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В статье рассмотрена задача классификации отсчетов радиолокационного                   

изображения (РЛИ). Использовалась модель локально-однородного РЛИ, в рамках 

которой отсчеты каждого небольшого участка (локальной области) считались 

принадлежащими только одному классу. Проведено сравнение результатов                       

классификации нескольких реальных РЛИ по локальным областям при использова-

нии статистических критериев максимума апостериорной вероятности,                      

Колмогорова и Крамера-Мизеса-Смирнова. При этом в случае, когда перечисленные 

критерии затруднялись классифицировать локальную область — при попадании ее 

на границу раздела подстилающих поверхностей, та считалась отнесенной к                    

особому, граничному классу, и ее отсчеты обрабатывались с помощью сеточного 

метода разделения смесей вероятностных распределений. Для каждого критерия 

оценивалась точность классификации, как доля верно классифицированных                          

пикселей внутри выделенных однородных областей. Установлено, что в случае                          

значительных межклассовых различий наилучшую точность классификации                        

обеспечивает использование наименее мощного среди непараметрических                               

критериев-критерия Колмогорова. Также на примере реального изображения                        

показано, что когда отличия характеристик объектов одного класса оказываются 

сопоставимы с межклассовыми различиями, наибольшая точность классификации 

достигается при использовании критерия максимума апостериорной вероятности. 

Подобные случаи характерны для широкого класса задач классификации, в том 

числе не связанных с обработкой изображений.  

 

Ключевые слова: задача классификации отсчетов РЛИ, метод Байеса, дискретная 

смесь распределений, проверка гипотезы о виде распределения, критерий                 

Колмогорова, критерий Крамера-Мизеса-Смирнова, мощность критерия 

  

Введение. Доступность, а также высокое качество современных 

спутниковых изображений Земли позволяет использовать эти данные 

при решении широкого спектра задач народного хозяйства [1]. Многие 

из них можно решить, выполнив классификацию пикселей обрабаты-

ваемого изображения. 

Задачи классификации можно разделить на два типа: на задачи 

«обучения с учителем» (supervised classification), когда известно, на     

какие классы разделяются пиксели исследуемого РЛИ, так и на                  

задачи «обучения без учителя» (unsupervised classification) —                                    

в противном случае [2]. Пути их решения отличаются в зависимости 

от специфики классифицируемых данных [3]. 

Отсчеты РЛИ обладают вероятностными свойствами: каждый тип 
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подстилающей поверхности на нем представлен выборкой из                             

некоторой случайной величины (СВ) [1,4] с законом распределения, 

вид и параметры которого в задачах «обучения с учителем»                                     

полагаются известными. Множество типов поверхностей задает                         

множество классов, на которые можно разделить пиксели РЛИ. 

Поскольку обрабатываемые данные имеют статистическую                      

природу, решение о соответствии объекта некоторому классу может 

быть принято с помощью статистических критериев. Для этого                             

широко применяется критерий максимума апостериорной вероятно-

сти, лежащий в основе Байесовского метода классификации [3].  

В качестве объекта классификации может выступать как                              

отдельный отсчет, так и небольшой участок (локальная область)                    

РЛИ — тогда рассматривается модель локально-однородного                           

изображения. В рамках этой модели отсчеты каждого участка                              

считаются принадлежащими только одному классу. Такой подход                       

позволяет учесть пространственные зависимости между соседними 

пикселями РЛИ и уменьшить влияние спекл-шума на результат                       

классификации. Однако когда обрабатываемая область содержит                     

границу раздела нескольких типов поверхностей, выборка,                                         

составленная из ее отсчетов, не будет соответствовать ни одному из 

представленных на РЛИ распределений — она будет являться их                    

смесью [2,5]. Такую область нельзя однозначно классифицировать по 

значению апостериорной вероятности.  

Метод Байеса не позволяет корректно обработать случай, когда 

выборка не соответствует  ни одному из изучаемых вероятностных              

законов. Однако это можно сделать, используя непараметрические 

критерии проверки типа распределения [6,7]. С их помощью можно 

классифицировать однородные области, а также выделить граничные, 

которые не соответствуют ни одному из классов, и обработать их 

иным способом. 

В работе проведено сравнению результатов классификации                   

пикселей РЛИ при использовании различных статистических крите-

риев: критерия максимума апостериорной вероятности и непарамет-

рических критериев проверки типа распределения — Колмогорова и 

Крамера-Мизеса-Смирнова. В рамках задачи «обучения с учителем» 

на реальных изображениях были выделены "эталонные" площадки 

классов. Затем в ходе классификации определялась степень                                

соответствия локальных областей изображения заданным эталонам. 

Точность классификации оценивалась как доля верно классифициро-

ванных отсчетов среди пикселей, лежащих внутри дополнительно               

выделенных на изображении однородных областей. 

Классификация отсчетов изображения по критерию макси-

мума апостериорной вероятности. Байесовский подход. В этом       
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методе классификации полагается, что для каждого исследуемого       

объекта X  с набором признаков x  задано вероятностное                             

пространство. Его элементарное пространство исходов состоит из M  

элементов — 
1{ ... }М   , соответствующих M  классам, к которым 

может быть отнесен объект X . ( | ), 1...iP x i M   — апостериорные 

вероятности для объекта X  принадлежать классу i  — задают на нем 

вероятностную меру. Классификация по критерию максимума                

апостериорной вероятности означает, что выбор принимается в пользу 

класса, у которого значение ( | )iP x  выше [3]. 

Точность классификации зависит от информативности признака 

x  . При обработке РЛИ в качестве него выступает выборка из его              

отсчетов размера 1,2...n  . Ее информативность можно описать                  

функцией — информацией Фишера ( )ni   [7],  для которой                         

справедливо соотношение: 

 ( ) ( ),ni n i     (1) 

где ( )i   — количество информации, содержащееся в одном                          

наблюдении:  т.е. информативность выборки растет пропорционально 

ее объему. Поэтому зачастую рассматриваются выборки  отсчетов            

размера 1n  , т.е. РЛИ считается локально-однородным. 

В рамках модели локально-однородного изображения                             

предполагается, что в каждой локальной области , 1..jS j N                             

фиксированного размера l  пиксели принадлежат только к одному из 

видов подстилающих поверхностей, описывающихся множеством 

классов 1... М  . Также считается, что априорные вероятности                    

классов ( )iP   одинаковы. Если отдельные отсчеты независимы, то 

( | )iP x  определяются только значением функции правдоподобия 

(ФП) ( | )ip x   [3] :  

 ( | ) ( | ).
L

i k i

k

p x p x     (2) 

Однако подход обработки изображения по локальным областям 

обладает существенным недостатком: он нарушает корректность                   

постановки задачи классификации, поскольку в этом случае среди               

исследуемых объектов существует некоторое количество элементов, 

которые нельзя отнести ни к одному классу 1... М  . Любое  принятое 

решение будет ошибочным и снизит точность результата классифика-

ции. В частности, при таком подходе будут искажены границы раздела 

различных подстилающих поверхностей. 
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Классификация с использованием непараметрических                     
критериев проверки типа распределения.  Задачу классификации 
также можно рассмотреть как задачу проверки гипотезы о виде                      

распределения исследуемой выборки 
jS . Решение о соответствии               

некоторому вероятностному закону принимается с помощью                           
специальных критериев [6,7] — Хи-квадрат, Колмогорова и др. 

В случае, когда область 
jS  содержит границу раздела нескольких 

типов подстилающих поверхностей, непараметрические критерии 
проверки типа распределения, в отличие от критерия максимума                      

апостериорной вероятности, позволяют выделить 
jS  в особый                       

класс — как участок, который нельзя поставить в соответствие ни                   

одному из классов 1... М   — и обрабатывать его уже  другим                            

способом. В работе предлагается использовать алгоритм классифика-
ции, состоящий из следующих шагов. 

Шаг 1. Проверка гипотезы о виде распределения в локальной              
области. Исходное изображение разбивается на перекрывающиеся   

области 
jS , и для каждой из них с помощью заданного критерия            

определяется, какому из классов соответствует выборка ее отсчетов. 

Определяется m  — число классов, для которых решение было                  
положительным. Возможны следующие случаи: 

 1m   . В этом случае 
jS  определяется как область, содержащая 

отсчеты только выбранного класса. 

 1m  . Если для нескольких классов решение было положитель-
ным, то необходимо уменьшить их количество до одного — для  этого 
используется критерий максимума апостериорной вероятности. 

 0m  . jS  классифицируется как граничная область. 

Шаг 2. Классификация пикселей граничных областей с помощью 
сеточного метода разделения смесей. Оцениваются параметры (веса) 
компонент, после чего отсчеты классифицируются попиксельно по 
критерию максимума апостериорной вероятности. 

Первый шаг алгоритма обрабатывает только однородные участки, 
при этом выделяя граничные. Второй шаг позволяет корректно 
классифицировать отсчеты граничных областей. При этом как смесь 
обрабатываются только отсчеты выбранного участка, но не всего 
изображения целиком — такой подход позволяет получить более 
детальный результат [9].  

Сеточный метод разделения смесей. Для описания граничных 

областей используется модель смеси вероятностных распределений. 

Дадим ее определение: рассмотрим специальную функцию 

распределения (ФР)  ,F x y  на  , где  — это подмножество 

mмерного евклидова пространства, 1m  , снабженное бореле-  



Моделирование локально-однородных радиолокационных изображений… 

107 

вской — алгеброй ⅀. Если мы фиксируем y , то  ,F x y  будет ФР 

величины x , если же мы фиксируем x , наблюдается обратное — 

 ,F x y  будет ФР величины y . В задаче разделения смеси отсчетов 

РЛИ множество встречающихся на нем типов подстилающих 

поверхностей конечно, как и множество соответствующих им 

параметров распределений — т. е. СВ Y , задающая их значения, 

является дискретной. Тогда  H x  — смесь функции  ,F x y  по y , 

определяется следующим образом (и если F  имеет плотность f ) [3]: 

 
1

1

( ) E ( , ) ( , ),

( ) E ( , ) ( , ),

k k

k

k k

k

H x F x p F x

h x f x p f x





 

 





Y

Y

y

y
  (3) 

где Y  — дискретная СВ, значения 1y , 2y …, которой возникают с        

вероятностями, называемыми весами компонент 1p , 2p ,…, причем 

1

1k

k

p


 ;  , kF x y  — компоненты смеси. В задачах обработки РЛИ 

традиционно используются сдвиг-масштабные смеси [3] — вектор             

параметров ky  состоит лишь из двух элементов ( , ),k ka   ˆ[0, ),ka a  

ˆ[0, )k  , где â  и ̂  — числа.  Интервалы допустимых значений для 

параметров сдвига  и масштаба могут быть заменены на дискретные 

множества известных точек [8] — т.е.  1{ } ,aN

k l la a   1{ }
N

k j j
   .                 

Множество пар значений  ,l ja   образует сетку из aK N N   узлов. 

Вводя  индекс 1...k K , единый для всех элементов сетки, получим 

соответствующий вид выражения (3) [8]: 

 
1

( ) .k

k

K

k

k

x
h

a
x p f



 
  

 
   (4) 

Выражение (4) определено однозначно, если семейство функций 

{ ( )}F f x  является идентифицируемым [10]. В работе будут                         

рассматриваться дискретные смеси логнормальных распределений, 

идентифицируемость которых была доказана в [11]. 

Неизвестными параметрами в (4) являются веса компонент kp  [6], 

оценить значения которых можно путем максимизации ФП, используя 

усеченный EM-алгоритм. Предположим, что задана K  компонент-

ная смесь с плотностью (4), и выборка 1( ... ),nX x x n K   — ее                                

реализация. Согласно [12], вместо логарифма правдоподобия можно 

максимизировать функцию следующего вида:  
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1 1

1 1 1 1

log( ( , )) l ln( )

ln( ( )) ln( ).

K n

ij j

j i

K n K n

ij j i ij ij

j i j i

L X g p

g f X g g


 

   

 

 



 
  (5) 

Здесь K  — число компонент смеси; 
ijg  — это апостериорная                        

вероятность, что объект ix  принадлежит j  ой компоненте; 
jp  — 

веса компонент; ( )j if X  — плотность вероятности j   ой компоненты 

смеси для i  го наблюдения. Поиск максимума в классической версии 
ЕМ-алгоритма происходит так: определяется число K , и                           
инициализируются начальными значениями (НЗ) веса и параметры  их 

распределений. После этого наступает E-этап — вычисляются 
ijg  и 

подставляются в (5).  После следует M-этап: вычисляются оценки                      
параметров распределений компонент, максимизирующие слагаемое 

 
1 1

ln ( )
K n

ij j i

j i

g f X
 

 . В усеченной версии ЕМ-алгоритма M-этап                             

исключается. 

Выбор критерия для определения вида распределения в ло-
кальной области. Для проверки гипотезы о виде распределения от-
счетов удобно использовать непараметрические критерии согласия. 
Среди них можно выделить две группы: критерии, работающие с груп-
пированными данными, и критерии, требующие построения вариаци-

онного ряда выборки (1) ( )... nx x  .  

К первой группе относятся критерий Хи-квадрат Пирсона и                         
дискретный критерий Колмогорова-Смирнова [13], со статистикой 
вида: 

 
1..

max | ( ) ( ) |,
in

i k
KS F x F x


    (6) 

где k  — число интервалов группировки, ( )
inF x  — значение                      

эмпирической ФР на интервале i  (в отличие от обычного критерия 
Колмогорова, здесь ФР строится по интервалам группировки,                        
заданным заранее, а не по получающимся в ходе построения                                 
вариационного ряда выборки), ( )F x  — гипотетическая ФР. Использо-

вание критериев с группировкой при обработке выборки более                    
привлекательно, поскольку при программной реализации                           
асимптотическая сложность этапа пре-обработки — группировки                

данных, составляет ( )O n . При работе с вариационным рядом выборки, 

асимптотическая сложность упорядочивания элементов (для                         

алгоритма «быстрой сортировки» [14]) составляет  log( )O n n  в              

лучшем случае. 
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Однако группировка приводит к утере части информации об                     

обрабатываемой выборке [7]. Значение статистики в таких критериях 

может искажаться в зависимости от выбора интервалов группировки, 

что демонстрирует дискретный критерий Колмогорова-Смирнова. 

Статистика (6) представляет собой максимум отклонения                                

гипотетической ФР от ее интерполяции сплайном [15] нулевой                        

степени по сетке, составленной из граничных значений интервалов 

группировки. Погрешность интерполяции [15] при максимальной 

длине шага сетки maxh  имеет вид: 

 max
1..

max | ( ) ( ) | max( ( )) ,
in

i k
F x F x p x h


     (7) 

где ( )p x  — гипотетическая плотность вероятностей. Это означает, что 

если закон распределения выборки соответствует гипотетическому, то 

после проведения группировки можно ошибочно отвергнуть основ-

ную гипотезу — по причине того, что значение статистики KS                       

превысит заданный порог a  за счет погрешностей интерполяции. 

Еще одним аргументом против использования критериев с                        

группировкой является специфика предложенного алгоритма                           

классификации. Метод работает с малыми выборками, т.к. иначе                     

велика вероятность, что рассматриваемый участок не будет однород-

ным. На таких данных критерии с группировкой работают                         

нестабильно, поскольку их статистики являются дискретными СВ [6], 

и их фактическое распределение при малых n  значительно                               

отличается от асимптотического [6].  

В данной работе использовались критерии, требующие                               

построения вариационного ряда выборки. Таких решающих правил 

достаточно много — это, например, критерии Колмогорова, Ватсона и 

Крамера-Мизеса-Смирнова [6]. Статистика критерия Колмогорова 

имеет вид: 

 sup | ( ) ( ) |,n n
x

nD n F x F x
 

     (8) 

где ( )nF x  — эмпирическая ФР. Статистика критерия Крамера-Мизеса-

Смирнова имеет вид:  

 

2

2

( )

1

1 2 1
( ) .

12 2

n

w n i

i

i
S n F x

n n




 
     

 
   (9) 

Решение о соответствии распределения выборки гипотетическому 

может быть принято при сравнении полученных значений статистик 

,n wnD S  с критическими при заданном уровне доверия [6].  

Выбор в пользу использования одного из этих критериев может 
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быть принят на основании знаний о его мощности — величины                

 1  , где   — значение ошибки 2-го рода [6]. Мощность                  

критерия — это вероятность отвергнуть основную гипотезу в пользу 

альтернативы, когда она верна [6]. Эта величина характеризует                      

«избирательность» решающего правила, его способность различать 

близкие альтернативы [6]. Согласно результатам работы [6], критерий 

Крамера-Мизеса-Смирнова мощнее критерия Колмогорова. В этой               

работе влияние мощности выбранного решающего правила на резуль-

тат классификации исследовалось на примере реальных РЛИ. 

Описание тестируемых изображений. Исследуются два РЛИ. 

Первое (рис. 1) представляет собой фрагмент изображения                               

Волгоградской области, полученного космическим радиолокатором 

Sentinel-1. Длина волны радиолокатора 5 см, разрешение изображения 

10 м. Участок съемки включает Цимлянское водохранилище (в левой 

верхней части кадра), поля с различной степенью развития                              

сельскохозяйственных культур, а также несколько населенных                     

пунктов, выделяющиеся более мощными отраженными сигналами.  
 

 

Рис. 1. Первое обрабатываемое изображение 

 

Классификация проводилась в рамках задачи «обучения                              

с учителем» — поэтому для описания изображения было выбрано 5 

классов — в соответствии с типами поверхностей, представленными 

на нем. На рис. 1 зелеными прямоугольниками выделены эталонные 

участки, использованные для оценивания параметров распределений 

отсчетов выделенных классов.  

Распределение пикселей эталонов является двухпараметрическим 

логнормальным, что было проверено с помощью критерия  Колмогорова 

на уровне доверия 1 0,95  . Гистограмма отсчетов участка 4                      

с наложенной на нее кривой распределения представлена на рис. 2.  
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Рис. 2. Гистограмма отсчетов участка 4 с наложенной на нее кривой                                

логнормального распределения ( 3,95687, 0,17303a   ) 

 

Также на первом изображении цветными линиями выделены                

контуры, ограничивающие однородные области, внутри которых                          

пиксели считались априорно принадлежащими классам 1, 2 и 4.                    

Выделенные области использовались для оценки точности                              

классификации: она вычислялась как доля верно классифицированных 

отсчетов среди всех пикселей, лежащих внутри ограниченной                             

контуром области.  

Второе изображение (рис. 3) получено авиационным радиолокато-

ром с длиной волны 3 см. В верхней части изображения находится 

поле, окаймленное дорогой. В средней части наблюдается группа                      

зданий. В нижней части — фрагмент лесного массива, отдельные 

группы деревьев, просеки. Разрешение изображения составляет                    

порядка 1 м. 
 

 

Рис. 3. Второе обрабатываемое изображение 
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Для описания изображения, представленного на рис. 3 также              
использовалось 5 классов. Цветными линиями выделены контуры, 
ограничивающие однородные области для оценки точности классифи-
кации. Участки, использованные для определения параметров                     
распределений классов также выделены на рис. 3 зелеными                     
прямоугольниками: распределение их отсчетов также является                  

логнормальным. Параметры распределений a   и    для обоих                       
изображений оценивались с помощью метода моментов [7] из формул 
[17] и приведены в таблице 1. 

Таблица 1 

Оценки значений параметров распределений классов отсчетов для двух 

обрабатываемых изображений  

Номер  

изображения 

Оцениваемый  

параметр 

Номер класса 

1 2 3 4 5 

1 
а 3,06402 4,25356 3,8112 3,95688 5,33977 

σ 0,14685 0,18398 0,17187 0,17303 0,10242 

2 
а 2,5442 3,65335 4,39568 4,18576 4,75181 

σ 0,25832 0,34678 0,45075 0,36730 0,42898 

 

Оба изображения классифицировались с помощью трех                            
критериев: критерия максимума апостериорной вероятности,                         
критериев Колмогорова и Крамера-Мизеса-Смирнова при уровне                   

доверия 1 0,95  . Соответствующие верхние процентные точки 

распределений статистик критериев, зависящие от размера обрабаты-

ваемой области l  (рассматривались случаи 5l   и 10l  ) приведены 
в таблице 2 [6, 17]. На этапе обработки изображения смесевыми                    

методами размер области во всех случаях составлял 10l  . 

Таблица 2 

Процентные точки распределений статистик критериев Колмогорова и 

Крамера-Мизеса-Смирнова, использованные при различных размерах                         

обрабатываемой области l  

Размер   

области l 

Критерий Колмогорова 

 

Критерий   

Крамера-Мизеса -Смирнова 

5 0,264 0,45778 

10 0,134 0,4614 

 

Результаты классификации для первого изображения. Для 

первого изображения размер области обработки l  равнялась 5.                        
Результаты классификации приведены на рис. 4.  

Оценки точности результатов классификации по всем трем                  
критериям для классов 1, 2 и 4 представлены в таблице 3.  
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Рис. 4. Результаты классификации для первого изображения: 
а — критерий максимума апостериорной вероятности;  

б — критерий Колмогорова; в — критерий Крамера-Мизеса-Смирнова 
  

При всех трех способах обработки пиксели классов 1 и 2                          

классифицированы с высокой точностью — доля верно отнесенных 

пикселей составляет порядка 0,9. При этом критерий Колмогорова 

обеспечил, в целом, лучшие результаты в сравнении с другими. 

Таблица 3 

Доля верно классифицированных пикселей для классов 1, 2 и 4                                

первого обрабатываемого изображения  

Номер 

класса 

Критерий классификации 

критерий максимума 

апостериорной 

 вероятности 

критерий  

Колмогорова 

 

критерий  

Крамера-Мизеса-

Смирнова 

1 0,946439 0,955449 0,959348 

2 0,882468 0,936222 0,908104 

4 0,435422 0,504586 0,448831 
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Результаты классификации для второго изображения. Для 

второго изображения ширина области обработки l  в силу большей  его 

неоднородности  равнялась 10. Результаты классификации приведены 

на рис. 5.  
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в 

Рис. 5. Результаты классификации для второго изображения: 
а — критерий максимума апостериорной вероятности;  

б — критерий Колмогорова; в — критерий Крамера-Мизеса-Смирнова 
 

Оценки точности классификации представлены в таблице 4. 
Второе исследуемое изображение по своей структуре сложнее, 

чем первое: оно менее однородно (различные участки, соответствую-
щие одному и тому же классу, отличаются по средней яркости                      
сильнее) и на нем присутствует большее количество перепадов                           
яркостей (области класса 3, соответствующие лесному массиву).                         
В результате точность классификации по сравнению с первым изобра-
жением падает. При этом в целом, лучшие результаты в сравнении с 
другими решающими правилами обеспечило использование критерия 
максимума апостериорной вероятности.  
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Таблица 4 

Доля верно классифицированных пикселей для классов 2, 3 и 4                            

второго обрабатываемого изображения  

Номер 

класса 

Критерий классификации 

критерий максимума 

апостериорной 

 вероятности 

критерий  

Колмогорова 

 

критерий  

Крамера-Мизеса-

Смирнова 

2 0,753544 0,647284 0,652097 

3 0,17405 0,188414 0,16984 

4 0,876918 0,817379 0,85362 

 

Сравнение результатов классификации. Были рассмотрены два 

сильно отличающихся по своей структуре изображения — они                      

различались по однородности, а также степени близости распределе-

ний, соответствующих каждому из его классов. Для оценки степени 

перекрытия этих распределений на рис.6 построена диаграмма                        

разброса значений элементов выборок из  вероятностных законов, 

описанных в таблице 1, относительно их математических ожиданий 

(МО) на величину среднего квадратичного отклонения [17]. Верхняя 

и нижняя границы разброса для каждого класса были дополнительно 

выделены пунктирной линией соответствующего цвета. 
 

 

 
 

 

   

         класс              класс 

а б 

Рис. 6. Диаграмма разброса значений элементов выборок из распределений,              

соответствующих классам 1–5, относительно МО для: 
а — первого изображения; б — второго изображения 

 

На рис.6 показано, что распределения, характеризующие классы 

первого изображения, значительно отличаются друг от друга. Зоны          

перекрытия областей разброса, за исключением случая классов 3 и 4, 

невелики. Для второго изображения области разброса выборок из                 

распределений, соответствующих классам 1–5, за исключением            

первой, сильно перекрываются между собой. Распределения отсчетов 

классов второго изображения можно назвать близкими альтернативами.  
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Поэтому результаты классификации двух РЛИ, при использова-

нии трех рассмотренных критериев, отличаются друг от друга по                

точности. Графически они представлены на рис. 7: каждая точка на 

нем представляет собой отношение точности классификации                        

полученной при использовании одного из критериев к точности                     

классификации по критерию максимума апостериорной вероятности.  
 

 

 
 

Номер класса 

а 

 

 
 

Номер класса 

б 

Рис.7. Сравнение точности классификации для трех решающих критериев                          

с точностью критерия максимума апостериорной вероятности для:  
а — первого изображения; б — второго изображения; 

─ — критерий максимума апостериорной вероятности;  
─ — критерий Колмогорова; ─ — критерий Крамера-Мизеса-Смирнова 

 

В случае первого изображения среди непараметрических                          

критериев  наиболее точные результаты были получены при исполь-

зовании критерия Колмогорова, несмотря на то, что он является менее 
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мощным, чем критерий Крамера-Мизеса-Смирнова. Меньшая                         

мощность критерия допускает большую вариативность                               

обрабатываемой выборки, выражающуюся в отклонениях                                

эмпирического распределения от гипотетического. Это позволяет                     

получить более точный и однородный результат классификации, когда 

сравниваемые распределения слабо перекрываются между собой. 

Также в этом случае результат классификации по критерию Колмого-

рова по точности превосходит и результат, получающийся при выборе 

критерия максимума значений апостериорной вероятности — за счет 

корректной обработки граничных участков. 

 Для второго изображения, распределения классов которого                     

перекрываются сильнее, результат, полученный при применении                        

критерия Крамера-Мизеса-Смирнова, оказывается более высокой                

точности, чем при использовании критерия Колмогорова — первое           

решающее правило лучше различает близкие альтернативы. Но при 

этом по точности он уступает результату, получающемуся при                              

использовании критерия максимума апостериорной вероятности.       

Причиной тому является большая неоднородность данных                                       

по сравнению с первым случаем: на втором изображении внутриклас-

совые различия, оказываются сопоставимы с межклассовыми.                        

Распределение отсчетов одного класса не удается описать с помощью 

одного выбранного эталона, поэтому точность классификации                            

с использованием непараметрических критериев проверки типа                      

распределения падает.  

На основании полученных результатов можно сделать вывод, что 

выбор решающего правила  необходимо делать с учетом                              

характеристик исходных данных и классов разделения. В ряде случаев 

выбор менее точного метода позволит более правильно классифици-

ровать исследуемые объекты. Полученные закономерности                     

применимы для широкого класса задач классификации 

Заключение. В рамках задачи «обучения с учителем» было                  

проведено сравнение результатов классификации изображения                               

по локальным областям (модель локально-однородного РЛИ) при                    

использовании критериев максимума апостериорной вероятности, 

Колмогорова и Крамера-Мизеса-Смирнова на примере реальных РЛИ. 

Для каждого критерия оценивалась точность классификации. 

Когда классы сильно различны между собой, наибольшую                     

точность классификации продемонстрировал наименее мощный среди 

непараметрических критериев критерий Колмогорова, который                        

допускает большую вариативность распределения для объектов              

одного класса, что позволяет получить более однородный результат. 

В случае, когда отличия характеристик объектов, принадлежащих 

одному классу, оказываются сопоставимы с межклассовыми                          
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различиями, наибольшую точность демонстрирует критерий                               

максимума апостериорной вероятности — для описания класса                    

оказывается недостаточно одного эталона, что снижает точность                  

классификации непараметрическими критериями. 

Полученный результат позволяет заключить, что выбор                  

решающего правила следует делать в соответствии с характеристи-

ками исходных данных. Если межклассовые различия велики, выбор 

менее точного метода позволяет более правильно классифицировать 

исследуемые объекты. Этот результат можно обобщить на широкий 

класс задач классификации, в том числе не связанных с обработкой 

изображений. 
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The article deals with the problem of classifying pixels of the radar image (RI). A locally 

homogeneous radar image model was used, in which the readings of each small area (local 

area) were considered to belong to only one class. The classification results of several real 

radar images by local areas are compared using the statistical criteria for the maximum a 

posteriori probability, Kolmogorov and Cramer-Mises-Smirnov. At the same time, in the 

case when the listed criteria made it difficult to classify a local area — when it hit the 

interface of the underlying surfaces, it was considered to be assigned to a special,                   

boundary class, and its readings were processed using the grid method for separating                       

mixtures of probability distributions. For each criterion, the classification accuracy was 

evaluated as the proportion of correctly classified pixels within the selected homogeneous 

areas. It has been established that in the case of significant interclass differences, the best 

classification accuracy is ensured by the use of the least powerful Kolmogorov criterion 

among nonparametric criteria. Also, using a real image as an example, it is shown that 

when the differences in the characteristics of objects of the same class are comparable to 

interclass differences, the highest classification accuracy is achieved when using the                 

maximum a posteriori probability criterion. Such cases are typical for a wide class of clas-

sification problems, including those not related to image processing. 

  

Keywords: classification of radar images, Bayesian method, discrete mixture of                     

distributions, testing the hypothesis about distribution type, Kolmogorov's test, Cramer-

Mises-Smirnov's test, power of the test 
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