во многих прикладных задачах,  
в частности в задачах расчета прочности и долговечности конструк-
ций корпусов ядерных реакторов, длительно эксплуатируемых при 
повышенных температурах. 

Постановка задачи термоползучести. Рассмотрим многослойную 

пластину, занимающую область   : , 1/ 2,1/ 2h      x n x , 

где   — срединная плоская поверхность с нормалью n , ограничен-

ная кусочно-гладким контуром  ; h  — постоянная толщина пласти-
ны, для которой / 1h L    — малый параметр ( L  — характерный 
линейный размер области  , например ( )L diam  );   — безраз-
мерная нормальная координата пластины. На границе рассматривае-

мой области   выделим внешнюю  / 2 :h
    x n x , внут-

реннюю  / 2 :h
    x n x  и торцевую  : ,u h    x n x  

 1/ 2,1/ 2   поверхности: u
 
      , а также поверх-

ность раздела i
c  i -го и ( 1i  )-го слоев пластины. В области Ω×[0, Т], 

T  , рассмотрим краевую задачу механики деформируемого 

твердого тела (МДТТ) с учетом деформаций ползучести и термона-
пряжений [14]: 
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Здесь σ  — тензор напряжений; ε  — тензор малых деформаций;  
cε  — тензор деформаций ползучести; 0( )  ε α  — тензор тепло-

вых деформаций; ( , )cF ε σ  — дважды непрерывно дифференцируемая 

в некоторой области 12G    тензорная функция, описывающая мо-
дель скоростей деформаций термоползучести [14];   i

c
  — скачок 

функции через поверхность i
c ; α  — тензор температурного расши-

рения; u  — вектор перемещений; n  — вектор внешней нормали;  

p  — давление, заданное на разных поверхностях пластины 
 ;  

  — набла-оператор [15];   — знак тензорного произведения; 4С  — 

тензор модулей упругости; bu  — заданное перемещение. 
Температурное поле   будем считать известным, распределен-

ным неравномерно по пластине.  
Введем прямоугольные декартовы координаты, ориентированные 

таким образом, что ось 3Ox направлена по орту n , а оси 1Ox , 2Ox  

принадлежат  . Введем также безразмерные компоненты величин, 
входящих в задачу (1) в системе координат iOx : /i iq x L  ; /t T   ; 

/i iu u L  ; 0/ij ij    ; 0/ijkl ijklC C  ; /ij ijF F T  ; 0/p p   ; 

/b b
i iu u L  , где 0  — характерное значение напряжений; T  — харак-

терное время развития деформаций ползучести, а тильдой обозначены 
соответствующие размерные величины. Таким образом, безразмерную 
нормальную координату пластины можно записать в виде 

3 3/ /x h q    . Пусть также i
ix


 





 — оператор дифференцирова-

ния по введенным декартовым координатам. Тогда систему (1) можно 
представить в следующем виде: 
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Здесь 0( ).kl ij
      

Основное допущение модели состоит в следующем: давление 

 Ip q  на поверхностях пластины является малой величиной 3-го 
порядка малости: 

   3 0 .I Ip q p q  
                                        (3) 

Построение асимптотического разложения. Согласно общему 
подходу метода асимптотического осреднения (МАО) [9,10], коорди-
наты iq  будем рассматривать как макроскопические (медленные),  

а координату   — как локальную (быструю). При этом из формулы 
для производной сложной функции для оператора дифференцирова-

ния i  имеем 3 ,i
i iL 


    


  где i

iq


 


; 


 

  — соответст-

вующие операторы дифференцирования по макроскопическим и ло-
кальной координатам. Координаты 3q  и  , как обычно в МАО, 

будем предполагать независимыми, а все функции, входящие в сис-
тему (2), не зависящими от 3q . Решение задачи (2) будем проводить 

на основе асимптотического разложения по степеням малого пара-
метра  : 

( )

0
( , ) ( , ).n n

i I i I
n

u q u q



   

                                   (4) 

Здесь и далее индексы , , , , {1, 2}.I J K L   Подставляя это разложе-
ние в соотношение Коши в системе (2), получим 

3(0) (0) (0) (0)32 j i
ij j i i i j ju u u u 

 
         

 
            (5) 

Согласно общей схеме МАО, коэффициенты  при отрицательных 
степенях малого параметра должны обращаться в нуль, т. е. 

(0) 0.iu                                                  (6) 

Таким образом, начальный член в асимптотическом разложении 
вектора перемещений не зависит от локальной координаты  . Кроме 
того, из соотношения (5) получаем асимптотическое разложение 
компонент тензора деформаций: 

( )

0
;n n

ij ij
n




     ( ) ( ) ( ) ( 1) ( 1)

3 32 .n n n n n
ij j i i j j i i ju u u u 

                 (7) 
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Далее, формально считая построенным асимптотическое разло-

жение для компонент тензора деформаций ползучести ( )

0

c n c n
ij ij

n





     

и подставив его и разложение (7) в определяющее соотношение в 
системе (2), получим формулу для разложения компонент тензора 
напряжений: 

( ) ( ) ( ) ( )
0

0

, ( ).n n n n c n
ij ij ij ijkl kl nkl kl

n

C






                            (8) 

Подставив теперь найденные асимптотические разложения в опре-
деляющее соотношение для тензора деформаций ползучести, получим 

1
( ) ( ) 1

0

(1) ( );
n

s с s n с n n n
ij ij ij

s

O






             

    ( 1) ( ) ( 1) ( )( ) (1) ; (1) ;с n с n n n
ij ij pq pqkl klv F O O                     (9) 
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; .
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с n s с s n s s
kl kl kl kl

s s 

           

Здесь функция ( )ij v  дважды непрерывно дифференцируема в неко-

торой окрестности нуля, а символами (1)O обозначены остаточные 
члены в асимптотических разложениях. Применяя для ( )ij v  формулу 

Тейлора с остаточным членом в форме Лагранжа, будем иметь 
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Здесь 0 n
n     — некоторая постоянная. Из этого соотношения 

имеем 
( ) 1( ) ( ),n n n

ij ijS O                                       (10) 
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Далее введем функции ( )n
ijF  в следующем виде: 
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Тогда из (10) имеем, что асимптотическое разложение правой 
части в формуле (9) можно записать так: 

( )

0

( ) .n s s
ij ij

s

F




     

Подставляя это разложение в (9) и приравнивая коэффициенты 

при ,n  получим 

( ) ( ) ( ) ( )( , ).с n n с n n
ij ij pqklF                                      (11) 

Таким образом, для членов асимптотического разложения компо-
нент тензора деформаций ползучести имеем систему обыкновенных 
линейных дифференциальных уравнений вида (11). 

Далее, подставив асимптотические разложения в силовое гранич-
ное, начальное и  контактные условия в системе (2) и учитывая до-
пущение (3), будем иметь 

( ) ( )

( ) ( ) 0
3 330
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k k
c c

n n
ij j i
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n u

p


 

 

        

      
                         (12) 

Подставим теперь асимптотическое разложение (8) в уравнение 
равновесия системы (2), получим  

(0) (0) (1) (1)
3 3
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i J iJ ih 

      , не зависящие 

от локальной координаты  , из последнего соотношения имеем 

(0) ( )
3

0

0; 0.n n
ii

n

h





                                        (13) 

Объединяя полученные соотношения, приходим к локальным за-
дачам для нулевого приближения: 
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(0)
3

(0) (0) (0)

(0) (0) (0) (0)

(0) (0) (0) (1) (1)
3 3

(0) (1)

(0)

0

(0) 0 (1)
3 03

0;

( );

( , );

2 ;

0; 0;

0;

; 0

k k
c c

i

c
ij ijkl klkl kl

c с
ij ij pqkl

ij j i i j j i i j

ij j i

c
ij

i m ii

C

F

u u u u

n u

p u






 

 






  

      

   

          

        

 

       



















              (14) 

и для последующих приближений ( n ): 

( 1) ( 1) ( )
3

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( 1) ( 1)
3 3

( ) ( )

( )

0

( ) 0
3

;

( );

( , );

2 ;

0; 0;

0;

k k
c c

n n n
i J iJ i

n n c n
ij ijkl kl kl

c n n с n n
ij ij pqkl

n n n n n
ij j i i j j i i j

n n
ij j i

c n
ij

n
i

h

C

F

u u u u

n u

p


 


 
 

 





     

    

   

          

        

 

   



( 1)
3 3; 0.n

i n iu 

















   

       (15) 

Здесь к локальным задачам присовокуплены традиционные для МАО 

условия однозначной разрешимости локальных задач ( ) 0n
iu    (ус-

ловия нормировки), где 
1/2

1/2

( , ) ( , )I If q f q d


      — функционал 

осреднения по толщине пластины. Локальные задачи параметризиро-

ваны функциями (0)
iu , для определения которых далее будет сформу-

лирована осредненная задача. 
Решение локальных задач. Локальные задачи (14), (15) являют-

ся одномерными по переменной  , но осложнены входящими в них 
линейными неоднородными системами обыкновенных дифференци-
альных уравнений (ОДУ) с переменными коэффициентами (11). 
Вследствие этого в дальнейших выкладках будем условно предпола-
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гать компоненты ( )c n
ij  известными величинами, а при численном 

расчете для решения системы (11) может быть применена одна из 
разностных схем (например, схема типа Рунге − Кутты). 

Определяющее соотношение для локальных задач (8) может быть 
представлено в следующем виде: 

( ) ( ) ( ) ( )
3 03 ( ).n n n c n

ij ijKL ijk ijkl kl nKL k klC C C                         (16) 

Предполагая обратимость матрицы 3 3,i jC  введем обратную для 

нее матрицу  1 1 1
3 3 3 3 3 3 3 3 3 3 .i j i s s j i s s j ijC C C C C      Тогда из формулы 

(16) имеем 
( ) 1 ( ) ( ) ( )

3 3 3 3 033 ( )) .n n n c n
k s s KL s pq pq pq nKLsk C C C                      (17) 

Из этого соотношения и из формулы (16) получаем 
( ) 1 ( ) ( ) ( )

3 3 3 03

1
3 3 3 3

( );

.

n n n c n
IJk k s IJKL KL nIJ KL KLs

IJKL IJKL IJk k s s KL

C C C

C C C C C

 



         

 




             (18) 

Найдем выражения для вектора перемещений. Для компоненты 
( 1)
3
nu  , n  , из выражения (7) c учетом условия нормировки имеем 

следующую рекуррентную формулу: 

( 1) ( ) ( ) ( )
3 33 33 33

1/2 1/2

.n n n nu d d
 




 

                          (19) 

Здесь для сокращения записи введен оператор ( , )If q


 

1/2 1/2

( , ) ( , ) .I If q d f q d
 

 

         Аналогично из (7) для остальных 

компонент вектора перемещений ( 1)n
Iu   получим 

( 1) ( ) ( )
3 32 .n n n

II Iu u


                                     (20) 

Далее из (20) и (7) имеем следующее рекуррентное соотношение, 
связывающее компоненты тензора деформаций ( 1)n

IJ
  с компонента-

ми тензора деформаций и вектора перемещений предыдущих членов 
асимптотического разложения: 

 ( 1) ( 1) ( 1) ( ) ( ) ( )
3 3

1
.

2
n n n n n n

J I J IIJ I J IJI Ju u  


             

Здесь введены коэффициенты ( ) 2 ( )
3

n n
IJIJ u   , а 

2
2
IJ

J Iq q


 

 
 — соот-

ветствующий оператор дифференцирования. Подставляя в это соот-
ношение формулу (17), будем иметь 
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( 1) ( ) ( ) ( ) ( ) ( )
3 ,n n n n c n n

IJsK K IJKLM MIJ KL IJ IJ IJs
 


             

1 1
3 3 3 3 ;IJsK I s KJ J s KIC C        1 1

3 3 3 3 3 ;IJKLM s KL I s MJ J s MIC C C          (21) 

 ( ) 1 ( ) 1 ( )
3 3 3 3 3 ;c n c n c n

s pq I s J pq J s I pqIJ C C C 


        

 ( ) 1 1
0 3 3 3 3 3 .n

n s pq I s J pq J s I pqIJ C C C    


         

Из уравнения равновесия локальной задачи (14) следует, что 

компоненты (0)
3i  не зависят от локальной переменной  . Учитывая 

силовые граничные условия для системы (14) и допущение (3), при-
ходим к выводу, что уравнение равновесия локальной задачи началь-
ного приближения имеет следующее решение:  

(0)
3 0.i                                              (22) 

Для локальной задачи (15) решение уравнения равновесия с учё-

том силового граничного условия на внутренней поверхности 
  

имеет вид  

( 1) 0 ( ) ( )
3 3( 1)3

1/2

( 1/ 2)n n n
i n J iiJi p d h




 


          , .n   

Из граничного условия на внешней поверхности 
  имеем 

   ( 1) 0 0 ( )
3 3( 1)3 ( 1/ 2) ;n n

i n J iJi p p
  

                        (23) 

( ) 0 ( )
3 3( 1) .n n

i i n J iJh p                                    (24) 

Здесь для краткости записи введен оператор  ( , )If q


 

 
1/2

( , ) ( , )I If q f q d




       . Из формул (23) и (18) вытекают ре-

куррентные соотношения для вычисления членов асимптотических 

разложений компонент тензора напряжений ( 1)
3
n

i
 : 

   
   

( 1) 1 ( ) ( )
3 3 33 3

( )
0;

n n n
IJk k s J IJKL J KLI s

c n
IJKL J IJKL J KL nKL

C C C

C C

 

 



 

        

      



 
 
 
            (25) 

   ( 1) 0 0 ( )
3( 1)33 3( 1/ 2) .n n

n J Jp p
  

                         (26) 
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Найдем аналогичное выражение для ( 1)n
IJ
 . Подставляя (17) в (19), 

получим 

( 1) 1 2 ( ) 1 2 ( )
33 3 33 3 33

1 2 ( ) 1 2
33 3 3 33 3 3 0

–

.

n n n
s IJ s s KL IJIJ KLs

c n
s s pq IJ pq s s pq IJ pq n

C C C

C C C C

  

 

  

 

       

      
 

         (27) 

Соотношение (27) совместно с (25), (26) и (21) позволяет вычис-

лять компоненты ( 1)n
IJ
 , ( 1)n

IJ
 , ( 1)

3
n

i
  по предыдущим членам асим-

птотических разложений этих же компонентов. Компоненты тензора 

деформаций ( )
3
n

i , напряжений ( )n
IJ  и вектора перемещений ( )n

iu вы-

числяют по формулам (17)−(20). Полученные соотношения позволя-
ют доказать следующую теорему. 

Теорема 1. Пусть функции (0)
IJ являются N раз, а функции (0)

IJ  — 

( 1N  ) раз дифференцируемы. Тогда 1Nn   , имеют место сле-

дующие соотношения: 

11

( ) ( ) 1 (0) ( ) (0) ( ) ( ) ( ) ;
n nn n

n n n n n n c n n
IJ KL KL IJ IJ IJIJKL IJKLС С P


              M MM M   (28) 

11

( ) ( ) 1 (0) ( ) (0) ( ) ( ) ( )
3 ;

n nn n

n S n n S n n S n Sc n S n
KL KL I I II IKL IKLС С P


                 M MM M (29) 

11

( ) ( ) 1 (0) ( ) (0) ( ) ( ) ( )
33 ;

n nn n

n T n n T n n T n Tc n T n
KL KLKL KLС С P


                 M MM M (30) 

11

( ) ( ) (0) ( ) 1 (0) ( ) ( ) ( ).
n nn n

n n n n n n c n n
IJ KL KL IJ IJ IJIJKL IJKLС С P


              M MM M  (31) 

Здесь  1, ,n nM M M  — мультииндекс; 
1

n
n

n
n

M Mq q


 

 M  — 

соответствующие дифференциальные операторы. Коэффициенты 
( )nС являются функциями только локальной координаты  . Для ну-

левых приближений функции (0)С , (0)P и (0)  имеют следующий вид: 
(0) (0) (0) (0) (0) (0)

(0) (0) (0) (0)

(0) (0) (0) (0) (0) (0) (0) (0)

(0) (0)

0;

0;

0;

S S T T
IJKL IKL IKL KL KL IJKLM

S T
IJ I IJ

c c Sc S Tc T
IJ IJ IJ IJ I I

IJKLIJKL IJKL

С С С С С С

P P P P

С С

         

   

         

 

     

   

               

     1/ 2 .IK JL IL JK    

(32) 

З а м е ч а н и е. Функции ( )nP  в соотношениях (28)–(31) учитывают за-
висимость решений локальных задач от силовых граничных условий, 

функции ( )с n , ( )n  учитывают влияние ползучести и термонапряжений 
соответственно. 
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Д о к а з а т е л ь с т в о. Доказательство проведем индукцией по па-
раметру N . Для случая 0N   справедливость (29), (30) следует из (22), 
а остальные соотношения удовлетворяются тождественно. Пусть соот-
ношения (28)–(31) справедливы и для некоторого N n . Покажем их 
справедливость для 1N n  . Рассмотрим сначала формулу (28). Под-
ставляя в формулу (21) соотношения (28)–(31), действительно приходим 
к виду (28), причем рекуррентные соотношения для входящих в нее ко-
эффициентов имеют следующий вид: 

1 1

1

1 11

1 1

( 1) ( ) ( )
3

( ) ( )

( 1) ( ) ( )
3

( ) ( )

( 1)

;

;

n nn n n

n n n

n nn n n

n n n

n S n T n
IJSM IJ MIJKL SKL KL

n n
IJPQM PQKL IJKL

n S n T n
IJSM IJ MIJKL SKL KL

n n
IJPQM PQKL IJKL

n
IJ

С С С

С С

С С С

С С

P

 



 

  

     

 



     

 

 

   

 

   

 



M M M

M M

M M M

M M

( ) ( )
3

( ) ( )

( 1) ( ) ( )
3

( ) ( ) ( )

( 1) ( ) ( )
3

( ) (

;

;

S n T n
IJSK K IJ K KS

n n
IJKLM M KL IJ

c n Sc n Tc n
IJSK K IJ K KIJ S

c n c n c n
IJKLM M KL IJ IJ

n S n T n
IJSK K IJ K KIJ S

n n
IJKLM M KL IJ

P P

P P




 

 

   

 

     

 

    

  

        

    

        

    ) ( ).n
IJ



          

(33)

 

Аналогично для формулы (29), подставляя (28)–(30) в (25), получим 

 


 


1 1

1

11

1

( 1) 1 ( ) 1 ( )
3 3 3 333

( )

( 1) 1 ( ) 1 ( )
3 3 3 333

( )

( 1)
3 3 3

;

;

nn n n

n n

nn n n

n n

S n S n T n
IM k k S kIKL SKL KL

n
IM PQ PQKL

S n S n T n
IM k k S kIKL SKL KL

n
IM PQ PQKL

S n
IJk k SI

С C C С C С

C С

С C C С C С

C С

P C C

 

 






        



        



  

   



   



 





M M M

M

M M M

M

 


1 ( ) 1 ( )
333

( ) ;

S n T n
J k JS

n
IJKL J KL

P C P

C P


  



   

 

     (34) 
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  
 

  
 

( ) 1 ( ) 1 ( ) ( )
3 3 3 333

( )

( ) 1 ( ) 1 ( ) ( )
3 3 3 333

0

;

.

Sc n Sc n Tc n c n
IJk k S J k J IJKL JI KLS

c n
IJKL J KL

S n S n T n n
IJk k S J k J IJKL JI KLS

IJKL J KL n

C C C C

C

C C C C

C

     





        







           

  

           

   









 

Далее для (30), подставляя (29) в (26), будем иметь 

   
   
   

1 1 1

( 1) ( ) ( 1) ( )

( 1) 0 0 ( )
3( 1)

( 1) ( ) ( 1) ( )

, ;

( 1/ 2) ;

, .

n n n n n n

T n S n T n S n
KL M KL KL M KL

T n S n
n M M

Tc n Sc n T n S n
M MM M

С С С С

P p p P

  
         

 

  
  

       

 

   

        

         

M M M M

        (35) 

Для (31), подставляя (28)−(30) в формулу (27), получим 

11 1 1

1

1 22

( 1) 1 ( ) 1 ( )
33 3 3333

1 ( )
33 3 3

( 1) 1 ( ) 1 ( )
33 3 3333

1 ( )
33 3 3

(

– ;

– ;

n nn n n

n

n nn n n

n

n S n T n
IJM M SIJKL SKL KL

n
s s PQ PQKL

n S n T n
IJM M SIJKL SKL KL

n
s s PQ PQKL

n
IJ

С C С C С

C C С

С C С C С

C C С

P

  



 



       

 



       

 



   

   

M M M

M

M M M

M

 

1) 1 2 ( ) 1 2 ( ) 1 2 ( )
33 3 3333 33 3 3

( 1) 1 2 ( ) 1 2 ( )
33 3 3333

1 2 ( ) 2 ( )
33 3 3 3

( 1) 1 2 ( )
33 3 3333

;

– ;

S n T n n
S IJ IJ s s PQ IJS PQ

c n Sc n Tc n
S IJ IJIJ S

c n c n
s s PQ IJ s pq IJ pqPQ

n S n
S IJIJ S

C P C P C C P

C C

C C C

C C

      



     

 



     

      

        

    

     

 

1 2 ( )

1 2 ( ) 2
33 3 3 3 0– .

T n
IJ

n
s s PQ IJ s pq IJ pq nPQC C C

 

  



  

     

 (36) 

Теорема 1 доказана. 
Из доказанной теоремы и соотношений (17), (18) вытекают ана-

логичные по форме представления для компонент ( ),n
IJ  ( )

3
n

i  асимпто-

тических разложений тензоров напряжений и деформаций: 
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11

( ) ( ) 1 (0) ( ) (0) ( ) ( ) ( ) ;
n nn n

n n n n n n c n n
IJ KL KL IJ IJ IJIJKL IJKLС С P


              M MM M  (37) 

11

( ) ( ) 1 (0) ( ) (0) ( ) ( ) ( )
3 ,

n nn n

n S n n S n n S n Sc n S n
i i iKL KLi iKL iKLС С P


                 M MM M  (38) 

где соответствующие коэффициенты имеют вид 

1 1 1 1

( ) 1 ( ) 1 ( ) ( )
3 3 3 3 333

( ) 1 ( ) 1 ( ) ( )
3 3 3 3 333

( ) 1 ( )
3 3 3

;

;

n n n n

n n n n

n S n T n n
IJk k S IJk k IJPQIJKL SKL KL PQKL

n S n T n n
IJk k S IJk k IJPQIJKL SKL KL PQKL

n S n
IJk k S IIJ S

С C C С C C С C С

С C C С C C С C С

P C C P C

   
       

       

  

  

  

 




M M M M

M M M M

1 ( ) ( )
3 333

( ) 1 ( ) 1 ( ) ( ) ( )
3 3 3 3 333

( ) 1 ( ) 1 ( ) ( )
3 3 3 3 333 0

;

;

,

T n n
Jk k IJPQ PQ

c n Sc n Tc n c n c n
IJk k S IJk k IJPQ IJPQIJ S PQ PQ

n S n T n n
IJk k S IJk k IJPQ IJPQ PQ nIJ S PQ

C P C P

C C C C C C

C C C C C C

  

     

        



        

         



 

 

(39) 

а также 

1 1 1 1

( ) 1 ( ) 1 ( ) 1 ( )
3 3 333 3 3 3

( ) 1 ( ) 1 ( ) 1 ( )
3 3 333 3 3 3

( ) 1 ( ) 1 ( )
3 3 333

;

;

n n n n

n n n n

S n S n T n n
i S i i s s PQiKL SKL KL PQKL

S n S n T n n
i S i i s s PQiKL SKL KL PQKL

S n S n T n
i i S iS

С C С C С C C С

С C С C С C C С

P C P C P C

   
         

         

    

  

  

  

M M M M

M M M M

1 ( )
3 3 3

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )
3 3 333 3 3 3 3 3 3

( ) 1 ( ) 1 ( ) 1 ( ) 1
3 3 333 3 3 3 3 3 3 0

;

;

.

n
i s s PQ PQ

Sc n Sc n Tc n c n c n
i i S i i s s PQ i s s pq pqS PQ

S n S n T n n
i i S i i s s PQ i s s pq pq nS PQ

C P

C C C C C C

C C C C C C

 

       

           

        

         

(40) 

Кроме того, из теоремы 1 вытекает следствие: пусть функции 0p  

являются постоянными. Тогда для функций ( )nP  имеем соотношения: 

 
 

 

( ) ( ) (0)

( ) 0 0
3

( ) 1 0 0
3 333 3

( ) 1 0 0
333 3

0;

( 1/ 2) ;

( 1/ 2) ;

( 1/ 2) .

n S n
IJ I IJ

T n
n

n
IJk k nIJ

S n
i i n

P P P

P p p

P C C p p

P C p p

  




 


 


  

      

      

      

                 (41) 

Доказательство получаем по индукции, используя формулы (32)–
(36) и (39), (40). 

Из теоремы 1 также вытекает теорема для пластины с четным 
тензором модулей упругости. 

Теорема 2. Пусть тензор модулей упругости пластины является 
четной тензорнозначной функцией локальной переменной   (т. е.
4 4( ) ( )  С С ). Тогда n   , коэффициенты (2 )nС  в соотноше-

ниях (28)–(31) и (37), (38) также являются четными функциями, а 

коэффициенты (2 1)nС  являются  нечетными функциями локальной 
переменной. 
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Д о к а з а т е л ь с т в о. Как и для теоремы 1, проведем доказа-
тельство на основе метода математической индукции. Для 0N   
четность (0)С следует из формул (32). Пусть утверждение справедли-
во и для некоторого N n . Для доказательства теоремы для случая 

1N n   следует заметить, что операторы  и   меняют чётность 

функции и в рекуррентные соотношения (33)–(36), кроме коэффици-

ентов ( ),nС  входят только четные функции IJKs , IJKLM , IJKLC , 
1

3 3i jC , ijklC . Теорема 2 доказана. 

Осредненные уравнения равновесия. Подставив формулу (24) 
в асимптотическое разложение (13), будем иметь 

( )
3

0

,n n
J iiJ

n

p




                                      (42) 

где 2 0p p    . Введя компоненты усилий ( )

0

n n
IJ IJ

n

T




      и пе-

ререзывающих сил ( )
3

1

n n
I I

n

Q




     , соотношение (39) можно за-

писать в виде 

0;J IJT                                              (43) 

.J JQ p                                           (44) 

Далее, умножив уравнение равновесия в локальной задаче (15) на 
 и проинтегрировав по толщине пластины с учетом соотношения 

( ) ( )
3 3
n n

I I      (которое получается интегрированием по частям 

с учетом силовых граничных условий задачи (15)), будем иметь 
( 1) ( )

3
n n

J IJ I
    . 

Тогда, вводя компоненты моментов ( 1)

1

n n
IJ IJ

n

M






   , из по-

следнего соотношения J IJ IM Q  . Дифференцируя это соотношение 

по Iq  и суммируя полученные соотношения, из (44) получим 

2 .IJ IJM p                                          (45) 

Уравнения (43)−(45) составляют осредненные уравнения равно-
весия пластины. 
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Осредненные определяющие соотношения. Ограничиваясь в 
асимптотических разложениях для усилий и моментов главными 
членами и используя соотношения (32)–(36) и (39), приходим к сле-
дующим выражениям: 

(0) (0) (1) (0) (1) (0) ;T T T Tc T
IJ M IJ IJIJKL KL IJKL KL IJKLM KLT С C С                    (46) 

(0) (0) (1) (0) (1) (0) .M M M Mc M
IJ M IJ IJIJKL KL IJKL KL IJKLM KLM С C С                 (47) 

Здесь введены следующие функции, не зависящие от локальной ко-
ординаты  : 

 

(0) (1)

(1) 1
3 3 3

( ) (0) (1) ( ) (0) (1)

; ;

;

, ;

T T
IJKL IJKLIJKL IJKL

T
IJk k S SMKL IJPQ PQKLMIJKLM

Tc n c c T n
IJ IJ IJ IJ IJ IJ

С C C C

C C C C C

 

 


    

   

    

         

 

          (48) 

 

(0) (1) 2 2

(1) 2 1
3 3 3

(0) 2 (1) (0) 2 (1)

, ;

;

, .

M M
IJKL IJKLIJKL IJKL

M
IJk k S SMKL IJPQ PQKLMIJKLM

Mc c c M
IJ IJIJ IJ IJ IJ

С C C C

С C C C C

 

 


    

     

     

           

 

      (49) 

З а м е ч а н и е. Из теоремы 2 и последних соотношений вытекает, что 
для пластин с симметричным тензором модулей упругости коэффициенты 

(1)T
IJKLC  , (1)T

IJKLMC  , (0)M
IJKLС  обращаются в нуль. 

Осредненная система уравнений. Подставляя соотношения 
(46), (47) в осредненные уравнения (43), (45), получим осредненную 
систему уравнений для нахождения трех неизвестных функций 

(0) ( )i Iu q от двух координат: 

(0) 2 (0) (1) 3 (0) (1) 3 (0)
3

(0) 3 (0) (1) 4 (0) (1) 4 (0) 2 2
3

0;

.

T T T Tc T
LJ KLJ LMJ J IJ J IJIJKL K IJKL IJKLM K

M M M Mc M
LJI KLJI LMJI IJ IJ IJ IJIJKL K IJKL IJKLM K

С u C u С u

С u C u С u p

   

   

            


            
(50) 

Добавляя к этой системе уравнений граничные условия на контуре 
  срединной поверхности, получим постановку осредненной (гло-

бальной) задачи для нахождения трех перемещений (0)
iu , заданных на 

этой срединной поверхности  пластины. 
Построение решения трехмерной задачи термоползучести  

с помощью рекуррентных соотношений для решений локальных 
и глобальной задач. С помощью разработанной теории алгоритм 
построения асимптотического решения общей трехмерной задачи 
термоползучести (1) может быть представлен следующим образом. 
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1. В результате решения глобальной задачи (система (50) с гра-
ничными условиями) находим перемещения нулевого приближения 

(0) ( ).i Iu q  

2. Вычисляем кривизны (0) 2 (0)
3IJIJ u    и деформации срединной 

поверхности: (0) (0) (0)2 .J IIJ I Ju u      
3. По рекуррентным формулам (32)−(34) вычисляем компоненты тен-

зоров ( 1) ,
n

n
IJKLС 

M  
1

( 1) ,
n

n
IJKLС


 

M  ( 1),n
IJP   ( 1),c n

IJ
   ( 1)n

IJ
   и ( 1),

n

S n
IKLС  

M  

1

( 1),
n

S n
IKLС


  

M  ( 1),S n
IP   ( ),Sc n

I
  ( ).S n

I
   

4. С помощью соотношений (28)–(31) вычисляем деформации ( )n
IJ , 

кривизны ( )n
IJ  для 1, 2, ...n   и напряжения ( )

3 ,n
I  ( )

33
n  для 0,1, 2, ...n   

5. По формулам (37) вычисляем напряжения ( )n
IJ  для 0,1, 2, ...n   

Таким образом, с помощью этого алгоритма могут быть вычисле-
ны все члены асимптотических разложений перемещений (4) и напря-
жений (8), причем для нахождения членов этого ряда необходимо ре-
шить только осредненную задачу теории пластин (50), все дальнейшие 
действия по приведенному алгоритму — это аналитические формулы 
для нахождения соответствующих коэффициентов и членов ряда.  

Следовательно, с помощью разработанной асимптотической теории 
тонких пластин может быть вычислено точное в математическом смыс-
ле напряженно-деформированное состояние пластин со всеми шестью 
компонентами тензора напряжений, включая поперечные нормальные 
напряжения и напряжения межслойного сдвига.  

Выводы. Предложена теория термоползучести многослойных 
тонких пластин, основанная на анализе общих уравнений трехмерной 
нелинейной теории термоползучести с помощью построения асимпто-
тических разложений по малому параметру, представляющему отно-
шение толщины пластины к характерной длине, без введения каких-
либо гипотез относительно характера распределения перемещений и 
напряжений по толщине. Сформулированы локальные задачи для на-
хождения всех шести компонент тензора напряжений во всех слоях 
пластины, с точным учетом всех граничных условий. Выведены гло-
бальные (осредненные по определенным правилам) уравнения теории 
термоползучести пластин; показано, что эти уравнения близки по 
структуре к уравнениям теории пластин Кирхгофа – Лява, но отлича-
ются от них наличием производных 3-го порядка от продольных пере-
мещений. Показано, что предложенная теория позволяет вычислить 
все шесть компонент тензора напряжений, включая поперечные нор-
мальные напряжения и напряжения межслойного сдвига, для чего не-
обходимо численно решить локальные задачи до третьего приближе-
ния включительно и глобальные уравнения теории термоползучести 
пластин. 
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Asymptotic theory of thermocreep 

for multilayer thin plates 

© Yu.I. Dimitrienko, E.A. Gubareva, Yu.V. Yurin 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The suggested thermocreep theory for thin multilayer plates is based on analysis of gen-
eral three dimensional nonlinear theory of thermalcreep by constructing asymptotic ex-
pansions in terms of a small parameter being the ratio of a plate thickness and a charac-
teristic length. Here we do not introduce any hypotheses on a distribution character for 
displacements and stresses through the thickness. Local problems were formulated for 
finding stresses in all structural elements of a plate. It was shown that the global (aver-
aged by the certain rules) equations of the plate theory were similar to equations of the 
Kirchhoff–Love plate theory, but they differed by a presence of the three-order deriva-
tives of longitudinal displacements.  The method developed allows to calculate all six 
components of the stress tensor including transverse normal stresses and stresses of in-
terlayer shear. For this purposes one needs to solve global equations of thermal creep 
theory for plates, and the rest calculations are reduced to analytical formulae use. 
 
Keywords: asymptotic theory, asymptotic expansions, thin multilayer plates, theory of 
thermocreep, local problems. 
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