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Качественное численное решение уравнений математической физики неразрывно 

связано с обеспечением высокой точности аппроксимации всех дифференциальных 

операторов, входящих в эти уравнения. Решение этой задачи для первых и вторых 

производных функций, присутствующих в различных уравнениях математической 

физики, подробно описано в многочисленных литературных публикациях. В тоже 

время смешанные производные не так уж часто присутствуют в уравнениях                           

математической физики, вследствие чего вопросам, связным с качеством                         

конечно-разностной аппроксимации этих производных не уделено должного вни-

мания в литературных публикациях. Одной из основных причин, обусловливающих 

появления в уравнениях математической физики смешанных производных искомых 

функций, является применение аффинного преобразования исходной системы                     

координат, обеспечивающего переход от области определения рассматриваемой 

задачи сложной формы к аналогичной области определения существенно более 

простой формы. Решению этой задачи  посвящены материалы данной статьи, в 

которой на примере рассмотрения относительно простой задачи аппроксимации 

смешанных производных на прямоугольной области определения искомой функции, 

дискретизация значений которой внутри этой области характеризуется                     

постоянными шагами по каждому направлению. Приводится подробный вывод 

конечно-разностных соотношений, используемых для конечно-разностной                       

аппроксимации смешанных производных во всех характерных узлах области                  

определения функции, что предопределяет возможность развития предложенной 

методики на области определения различного типа.  

 

Ключевые слова: уравнения математической физики, конечно-разностная аппрок-

симация, смешанные производные, дифференциальные операторы 

 

Введение. Численное решение уравнений математической                    

физики сопряжено с использованием конечно-разностной аппрокси-

мации всех содержащихся в них дифференциальных операторов в                  

окрестности каждого узла дискретизации в заданной области                    

определения искомых функций. Чаще всего уравнения                           

математической физики помимо самих искомых функций содержат 

их первые и вторые частные производные по различным аргументам. 

Весь комплекс вопросов, связанных с составлением                             

конечно-разностных аналогов для дифференциальных операторов в 

уравнениях такого типа подробно описан в литературе (смотри, 

например, работы [1–7]).  

Наиболее остро проблема, связанная с точностью конечно-
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разностных аналогов дифференциальных операторов, возникает в 

задачах, характеризующихся сложной формой области определения 

искомых функций. Применение же аффинного преобразования,                    

приводящего к качественному упрощению этой области, для                         

многомерных уравнений математической физики сопровождается 

появлением в уравнениях смешанных производных искомых                    

функций. В качестве примера возникновения такой ситуации можно 

сослаться на работы [8, 9]. Методологии же качественной конечно-

разностной аппроксимации смешанных производных, которой и                

посвящена данная статья, в литературе не уделено должного                       

внимания. 

Физико-математическая постановка задачи. Рассматривается 

задача построения конечно-разностных аналогов для смешанных 

производных, входящих в двухмерное уравнение математической 

физики, примером которого может быть уравнение                            

теплопроводности. 

 Искомая функция  ,T x y определена в прямоугольной области, 

равномерно дискретизированной по обоим аргументам: 

  , ,i j i jT T x y , 1, xi N , 1, yj N ; 

 1 0x  ,  1i xx h i a   , 1, xi N ,  1/ 1x xh N  ; 

 1 0y  ,  1j yy h j   , 1, yj N ,  1/ 1y yh N  . 

Ниже, как и обычно, при построении конечно-разностных             

аналогов для двумерных дифференциальных уравнений                          

математической физики, для каждого расчетного узла,                            

расположенного в заданной области определения искомых функций, 

выделяется некоторый ее малый фрагмент, для которого с той или 

иной точностью обеспечивается интегральное удовлетворение            

исходного дифференциального уравнения. Алгебраическая же сумма 

этих фрагментов тожественно равна площади, ограниченной                    

областью определения искомых функций. 

В зависимости от месторасположения расчетного узла                        

используются один из девяти типов конечно-разностного аналога 

смешанных производных двух видов: 

   ,A y x
F x y T   и   ,B x y

F x y T  . 

Индексы x  и y  здесь и ниже относятся к частным производным 

функций по соответствующим координатам. 

 Месторасположение различных типов фрагментов,                  

пронумерованных римскими цифрами, на области определения             
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искомой функции изображено на рис. 1, а связь типа                             

аппроксимационных формул с индексами i  и j  приведена                       

в таблице 1.  

 

 

 
 

Рис. 1. Месторасположение различных типов фрагментов на области          

определения области определения искомой функции 

Таблица 1 

Связь типа расчетных аппроксимационных формул с индексами i, j 

Тип 

формул 
I II III IV V VI VII VIII IX 

i 1 2, 1xN   xN  

j 1 2, 1yN   yN  1 2, 1yN   yN  1 2, 1yN   yN  

 

Конечно-разностные аналоги смешанных производных. Для 

фрагмента первого типа процедура получения конечно-разностных 

аналогов А  и В  смешанных производных АF  и ВF  имеет вид 

1i p ix x x 

III VI IX
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Поэтому 

     , 1, 1 1, , , , 1 ,

1
2 ,

4
A p j i j i j i j p j i j i jT T T T      

         
 
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    , , , 1 1, 1, 1

1
,

4
p p p p i j i j i j i jT T x y T T T T        , 

   , , , 1

1
,

2
i p i p i j i jT T x y T T    ,    , , 1,

1
,

2
p j p j i j i jT T x y T T    . 

Поэтому 

      , 1, 1 , 1 , , 1, ,

1
2

4
B i p i j i j i j i p i j i jT T T T      

         
 

. 

Несложно видеть, что при постоянном значении с  функции   

    1, 1 1, , 1 ,
4

c
A B i j i j i j i jT T T T


     

      
 

. 

Для фрагментов второго типа процедура получения конечно-

разностных аналогов А  и В  смешанных производных АF  и ВF  

имеет вид 
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Несложно видеть, что при постоянном значении с  функции   
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Для фрагментов третьего типа процедура получения конечно-

разностных аналогов А  и В  смешанных производных АF  и ВF  

имеет вид 
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Несложно видеть, что при постоянном значении с  функции   

    1, 1 1, 1 , 1 , 1
4

c
A B i j i j i j i jT T T T


       

      
 

. 

Для фрагментов четвертого типа процедура получения                   

конечно-разностных аналогов А  и В  смешанных производных АF  

и ВF  имеет вид 

        

       , , , , , ,

, , , ,

, , .

p p p

j m j

p

j

y x y

A y p y px
y x y

y

m y m p j p p p j m j m p m j

y

dy x y T x y dx x y T x y dy

x y T x y dy T T T T

  

  

              

          

  



Здесь 

 

   

   

   

   

, , , 1 1, 1, 1

, , 1,

, , 1,

, , , 1 1, 1, 1

1
, ,

4

1
, ,

2

1
, ,

2

1
, .

4

p p p p i j i j i j i j

p j p j i j i j

m j m j i j i j

m p m p i j i j i j i j

T T x y T T T T

T T x y T T

T T x y T T

T T x y T T T T

   





   

    

  

  

    

 

Поэтому 

     

 

, 1, 1 1, , , , 1 ,

, 1, 1 1, 1

1

4

,

A p j i j i j p j m j i j i j

m j i j i j

T T T T

T T

   



   

   

        


  


 

        

       , , , , , ,

, , , ,

, , .

p p p

m j m

p

m

x y x

B x p x py
x y x

x

j x j i p p p m p i j p j m j

x

dx x y T x y dy x y T x y dx

x y T x y dx T T T T

  

  

              

          

  



Здесь 

   , , , 1 1, 1, 1

1
,

4
p p p p i j i j i j i jT T x y T T T T        , 

   , , , 1 1, 1, 1

1
,

4
m p m p i j i j i j i jT T x y T T T T        , 



Конечно-разностная аппроксимация смешанных производных в уравнениях … 

65 

   , , 1,

1
,

2
p j p j i j i jT T x y T T    , 

   , , 1,

1
,

2
m j m j i j i jT T x y T T    . 

Поэтому 

     , 1, 1 1, 1 , , 1, 1,

1
2 .

4
B i p i j i j i j i p i j i jT T T T        

         
   

Несложно видеть, что при постоянном значении с  функции   

    1, 1 1, 1, 1 1,
4

c
A B i j i j i j i jT T T T


       

      
  .  

Для фрагментов пятого типа процедура получения конечно-

разностных аналогов А  и В  смешанных производных АF  и ВF  

имеет вид 

        

       , , , , , ,

, , , ,

, , .

p p p

m m m

p

m

y x y

A y p y px
y x y

y

m y m p j p p p m m j m p m m

y

dy x y T x y dx x y T x y dy

x y T x y dy T T T T

  

  

              

          

  



Здесь 

 

   

   

   

   

, , , 1 1, 1, 1

, , , 1 1, 1, 1

, , , 1 1, 1, 1

, , , 1 1, 1, 1

1
, ,

4

1
, ,

4

1
, ,

4

1
, .

4

p p p p i j i j i j i j

p m p m i j i j i j i j

m p m p i j i j i j i j

m m p m i j i j i j i j

T T x y T T T T

T T x y T T T T

T T x y T T T T

T T x y T T T T

   

   

   

   

    

    

    

    

 

Поэтому 

     

 

, 1, 1 1, 1 , , , 1 , 1

, 1, 1 1, 1

1

4

,

A p j i j i j p j m j i j i j

m j i j i j

T T T T

T T

   



     

   

        


  


 

        , , , ,

p p p

m m m

x y x

B x p x py
x y x

dx x y T x y dy x y T x y dx                    
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       , , , , , ,, , .

p

m

x

m x m i p p p m p i m p m m m

x

x y T x y dx T T T T              

Здесь 

   , , , 1 1, 1, 1

1
,

4
p p p p i j i j i j i jT T x y T T T T        , 

   , , , 1 1, 1, 1

1
,

4
m p m p i j i j i j i jT T x y T T T T        , 

   , , , 1 1, 1, 1

1
,

4
p m p m i j i j i j i jT T x y T T T T        , 

   , , , 1 1, 1, 1

1
,

4
m m p m i j i j i j i jT T x y T T T T        . 

Поэтому 

 
     

 

, 1, 1 1, 1 , , 1, 1,

, 1, 1 1, 1

1

4

.

B i p i j i j i p i m i j i j

i m i j i j

T T T T

T T

   



     

   

        


  


 

Несложно видеть, что при постоянном значении с  функции   

    1, 1 1, 1 1, 1 1, 1
4

c
A B i j i j i j i jT T T T


         

      
 

.  

Для фрагментов шестого типа процедура получения конечно-

разностных аналогов А  и В  смешанных производных АF  и ВF  

имеет вид 

        

       , , , , , ,

, , , ,

, , .

j p j

m m m

p

j

y x y

A y p y px
y x y

y

m y m p j p j p m m j m j m m

y

dy x y T x y dx x y T x y dy

x y T x y dy T T T T

  

  

          

      

  



 

Здесь 

   

   

, , 1,

, , 1,

1
, ,

2

1
, ,

2

p j p j i j i j

m j m j i j i j

T T x y T T

T T x y T T





  

  

 

   , , , 1 1, 1, 1

1
, ,

4
p m p m i j i j i j i jT T x y T T T T         
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   , , , 1 1, 1, 1

1
, .

4
m m m m i j i j i j i jT T x y T T T T         

Поэтому 

     

 

, 1, 1, 1 , , , , 1

, 1, 1, 1

1

4

,

A p j i j i j p j m j i j i j

T Tm j i j i j

T T T T



      

   

        





 

        

       , , , , , ,

, , , ,

, , .

p j p

m m m

p

m

x y x

B x j x jy
x y x

x

m x m i j p j m j i m p m m m

x

dx x y T x y dy x y T x y dx

x y T x y dx T T T T

  

  

          

      

  



 

Здесь 

   , , 1,

1
,

2
p j p j i j i jT T x y T T    , 

   , , 1,

1
,

2
m j m j i j i jT T x y T T    , 

   , , , 1 1, 1, 1

1
,

4
p m p m i j i j i j i jT T x y T T T T        , 

   , , , 1 1, 1, 1

1
,

4
m m m m i j i j i j i jT T x y T T T T        . 

Поэтому 

     , , 1, 1, , 1, 1 1, 1

1
2 .

4
B i j i m i j i j i m i j i jT T T T        

      
 

 

Несложно видеть, что при постоянном значении с  функции   

    1, 1, 1 1, 1, 1
4

c
A B i j i j i j i jT T T T


       

     
 

. 

Для фрагментов седьмого типа процедура получения конечно-

разностных аналогов А  и В  смешанных производных АF  и ВF  

имеет вид 

        

       , , , , , ,

, , , ,

, , .

p pi

j m j

p

j

y yx

A y i y ix
y x y

y

m y m i j i p i j m j m p m j

y

dy x y T x y dx x y T x y dy

x y T x y dy T T T T

  

  

          

      

  


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Здесь 

   

   

   

, , , 1

, , 1,

, , , 1 1, 1, 1

1
, ,

2

1
, ,

2

1
, .

4

i p i p i j i j

m j m j i j i j

m p m p i j i j i j i j

T T x y T T

T T x y T T

T T x y T T T T





   

  

  

    

 

Поэтому 

    , , , 1 , , 1, 1 1,

1
2 ,

4
A i j m j i j i j m j i j i jT T T T      

     
 

 

        

       , , , , , ,

, , , ,

, , .

pi i

m j m

i

m

yx x

B x p x py
x y x

x

j x j i p i p m p i j i j m j

x

dx x y T x y dy x y T x y dx

x y T x y dx T T T T

  

  

          

      

  



 

Здесь 

    , , , 1

1
,

2
i p i p i j i jT T x y T T    , 

    , , 1,

1
,

2
m j m j i j i jT T x y T T    , 

    , 1, 1, 1 , , 1

1
,

4
m p m p i j i j i j i jT T x y T T T T        . 

Поэтому 

     , , 1 1, 1 , , , 1,

1
2 .

4
B i p i j i j i j i p i j i jT T T T      

     
 

 

Несложно видеть, что при постоянном значении с  функции   

    1, 1 1, , 1 ,
4

c
A B i j i j i j i jT T T T


     

     
 

.  

Для фрагментов восьмого типа процедура получения конечно-

разностных аналогов А  и В  смешанных производных АF  и ВF  

имеет вид 

        , , , ,

p pi

m m m

y yx

A y i y ix
y x y

dy x y T x y dx x y T x y dy                    



Конечно-разностная аппроксимация смешанных производных в уравнениях … 

69 

       , , , , , ,, , .

p

m

y

m y m i j i p i m m j m p m m

y

x y T x y dy T T T T          

Здесь 

   

   

   

   

, , , 1

, , , 1

, , 1, , 1 1, 1

, , 1, , 1 1, 1

1
, ,

2

1
, ,

2

1
, ,

4

1
, .

4

i p i p i j i j

i m i m i j i j

m p m p i j i j i j i j

m m m m i j i j i j i j

T T x y T T

T T x y T T

T T x y T T T T

T T x y T T T T





   

   

  

  

    

    

 

Поэтому 

     , , , 1 , 1 , 1, 1 1, 1

1
2 ,

4
A i j m j i j i j m j i j i jT T T T        

         
 

 

        

       , , , , , ,

, , , ,

, , .

pi i

m m m

i

m

yx x

B x p x py
x y x

x

m x m i p i p m p i m i m m m

x

dx x y T x y dy x y T x y dx

x y T x y dx T T T T

  

  

              

          

  



Здесь 

   , , , 1

1
,

2
i p i p i j i jT T x y T T    , 

   , , , 1

1
,

2
i m i m i j i jT T x y T T    , 

   , , , 1 1, 1, 1

1
,

4
m p m p i j i j i j i jT T x y T T T T        , 

   , , , 1 1, 1, 1

1
,

4
m m m m i j i j i j i jT T x y T T T T        . 

Поэтому 

 
     

 

, , 1 1, 1 , , , 1,

, , 1 1, 1

1

4

.

B i p i j i j i p i m i j i j

i m i j i j

T T T T

T T

   



   

  

        


  

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    , 1 , 1 1, 1 1, 1
4

c
A B i j i j i j i jT T T T


       

      
 

. 

Для фрагментов девятого типа процедура получения конечно-

разностных аналогов А  и В  смешанных производных АF  и ВF  

имеет вид 

        

       , , , , , ,

, , , ,

, , .

j ji

m m m

j

m

y yx

A y i y ix
y x y

y

m y m i j i j i m m j m j m m

y

dy x y T x y dx x y T x y dy

x y T x y dy T T T T

  

  

          

      

  



 

Здесь 

   

   

   

, , , 1

, , 1,

, , , 1 1, 1, 1

1
, ,

2
1

, ,
2

1
, .

4

i m i m i j i j

m j m j i j i j

m m p m i j i j i j i j

T T x y T T

T T x y T T

T T x y T T T T





   

  

  

    

 

Поэтому 

    , , , , 1 , 1, 1, 1

1
2 ,

4
A i j m j i j i j m j i j i jT T T T      

     
 

 

        

       , , , , , ,

, , , ,

, , .

ji i

m m m

i

m

yx x

B x j x jy
x y x

x

m x m i j i j m j i m i m m m

x

dx x y T x y dy x y T x y dx

x y T x y dx T T T T

  

  

          

          

  



 

Здесь 

    , , 1,

1
,

2
m j m j i j i jT T x y T T    , 

    , , , 1

1
,

2
i m i m i j i jT T x y T T    , 

    , , , 1 1, 1, 1

1
,

4
m m m m i j i j i j i jT T x y T T T T        . 

Поэтому 

      , , , 1, , , 1 1, 1

1
2 .

4
B i j i m i j i j i m i j i jT T T T      

         
 
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Несложно видеть, что при постоянном значении с  функции   

    1, 1, 1 , , 1
4

c
A B i j i j i j i jT T T T


     

      
 

.  

Пример численного решения задачи. В качестве примера               

применения предложенного алгоритма конечно-разностной                          

аппроксимации смешанных производных рассматривается задача     

нестационарного прогрева, изображенного на рис. 2 затупленного 

тела вращения, внешние обводы которого слагаются из поверхности 

переменной кривизны, цилиндрического хвостовика и плоского                     

заднего торца.  

Для обозначения этих фрагментов поверхности будем                             

использовать подстрочные индексы w , Cyl  и Flat , а для                                

обозначения стыка первых двух из них   надстрочный индекс  . При 

этом принимается, что поверхность переменной кривизны                             

подвергается воздействию конвективного теплового потока, под     

действием которого происходит перемещение во времени этой                    

поверхности параллельно оси симметрии тела. В то же время осталь-

ные внешние поверхности тела считаются теплоизолированными.  

 

 

Рис. 2. Геометрическая форма затупленного тела вращения 

Температурное состояние наконечника в цилиндрической систе-

ме координат описывается двумерным уравнением теплопроводности 

вида [9,10]: 

2

z r

T T T
crs r r

z z r r
  



       
    

       
, 

  , ,w Flatz z r z , 

 
    

   
 

*

*

0, , , ,
0, .

0, , ,

w

end

Cyl

r z z z
r

r z z

 
 



 
 



  (1) 

r

Cylr

Cylz Flatz z
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Граничные условия для уравнения (1) задаются следующим                       

образом: 

 на поверхности переменной кривизны 

   sinz w

T
s q r

z
 


    


,  ,wz z r  , 0, Cylr r   ; (2) 

   cosr w

T
s q r

r
 


   


,  ,wz z r  , 0, Cylr r   ;  (3) 

 на поверхности цилиндра 

 0
T

r





,   * , Flatz z z , 

Cylr r ; (4) 

 на плоском заднем торце 

 0
T

z





, Flatz z , 0, Cylr r   ;  (5) 

 на оси симметрии тела 

 0
T

r





,  0, Flatz z , 0r  .  (6) 

В свою очередь начальное условие задается в форме: 

   0, ,0T z r T , 

  [ ,0 , ]w Flatz z r z , 

 
   

 

*

*

0, ,0 , 0 ,

0, , 0 .

w

Cyl

r z z z
r

r z z

   


    

  (7) 

Здесь  , ,T z r   — температура, К;   — время, с; ,z r  — оси                   

цилиндрической системы координат, направленные соответственно 

вдоль оси симметрии тела и по нормали к ней, в калибрах от                              

характерного линейного размера тела,   — плотность, кг/м3,  c  — 

удельная теплоемкость, Дж/(кг К);   — коэффициент теплопровод-

ности, Вт/(м К);   — угол между касательной к образующей                 

поверхности тела и осью z , рад; wq  — удельный тепловой поток, 

проникающий в тело по нормали к поверхности переменной                         

кривизны, Вт/м2; 
0

T  — значение температуры тела в начальный                 

момент времени, 
end
  — верхняя граница рассматриваемого времен-

ного интервала; 
Cyl

r  — радиус цилиндра; s   — характерный линей-

ный размер тела, м. 
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Ось z  направлена внутрь тела, а ее нулевое значение совмещено 

с точкой пересечения оси симметрии тела с поверхностью его              

затупленной части в нулевой момент времени. Индекс у                                  

коэффициента теплопроводности указывает ось, вдоль которой он 

характеризует интенсивность кондуктивного теплопереноса. 

Подвижная система координат.  Обычно численное решение 

задач рассматриваемого класса ищется в исходной системе координат 

(назовем ее неподвижной системой координат) с использованием               

явных или неявных расчетных схем (в последнем случае обычно 

применяется метод переменных направлений [5]). К числу                                     

недостатков использования таких подходов к решению задач,                           

характеризующихся достаточно сложной формой расчетной области, 

относятся: 

 сложность формирования конечно-разностных операторов в 

окрестности границ этой области, обладающих вторым порядком 

точности аппроксимации (особенно при подвижности части из                 

указанных границ), 

 сложность использования неравномерных сеток при                              

изменении размеров области определения искомой функции с тече-

нием времени. 

Одним из возможных путей решения указанных проблем                    

является предложенный в работе [9] переход от неподвижной                  

системы координат  , ,z r   к подвижной системе координат              

 , ,x y   , которая для рассматриваемой задачи имеет вид: 

 
 

 

,

,

wz z r
x

r









, y r ,   , 

 
 ,

sin

w Abl
w

z V
z

s


 


 
 

, ,
w

w r

z
z

r





, 

   , ,Flat wr z z r    , 

где 
Abl

V  — линейная скорость абляции материала, из которого        

изготовлено тело, по направлению внутренней нормали                        

к поверхности последнего, м/с. 

Тогда уравнение (1), граничные условия (2) – (6) и начальное 

условие (7) переписываются в виде: 

  0 1 2 3 1
T T T T

y y y x
x x y y x

   


       
                      

  

4 4 ;
T T

x y y x
 

      
        

      
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  0,1x ;  0, Cyly y ;  0, end   .  (8) 

 2

0 c s    ;  
2 2

1 ,2

1
1z r w rx z        

 
;  

2 ry   ; 

   2

3 0 , , 2

1 1
1 w r w rx z z  

 
        

  
;  

4 ,
r

w r

y
z








. 

При 0x   и  0,
Cyl

y y  

  ,

1
sin cos cosz r w r r w

T T
z s q

x y
     

 
           

  
.  (9) 

При 0x   и 
Cyl

y y  

 sinz w

T
s q

x
 


     


, 

   ,

cos sin
1w w r

r z

T
s q x z

y

 

 

 
       

  
 .   

При 0x   и 0y   

 sin /w z

T
s q

x
 


    


,  0
T

y





. 

При  0,1x  и 0 Cyly y y     

 ,

1
0w r

T x T
z

y x

  
   

  
.  

При 1x   и 0,
Cyl

y y 
 

 

 0
T

x





.  

При 0  ;  0,1x ; 0, Cyly y    

   0, ,T x y T  . 

Формулировка граничного условия (9) для уравнения (8)                

получена путем умножения соотношений (2) и (3) соответственно на 

синус и косинус угла   с последующим их сложением. Необходи-
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мость проведения этой процедуры диктуется тем обстоятельством, 

что после проведения рассмотренного преобразования системы                

координат на этой поверхности задается только одно граничное 

условие, связывающее между собой частные производные                           

температуры по различным пространственным координатам. 

Как следует из приведенных соотношений рассмотренное                  

преобразование системы координат, обеспечивающее                             

прямолинейность области определения искомой функции,                   

сопряжено с появлением в уравнении смешанных производных, что, 

в частности, исключает возможность корректного применения для 

его решения метода переменных направлений [5]. 

 В случае же использования явных расчетных схем, это                        

обстоятельство сопряжено со столь резким уменьшением                         

допустимого шага интегрирования по временной координате, что 

делает практически невозможным применения указанных схем для 

решения уравнения (8). 

В то же время не видно причин, препятствующих нахождению 

решения рассматриваемой задачи в рамках метода матричной              

прогонки [4], т.е. метода, не получившего применения для решения 

задач многомерной теплопроводности. Это связано с тем, что в 

большинстве практических приложений найти решение задачи                   

оказывается возможным с использованием более простых подходов, 

указанных выше, а проблемы построения конечно-разностных                         

аналогов дифференциальных операторов в окрестности границ                   

рассматриваемой области тем или иным способом поддаются                      

решению. 

При проведении настоящих исследований, проведенных                          

с использованием: 

 метода матричной прогонки для решения двумерного                          

уравнения теплопроводности; 

 методики численного интегрирования дифференциальных 

уравнений ламинарно-турбулентного пограничного слоя,                               

приведенной в работе [8,9]; 

 алгебраической модели кажущейся турбулентной вязкости 

Себечи – Смита [12-14], модифицированной в работах [13, 14] и 

апробированной на результатах стендовых экспериментов [15, 16], 

проведенных в условиях экстремально высоких чисел Рейнольдса; 

 численного решения уравнений Эйлера, найденного методом 

МакКормака [17]. 

В качестве примера на рис. 3 для конуса, движущегося в              

атмосфере Земли на высоте 10 км со скоростью 6 км/с, приводится 

цветовое поле распределения в нем температуры, соответствующее 

конечному моменту времени. 
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Рис. 3. Температурное поле в конусе в типичный момент времени расчета  

Выводы. 1. Сформулирована методика конечно-разностной               

аппроксимации смешанных производных, которая может                       

использоваться при численном решении уравнений математической 

физики. 

2. Проиллюстрировано применение этой методики на примере 

решения прикладной задачи. 

ЛИТЕРАТУРА 

[1] Демидович Б.П., Марон И.А. Основы вычислительной математики. 

Москва, Издательство физико-математической литературы, 1963, 659 с. 

[2] Березин И.С., Жидков Н.П. Методы вычислений. Т.2. Москва, Физматлит, 

1962, 639 с. 

[3] Пасконов В.М. Стандартная программа для решения задач пограничного 

слоя. Численные методы в газовой динамике, 1963, 110–116 с. 

[4] Самарский А.А. Введение в теорию разностных схем. Москва, Наука, 

1971, 42 с. 

[5] Беляев Н.М., Рядно А.А. Методы теории теплопроводности Ч. 2. Москва, 

Высшая школа, 1982, 304 с. 

[6] Горский В.В., Кузьмин В.Н. Оценка точности аппроксимации производных 

при неравномерном разбиении области определения функции. Журнал                  

вычислительной математики и математической физики, 1972, т. 12, № 5, 

с. 1304–1307. 

[7] Димитриенко Ю.И., Котенев В.П., Захаров А.А. Метод ленточных адап-

тивных сеток для численного моделирования в газовой динамике. Москва, 

Физматлит, 2011, 280 с. 

1 2 3 4 5 6 z

4,5

4,0

3,5

3,0

2,5

2,0

1,5

1,0

0,5

0

r
3600
3400
3200
3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000
800
600

, KT



Конечно-разностная аппроксимация смешанных производных в уравнениях … 

77 

[8] Горский В.В., Горская Н.А., Реш В. Г. Методика решения уравнений      

математической физики на областях сложной формы методом матричной 

прогонки. Вестник МГТУ, 2012, № 2, с. 186–200. 

[9] Горский В.В. Теоретические основы расчета абляционной тепловой           

защиты. Москва, Научный мир, 2015, 688 с. 

[10] Лыков А. В. Теория теплопроводности. Москва, Высшая школа, 1967, 599 с. 

[11] Горский В.В. Методика численного решения уравнений двумерного               

ламинарно-турбулентного пограничного слоя на проницаемой стенке                

затупленного тела вращения. Космонавтика и ракетостроение, 2017, № 3, 

с. 90–97. 

[12] Горский В.В., Локтионова А.Г. Модифицированная алгебраическая модель 

турбулентной вязкости Себечи – Смита для всей поверхности затупленно-

го конуса. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2020, 

№ 4, с. 28–41. 

[13] Горский В.В., Локтионова А.Г. Моделирование теплообмена и трения в 

тонком воздушном ламинарно-турбулентном пограничном слое над                    

поверхностью полусферы. Математическое моделирование и численные 

методы, 2019, № 2, с. 51–67. 

[14] Cebeci T., Smith A. Analysis of Turbulent Boundary Layers. New York, San 

Francisco, London, Academic Press, 1974, 404 p. 

[15] Уидхопф Дж.Ф., Холл Р. Измерение теплопередачи на затупленном конусе 

под углом атаки при переходном и турбулентном режиме течения.                    

Ракетная техника и космонавтика, 1972, т. 10, № 10, с. 71–78. 

[16] Widhopf G.F. Laminar, Transitional and Turbulent Heat Transfer Measurement 

on a Yawed Blunt Conical Nose Tip. TR-0172 (S2816-60), 3, Aug, 1972, the 

Aerospace Corp., San Bernardino, Calif. 

[17] MacCormack R. W. The effect of viscosity in hypervelocity impact crate ring. 

AIAA, 69–354, 1969, 6 p. 

 

Статья поступила в редакцию 24.08.2021 

 

Ссылку на эту статью просим оформлять следующим образом: 

Горский В.В., Реш В.Г. Конечно-разностная аппроксимация смешанных             

производных в уравнениях математической физики. Математическое моделирова-

ние и численные методы, 2021, № 4, с. 58–79. 

 

Горский Валерий Владимирович — д-р техн. наук, главный научный сотрудник 

отделения аэродинамики и баллистики АО «ВПК «НПО машиностроения», про-

фессор кафедры «Вычислительная математика и математическая физика» МГТУ 

им. Н.Э. Баумана. e-mail: vpk@vpk.npomash.ru 

 

Реш Владислава Георгиевна — канд. техн. наук, старший научный сотрудник        

отделения аэродинамики и баллистики АО «ВПК «НПО машиностроения».                                   

e-mail: vpk@vpk.npomash.ru 

 

Finite-difference approximation of mixed derivatives in 

mathematical physics equations  

© V.V. Gorsky1,2, V. G. Resh1 

1Joint stock company “Military and industrial corporation”, Reutov, 143966, Russia 
2Bauman Moscow State Technical University, Moscow, 105005, Russia 



В.В. Горский, В.Г. Реш 

78 

A qualitative numerical solution of the equations of mathematical physics is intimately 

connected with ensuring a high accuracy of approximation of all differential operators 

included in these equations. The solution of this problem for the first and second                       

derivatives in the equations of mathematical physics, which are used to describe a wide 

range of scientific and technical problems has been described in numerous literary                  

publications. At the same time, mixed derivatives are not so often present in the equations 

of mathematical physics and, therefore, issues related to the quality of finite-difference 

approximation of these derivatives are not given enough attention in literary                       

publications. One of the main reasons for the appearance of mixed derivatives in the 

equations of mathematical physics is the use of an affine transformation of the coordinate 

system, which provides the transition to domain of a substantially simpler form.                        

The solution of this problem is the subject of the present paper. The problem is solved by 

the example of approximation of mixed derivatives on rectangular domain of definition of 

the required function with constant steps in each direction. A detailed derivation of the 

finite-difference relations used for the finite-difference approximation of mixed                           

derivatives in all typical nodes of the function domain is given, which makes it possible to 

develop the proposed technique on domains of different types. 

 
 

Keywords: equations of mathematical physics, finite-difference approximation, mixed 

derivatives, differential operator 
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