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Предложена модель определяющих соотношений упруго-пластических                          
композитов, обладающих кубической симметрией свойств. К этому классу                        
относится значительно число композиционных материалов: дисперсно-
армированные композиты, у которых имеется упорядоченная, а не хаотическая 
система армирования, а также некоторые типы пространственно-армированных 
композитов. Для построения модели нелинейных определяющих соотношений                       
использован тензорно-симметрийный подход, основанный на спектральных                 
разложениях тензоров напряжений и деформаций, а также спектральном                 
представлении нелинейных тензорных соотношений между этими тензорами. 
Рассмотрена деформационная теория пластичности, для которой использован 
тензорно-симметрийный подход, а также предложены конкретные модели для 
функций пластичности, зависящих от спектральных инвариантов тензора                  
деформации.  Для определения констант модели предложен метод, в котором эти 
константы вычисляются на основе аппроксимации кривых деформирования,                    
полученных прямым численным решением трехмерных задач на ячейке                            
периодичности упруго-пластических композитов. Эти задачи возникают в методе 
асимптотического осреднения периодических сред. Для решения задач на ячейке 
периодичности использован конечно-элементный метод и специальное                          
программное обеспечение, реализующее решения задач на ячейках периодичности, 
разработанное в Научно-образовательном центре «Суперкомпьютерное                    
инженерное моделирование и разработка программных комплексов» МГТУ им. 
Н.Э. Баумана. Рассмотрен пример расчета констант модели композита                             
с помощью предложенного метода для дисперсно-армированного композита на 
основе металлической матрицы. А также проведена верификация предложенной 
модели для различных путей многоосного нагружения композита при прямом                    
численном моделировании. Показано, что предложенная микроструктурная                      
модель и алгоритм определения ее констант обеспечивают достаточно высокую 
точность прогнозирования упруго-пластического деформирования композита. 
 
Ключевые слова: композиты, численное моделирование, деформационная теория 
пластичности, квази-изотропные материалы, микроструктурная модель, метод 
асимптотического осреднения, метод конечного элемента, дисперсно-
армированные композиты, металлокомпозиты, диаграммы деформирования,                   
инварианты 
 

Введение. Композиционные материалы на основе металлических 
матриц (металлокомпозиты) имеют большие перспективы для ряда 
отраслей промышленности [1–7], например, для перспективного  
двигателестроения, для автомобилестроения, для судостроения и 
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других. В настоящее время созданы технологии разработки                             
металлокомпозитов для практически всех известных структур                 
армирования: дисперсно-армированных, однонаправленных,                   
тканевых, слоистых, брейдинговых, пространственно-армированных. 
Большие достоинствами обладают дисперсно-армированные                                
металлокомпозиты, например, на основе алюминиевой или титановой 
матрицы, наполненные керамическими частицами SiC, BN и                      
другими. При относительной простоте технологии изготовления у 
этих композитов значительно более высокие жесткостные свойства, 
чем у неармированных матриц, сравнимые со высокомодульными 
сталями, но значительно более легкие. Прочность у этих композитов 
также находится на достаточно высоком уровне, превышающем 
прочность, например, многих полимерных композитов (ПКМ). Кроме 
того, металлокомпозиты с успехом могут длительно                               
эксплуатироваться при значительно более высоких температурах, 
чем ПКМ. Металлокомпозиты, как правило проявляют значительные 
пластические свойства, что также, обычно, является положительным 
эффектом, поскольку эти свойства препятствуют внезапному                  
хрупкому разрушению, характерному для многих высокомодульных 
материалов, например, керамики. 

 Моделированию упруго-пластических свойств металло-
композитов посвящено значительное количество работ [7–10].                        
В основном эти модели основаны на феноменологическом описании 
изотропных или анизотропных свойств металлокомпозитов.                       
В некторых работах используется структурный подход к построению 
определяющих соотношений для упруго–пластических композитов, 
однако, при этом используются, как правило, относительно простые, 
приближенные структурные модели композитов. 

В более современных работах [11–19] по моделированию                      
металлокомпозитов используется один из наиболее эффективных                    
современных математических методов моделирования структурно-
неоднородных сред — метод асимптотического осреднения                        
[11,20–22]. Однако, ввиду значительной сложности этого метода, как 
правило, результат моделирования с помощью этого метода сводится 
к построению диаграмм деформирования при простых видах                   
нагружения: при растяжениях и сдвигах. Для решения задач расчета 
напряженно-деформированного состояния конструкций из                             
металлокомпозитов необходимы модели деформирования,                           
применимые для произвольных видов и процессов нагружения. 

Целью настоящей работы является разработка                                  
микро-структурной модели определяющих соотношений упруго-
пластических композитов, основанной на методе асимптотического 
осреднения и относящейся к классу деформационных теорий [23–27], 
т.е. связывающих конечные значения напряжений и деформаций,                  
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в отличие от теорий течения [28,29], связывающих приращения                    
пластических деформаций с напряжениями. Модель основана на 
спектральной теории представления тензорных соотношений 
[11,30,31] и предназначена  для так называемых квази-изотропных 
композитных сред, обладающих классом кубической симметрии [31]. 
К этому классу относятся, например, некоторые типы дисперсно-
армированных сред (с регулярной структурой расположения дис-
персного наполнителя), а также некоторые виды пространственно-
армированных композитов. 

Спектральное представление определяющих соотношений 

для квазиизотропных упруго-пластических сред. Рассмотрим 

композиционный материал, проявляющий упруго-пластические 

свойства при активном нагружении [23,25]. Полагаем, что деформи-

рование этого композита происходит в области малых деформаций. 

Тогда в рамках деформационной теории пластичности соотношение 

между тензорами напряжений ij  и малых деформаций kl                            

композита, рассматриваемого как гомогенизированный материал 

[11,15], можно записать в виде тензорной нелинейной функции: 

 ( )ij ij klF  . (1) 

Пусть микроструктура композита и его механическое свойства 

обладают свойством квазиизотропии [31], т.е. относятся к классу                

кубической симметрии К с главными осями симметрии,                         

совпадающими с осями декартовой системы координат eiO ,                          

в которой записаны компоненты ij  и kl   тензоров напряжений   и 

деформаций  . Тогда для этих тензоров можно рассмотреть                

спектральные представления [32] относительно  класса симметрии K  
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здесь 
1( ) kkI    и 

1( ) kkI    —первые главные инварианты тензоров 

напряжений и деформации.  

Обобщенные девиаторы (3) являются линейными функциями от 

компонент ij  и kl  

 ( ) ( )( )ij ijkl klP Г    и 
( ) ( )( )ij ijkl klP Г   , 1,...,3  , (4) 

где   
( )

ijklГ 
  — постоянные тензоры (ортопроекторы), харак-

теризующие класс кубической симметрии K  
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 , (1)

ij ija  , 
1 3a  , 

 
3

(2)

1

1

3
ijkl i j k l ij klГ    



     


  , (5) 

 
3

(3)

1

1
( )

2
ijkl ik jl il jk i j k lГ    



       


   . 

Введем спектральные инварианты ( )Y   и ( )Y   [32] тензоров 

напряжений и деформаций для  класса кубической симметрии K  
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Инварианты  1 ( )Y   и 1 ( )Y   — линейные спектральные                    

инварианты, а  (7) — спектральные квадратичные инварианты.                    

Явное выражение этих инвариантов имеет вид 
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3
Y             , (8) 

 
2 2 2

3 12 13 23( ) 2( )Y       . 

Предполагаем, что тензорная функция (1) для композита                

является квазилинейной [31,32], тогда, как было показано в [32], эта 

функция может быть представлена в виде соотношений между             

обобщенными девиаторами 
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где   — скалярные функции от спектральных инвариантов  ( )Y   

 
1 3( ( ),..., ( ))Y Y     , 1,...,3  . (10) 

Введем новые функции l  от инвариантов с помощью следующих 

соотношений 
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Тогда соотношения (9) с учетом (3) можно записать в виде укорочен-

ного спектрального представления 
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Подставляя (12) в первое выражение в (2), получаем полное                 

спектральное представление определяющих соотношений (1) для 

квазилинейных функций с кубической симметрией 
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11 1 22 33( ) ( ) ( )ij ij ij ijl Y l P l P       . (13) 

Если подставить в (13) выражения (4), то получим квазилинейное 

представление определяющих соотношений (1) 

 
ij ijkl klС  , (14) 

где ijklС  — компоненты тензора модулей нелинейной упругости 
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Подставляя (5) в (15), получаем явное выражение для компонент 

тензора модулей нелинейной упругости 
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В нелинейном случае каждую функцию 
11 22,l l ,

33l  представим в 

виде обобщенной модели, по аналогии с функциями А.А. Ильюшина 

[23-25] для изотропных сред 
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где K  — модуль объемного сжатия,   — коэффициент Пуассона,           

G  — модуль сдвига композита — для квазизотропных сред все            

являющиеся независимыми, а 

 
1 3( ( ),..., ( ))Y Y     , 1,...,3   (19) 

— 3 функции пластичности, являющиеся функциями от 3-х                               

инвариантов (8). 

Система уравнений (14), (15), (18) и (19) образует спектральные 

определяющие соотношения для упруго-пластических                               

квази-изотропных сред при активном нагружении. 

Модели функций пластичности для упруго-пластических 

квази-изотропных сред. В общем случае аналитическая                   

аппроксимация 3-х функций (19) от 3-х аргументов является                  

достаточно громоздким и не всегда эффективным методом                            

реализации соотношений упруго-пластичности. Поэтому рассмотрим 

более простую модель, в которой функции (19) выбираются в виде 

некоторых аналитических зависимостей: функцию пластичности 1 , 
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здесь обозначены функции от 
2 ( )Y  и 

3 ( )Y   
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       

   

2 32 2

2 2 2 3 3 3 3 2

2 2

2 20 21 3 22 3 3 30 31 2 32 2

( ) ( ) ( ) ,  ( ) ( ) ( ) ,

( ) ( ) ,  ( ) ( ) .

q q

S SY Y a Y Y Y a Y

b b b Y b Y b b b Y b Y

     

   

   

     

 (21) 

В этих соотношениях 

 

0

1 1 1

0

2 2 20 21 22 2 2

0

3 3 30 31 32 3 3

,  ,  ,

,  ,  ,  ,  ,  ,  ,

,  ,  ,  ,  ,  ,   

,  ,  ,

S

S S

S S

K

a

G

b

b b b q

b b b q a

 



 

 

 (22) 

— константы модели. 

Заметим, что при 
3Sa =

2Sa =1 и 
2 3 2q q   получаем 

2 3( ) ( ) uY Y    , где u  — интенсивность тензора деформации 

 2 2 2 2 2 2

11 22 11 33 22 33 12 13 23

1
( ) ( ) ( ) 6( )

3
u                  . (23) 

Микроструктурная модель упруго-пластического квази-

изотропного композита. Для определения констант (22)                           

разработанной модели необходимы экспериментальные данные об 

упруго-пластических свойствах композита, однако это сопряжено со 

значительными сложностями, поскольку реализация экспериментов 

является технически трудным процессом, кроме того, при изменении 

концентрации компонентов композита такие эксперименты                        

необходимо проводить каждый раз заново. Рассмотрим другой               

способ нахождения констант (22), в котором вместо реальных                         

экспериментов осуществляются расчеты диаграмм деформирования 

композита при определенных путях нагружения, используя для этого 

метод асимптотического осреднения, разработанный для различных 

типов композитов [33–34], в том числе для упруго-пластических                     

[15–19]. 

В основе этого метода для упруго-пластических композитов                  

лежит решение так называемых задач pqL  линеаризованной теории 

упругости на 1/8 ячейке периодичности V  (ЯП) композита 

 

{ }

( )/

{ } { 1} { }

( ) ( )

{ } { } { }

( ) ( )| ( )|

{ } { }

( ) ( )

0 в ,

 в ,

2  в ,

:  0,  0.

m

ij pq j

m m m

ij pq ijkl kl pq

m m m

kl pq k pq l l pq k

m m

S ij pq j k pq

V

C V

U U V

n U



 

 



 









 

  

        

 (24) 
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Здесь { }

( )

m

ij pq , { }

( )

m

kl pq  и { }

( )

m

l pqU  — компоненты тензоров напряжений, 

деформаций и вектора перемещений в этой задаче, m  — номер              
итерации по циклу нелинейности определяющих соотношений,           

( )pq  — индекс задачи по типу граничных условий,              
{ }

( ){ }

( )/

m

ij pqm

ij pq j

j










 — производная по локальным координатам j V   в 

ЯП,  { }

( )

m

k pqU    —  скачок на границе раздела S  компонентов                  

композита, { 1}m

ijklC 
 — нелинейный тензор модулей упругости                   

компонентов композита, которые полагаются изотропными                   
упруго-пластическими, соответствующими деформационной теории 
пластичности А.А. Ильюшина[23,25,27] 

  { } { } { }2
( )

3

m m m

ijkl ij kl ik jl il jkC K G G         , 

 { } { }(1 ( ))m m

uG G    , (25) 

 
0

0, если ,

( )
(1 ) , если .

u S

u bS
u S

u

 

  
  



 


 
 



 

Здесь 
{ }, mK G  — модуль объемного сжатия и модуль сдвига                  

компонентов композита, 0 , ,S b  — константы модели пластично-

сти,  все эти величины в задаче (24) рассматриваются как разрывные 

функции от 
j .  

Граничные условия в задачах (24) ppL  на поверхностях 1/8 ЯП 

имеют следующий вид [33,35]: 

 на ' { 0,5}p p   : 
{ } { }

( ) 0,5m m

p pp ppU  , 
{ }

( ) 0m

ip pp  , i p , (26) 

 на { 0}p p   : 
{ }

( ) 0m

p ppU  , 
{ }

( ) 0m

ip pp  . (27) 

На остальных гранях заданы условия, аналогичные (27).  

Для задач pqL ( p q ) заданы следующие граничные условия: 

 на 'p  и p  
{ }

( ) 0m

i pqU  , 
{ }

( ) 0m

pp pq  , 
{ }

( ) 0m

q pqU  , i q p i   , (28) 

 на 'q : { } { }

( )

1

4

m m

q pq pqU  , 
{ }

( ) 0m

qq pq  , 
{ }

( ) 0m

i pqU  . (29) 

На остальных гранях заданы условия, аналогичные (28).  

Величины 
{ }m

pq  в задачах pqL  — заданы, они представляют собой 

средние деформации pq по ЯП композита на m ой итерации 
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{ }

( ){ }

{ }

m

ij pqm

ijpq m

pq

C



 , (30) 

 
{ ) { )

( ) ( )

m m

ij pq ij pq

V

dV



   . (31) 

С помощью решения задач pqL (24)-(29) вычисляем тензор                   

модулей нелинейной упругости композита на m ой итерации 

С помощью тензора { }m

ijpqC  получаем искомое соотношение (14) 

для композита на m ой итерации 

 { } { 1} { }m m m

ij ijpq pqC  , 1,2,...m  . (32) 

Алгоритм конечно-элементного решения локальных задач pqL  

предложен в работах [33–35]. В этих работах получены результаты 

решения этих задач для некоторых типовых структур ЯП.                     

Для численного решения локальных задач pqL  был использован                     

программный комплекс SMCM, разработанный в Научно-

образовательном центре «Суперкомпьютерное инженерное модели-

рование и разработка программных комплексов» (НОЦ «Симплекс») 

МГТУ им. Н.Э. Баумана [36,37]. Комплекс SMCM позволяет прово-

дить полный цикл конечно-элементного моделирования : от создания 

типовых 3D геометрий микроструктур ЯП композитов, построения 

КЭ сеток, до непосредственного решения задач pqL  и визуализации 

результатов расчетов 

Алгоритм численного определения тензора модулей нелинейной 

упругости { }m

ijpqC c помощью процедуры решения задач pqL ,                                

используемый для вычисления констант (22), составляет                             

микроструктурную модель упруго-пластического квази-изотропного 

композита. 

Методика определения констант модели. Опишем алгоритм 

определения констант (22) с помощью микроструктурной модели 

упруго-пластического квази-изотропного композита. Рассмотрим     

несколько вариантов решения задач pqL , в каждой из которых                         

реализуется пропорциональное нагружение по некоторой траектории 

в пространстве напряжений 

 ij ijt   (33) 

где ij  — тензор, задающий направление, а t  — параметр                           

нагружения.   
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Рассмотрим следующие 5 траекторий нагружения (33): 

1) линейное сдвиговое нагружение, 

2) линейное объемное сжатие (растяжение), 

3) линейное трехоосное растяжение с нулевым первым                             

инвариантом, 

4) растяжение с нулевым первым инвариантом и со сдвигом                      

(по ломаной), 

5) сдвиговое с растяжением с нулевым первым инвариантом                       

(по ломаной). 

Линейное сдвиговое нагружение. В этом случае рассматривает-

ся задача 12L , в которой 

 12 12t  , остальные 0ij  . (34) 

В этом случае инварианты (8) и девиаторы (3) имеют вид 

 
1 2 3 12

(1) (2) (3)

12 1 2 2 1

( ) 0,  ( ) 0  ( ) 2

( ) 0,  ( ) 0,  ( ) )

,

.

,

(ij ij ij i j i j

Y Y Y

P P P

   

       

  

   
 (35) 

Тогда из укороченного спектрального представления (12)                

получаем, что 

 1 ( ) 0Y   ,  (36) 

 
(2) ( ) 0ijP   ,  (37) 

 12 33 12l  . (38) 

Из этих соотношений и определения  (3) девиаторов следует, что 

 12 0  , остальные 0ij  ,  (39) 

 2 ( ) 0Y   , 
3 12( ) 2Y   .  

Определяющее соотношение (13) в этом случае принимает вид 

(38). Функция 
33l  в этом соотношении  для случая чистого сдвига 

имеет вид (17), (20). Тогда получаем определяющее соотношение 

композита для данного вида нагружения 

 
3 12( ) 2Y   , (40) 

 
30

12 12 3

3 12 0 3
3 12 12 3

12

2 , если 2 ,

( )
2 (1 (1 ) ) , если 2 .

2

S

bS
S

G

F
G

  

 
   



 


 
  



 (41) 

Построим экспериментальную  диаграмму деформирования 
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( )

12 3 12( )ЭF   при чистом сдвиге композита, полученную прямым 

численным решением локальной задачи на ЯП L12 с помощью                       

соотношения (32). Тогда, сравнивая эту кривую ( )

12 3 12( )ЭF                    

с аппроксимационной функцией (40) находим все константы                                                     

G , 
30S , 0

3 , 
30b  из условия минимизации относительного                          

отклонения этих кривых 

 

2

3 12

( )

3 12

( )
1 min

( )Э

F

F





 
  

 
 . (42) 

Линейное объемное сжатие (растяжение) В этом случае                   

рассматривается совместное решение задач 11L , 22L и 33L , в которых 

 11 22 33 0 0t        , остальные 
12 13 23 0     ,  (43) 

где 
0  — заданная скорость нагружения. 

В этом случае 

 
1 0 2 3

(1) (2) (3)0

( ) ,  ( ) 0,  ( ) 0,

,  ( ) 0,  ( ) 0.
3

ij ij ij ij

Y Y Y

P P P

   


  

  

  
  (44) 

Тогда из укороченного спектрального представления (12)                     

получаем, что 

 

(1) 1
1 11 1

(2) (3)

( )
( ) ( ),  ( ) ,

3

( ) 0,  ( ) 0.

ij ij

ij ij

I
Y l Y P

P P


   

 

 

 

  (45) 

Из этих соотношений и определения  (3) девиаторов следует, что 

при объемном сжатии отличны от тождественного нуля только                   

нормальные  компоненты тензора деформации, и они равны между 

собой 

 
11 22 33 0 12 13 23

2 3

,  0,

( ) 0,  ( ) 0.Y Y

      

 

     

 
  (46) 

Отличное от нуля определяющее соотношение в этом случае                   

одно — это  (45). Функция 11l  в этом соотношении имеет вид (17), 

(20). Тогда получаем для объемного сжатия следующую диаграмму 

деформирования 

 0 1 0( )F  ,  (47) 
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1

0 0 1

1 0 0 1
1 0 0 1

0

3 , если ,

( )
3 (1 (1 ) ) , если .

S

bS
S

K

F
K

  

 
   



 


 
  



  (48) 

Построим экспериментальную кривую деформирования  
( )

0 1 0( )ЭF   композита при объемном сжатии, полученную прямым 

численным решением задач 11L , 22L и 33L .      Тогда из сравнения этой 

кривой ( )

0 1 0( )ЭF   с аппроксимационной функцией (47) 

0 1 0( )F  находим константы K , 
10S , 0

1 , 
1b . 

Линейное трехосное деформирование с нулевым первым            

инвариантом. В этом случае также рассматривается совместное              

решение задач 11L , 22L и 33L , в которых реализуется следующее             

деформированное состояние 

 11 0 0t    , 
22 33 0

1

2
     , 

12 13 23 0     . (49) 

В этом случае 

 

1 2 0 3

2
(1) (3) (2)

0 1 1

1

( ) 0,  ( ) ,  ( ) 0,

1
( ) 0,  ( ) 0,  ( ) ( ).

2
ij ij ij i j i j

Y Y Y

P P P  


   

       


  

    
  (50) 

Из укороченного спектрального представления (12) получаем, 

что 

 1 ( ) 0Y   , 

 
(1) ( ) 0ijP   , 

(3) ( ) 0ijP   , (51) 

 (2) (2)

22( ) ( )ij ijP l P  . 

Из этих соотношений и определения  (3) девиаторов получаем 

следующие соотношения 

 
22 33 11

1

2
      , 11 0  , (52) 

 0 22 0l  , (53) 

 
2 0( )Y   , 

3 ( ) 0Y   . (54) 

Отличное от нуля определяющее соотношение в этом случае                

одно — это  (53). Подставляя в это соотношение функцию 22l  (17), 
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(20), получаем следующую диаграмму деформирования для данного 

пути нагружения 

 0 2 0( )F  ,  (55) 

 
20

0

22 0 0 2

2 0 0 0 2
22 2 0 0 2

0

, если ,

( )
(1 (1 ) ) , если .

S

bS
S

l

F
l

  

 
   



 


 
  



  (56) 

Построим экспериментальную кривую деформирования  
( )

0 2 0( )ЭF  композита,  полученную прямым численным решением 

локальных задач на ЯП 11L , 22L и 33L  при деформировании (49). То-

гда из сравнения этой кривой ( )

0 2 0( )ЭF   с аппроксимационной             

функцией (55) 
0 2 0( )F  находим константы модели  0

22l , 
2S ,                  

0

2 , 
20b . 

Растяжение с нулевым первым инвариантом с предвари-

тельным сдвигом (по ломаной).  Все расчеты по траекториям 1, 2 и 

3 полагаем предварительно проведенными и соответствующие                  

константы (22) модели полагаем вычисленными. 

Рассмотрим нагружение по ломаной линии: вначале до момента 

времени 
1t осуществляется чисто сдвиговое нагружение, как                                 

по траектории 1, а затем достигнутое напряжение сдвига                                

фиксируется 
12max  и к нему добавляется трехосное деформирование 

с нулевым первым инвариантом, как по траектории 3: 

10 t t  : 

 12 12t  ,  остальные 0ij  , (57) 

1 maxt t t  : 

 
12 12max 12 1 13 23

11 0 0 1 22 33 0

,  0,

1
( ),  ,  остальные 0.

2
ij

t

t t

    

      

   

      
  (58) 

Тогда, согласно формулам, полученным для траекторий 1  и 3, 

получаем: 

 при  10 t t   : 

 3 3 3( ) 2 (1 ) ( )Y G Y    , 
1 ( ) 0Y   , 

2 ( ) 0Y   ,  (59) 

где: 
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 3 12( ) 2Y   , 3 12( ) 2Y   , 

 
30

3 3

3 0 3
3 3 3

3

0, если ( ) ,

(1 ) , если ( ) ;
( )

S

bS
S

Y

Y
Y

 

 
  



 


 
 



  (60) 

 при 1 maxt t t    

 0

2 22 2 2( ) (1 ) ( )Y l Y    , 
3 3 3max( ) 2 (1 ) ( )Y G Y    ,  (61) 

где 

 
0

0, если ( ) ,

(1 ) , если ( ) ,
( )

S

bS
S

Y

Y
Y



 

 
  



 

 
  



 


 
 



  (62) 

    22

2 2 2 3max( ) ( ) ( )
q

SY Y a Y    , 

    32

3 3max 3 2( ) ( ) ( )
q

SY Y a Y    , 

 
2

2 20 21 3max 22 3max( ) ( )b b b Y b Y    ,  
2

3 30 31 2 32 2( ) ( )b b b Y b Y    , 

2 11( )Y   ,   2 11( )Y   ,  3 12( ) 2Y   ,  3max 12max( ) 2Y   . 

Построим экспериментальная кривую деформирования  
( )

11 2 11 12max( , )ЭF   , полученную прямым численным решением         

локальных задач на ЯП 11L , 22L , 33L  при трехосном растяжении                 

с нулевым первым инвариантом, после предварительного решения 

задачи и 12L о чистом сдвиге до значения 
12max . Тогда из сравнения 

этой кривой ( )

11 2 11 12max( , )ЭF    с аппроксимационной функцией 

11 2 11 12max( , )F   , которую получаем из  (61), (62) 

 
0

2 11 12max 22 2( , ) (1 )F l    , (63) 

находим константы модели 
2Sa , 

21b ,
22b . 

Сдвиговое нагружение с предварительным растяжением с 

нулевым первым инвариантом (по ломаной). Рассмотрим                    

нагружение по ломаной линии, как в предыдущем разделе, но                         

в другом порядке: вначале до момента времени 1t  осуществляется 

трехосное растяжение с нулевым первым инвариантом, как по                       

траектории 3, затем достигнутое напряжение 
11max  фиксируется  и к 

нему  добавляется чисто сдвиговое нагружение, как по траектории 1: 
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 10 t t  :  

 11 0 0t    , 
22 33 0

1

2
     ,   

12 13 23 0     ,  (64) 

 1 maxt t t   : 

 
12 12 1 11 11max 0 1

22 33 11max 13 23

( ),  ,

1
,  0.

2

t t t    

    

   

    
  (65) 

Тогда, согласно формулам, полученным для траекторий 1  и 3, 

получаем: 

 10 t t  : 

 
20

0

11 22 11 11 2

0 0 2
11 22 2 11 11 2

11

,  если ,

(1 (1 ) ) ,  если ,

S

bS
S

l

l

   


    



 

   
  (66) 

 1 maxt t t  : 

 12 3 12 11max( , )F   , (67) 

где 

 
3

12 3 3

3 12 11max 0 3
3 12 3 3

3

2 , если ( ) ,

( , )
2 (1 (1 ) ) , если ( ) ,

( )

S

bS
S

G Y

F
G Y

Y

  

  
   



 


 
  



  

     32

3 12 3 11max( ) 2
q

SY a    ,  (68) 

  
2

3 30 31 2max 32 2max( ) ( )b b b Y b Y    .  

Максимальная  деформация 
11max  вычисляется по заданному 

максимальному напряжению сдвига 
11max  

 
20

11max
11max 11max 20

22

0 0 2
11max 22 2 11max 11 2

11max

,  если ,

(1 (1 ) ) ,  если .

S

bS
S

l

l


  


    



 

   

  (69) 

Построим экспериментальную кривую деформирования  
( )

12 3 12 11max( , )ЭF    композита, полученную прямым численным   
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решением локальной задачи 12L  о чистом сдвиге после предвари-

тельного решения задач 11L , 22L , 33L  о трехосном растяжением                 

с нулевым первым инвариантом до значения 
11max . Тогда                      

из сравнения этой кривой ( )

12 3 12 11max( , )ЭF    с аппроксимационной 

функцией (67) находим оставшиеся константы 
3Sa , 

31b ,
32b . 

Результаты численного моделирования. Для анализа                          

реализуемости разработанной модели был рассмотрен пример                    

дисперсно-армированного композиционного материала (ДАКМ)                

с частицами сферической формы (рис. 1). В качестве матрицы был 

выбран алюминиевый сплав со следующими константами модели 

деформационной теории пластичности (25) 

 70 ГПаmE  , 0,35m  , 0,0042Sm  , 
0 0,96m  , 2,34mb  . 

В качестве дисперсного наполнителя композита были выбраны 

частицы SiC, которые полагались упругими с характеристиками 

 350 ГПаfE  , 0,2f  .  

Концентрация наполнителя в композите составляла 30%.                          

С помощью решения локальных задач pqL  были получены                            

следующие значения эффективных упругих характеристики компо-

зита, как квази-изотропного материала 

 105,12 ГПаE  , 0,3212  ,   41,57 ГПаG  . 

 
Рис. 1. ЯП дисперсно-армированного КМ с частицами сферической формы  

 

На рис. 2 показана диаграммы деформирования  композита при 

траектории № 1 нагружения,  представленные в виде                        

зависимостей инвариантов 
3 3 3( ) ( ( ))Y F Y  . Одна диаграмма на 

этом рисунке получена прямым решением задачи 12L , а вторая —          
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путем аппроксимации этой кривой с помощью разработанной модели 

квазиизотропного композита по формуле (40). При этом были           

получены следующие значения констант модели 

 30 0,0019398S  , 0

3 0,9258  , 30 3,1726b  . 

 

 
 
 

 

 

а б 

Рис. 2. Диаграммы деформирования 
3 3 3( ) ( ( ))Y F Y  для ДАКМ,                     

полученные по траектории №1 с помощью прямого решения задачи 
12L (1)                     

и аппроксимации по формуле (40) 

 

На рис. 3 показаны диаграммы деформирования  композита по 

траекториям нагружения  № 2 и 3,  представленные в виде                          

зависимостей инвариантов 
1 1 1( ) ( ( ))Y F Y   и 

2 2 2( ) ( ( ))Y F Y  , 

соответственно. Одна из диаграмм на этих рисунках получена            

прямым решением задач pqL , а вторая — путем аппроксимации этих 

кривых с помощью разработанной модели квазиизотропного                 

композита по формулам (47) и (55), соответственно. При аппрокси-

мации были получены следующие значения констант модели 

 10 0,006541S  , 
0

1 0,031363  , 1 4,32996b  , 

 2 0,0015368S  , 
0

2 0,9431  , 20 3,9724b  . 

Поскольку наполнитель композита является упругим,                      

а матрица  — не обладает пластичностью при объемном сжатии, то 

композит также не проявляет значительных пластических свойств 

при объемном сжатии, поэтому диаграмма 
1 1 1( ) ( ( ))Y F Y                              

(рис. 3а) близка к линейной до больших значений напряжений. 
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а б 
Рис. 3. Диаграммы деформирования для ДАКМ, полученные по траекториям 

№ 2 и 3 с помощью прямого решения задач pqL (кривые — 1) и аппроксимации по 

формулам (47) и (55) (кривые — 2): 

а — 
1 3 1( ) ( ( ))Y F Y  ; б — 

2 2 2( ) ( ( ))Y F Y   

 

На рис. 4 показаны диаграммы деформирования  композита при 
траектории нагружения  № 4, представленные в виде зависимостей 

инвариантов  
2 2 2 3max( ) ( ( ), ( ))Y F Y Y    при различных фиксирован-

ных значениях инварианта 3max ( )Y  , достигнутых на первом участке 

траектории № 4. соответственно. Для каждой из таких диаграмм 
строилась аппроксимация с помощью соотношения (61)                                   

с различными значениями параметра 2b . В результате была                     

построения функция зависимости. График этой функции показан на 
рис. 5. Для аналитической аппроксимации этой функции                           
применялась модель (21). При аппроксимации были получены                 
следующие значения констант модели 

 2 0,6277Sa  , 22 47,6585b  , 
21 5,80369b   . 

На рис. 6 показаны диаграммы деформирования  композита при 
траектории нагружения  № 5,  представленные в виде зависимостей 

инвариантов  
3 3 3 2max( ) ( ( ), ( ))Y F Y Y    при различных фиксирован-

ных значениях инварианта 2max ( )Y  , достигнутых на первом участке 

траектории № 5, соответственно. Для каждой из таких диаграмм 
строилась аппроксимация с помощью соотношения (68)                                    

с различными значениями параметра 3b . В результате была построе-

на функция зависимости 
3 2max( ( ))b Y   и найдены константы                  

аппроксимации 
31 32,b b . График этой функции показан на рис. 7). При 
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аппроксимации были получены следующие значения констант модели 

 
3 32 311,59305, 27,4546, 10,5042.Sa b b     

 

 
 
 

 

 

Рис. 4. Диаграммы деформирования  для 
ДАКМ, полученные по траекториям № 4  с 

помощью прямого решения задач pqL  для 

различных значениях 
3max ( )Y  : 0 (1);              

0,01 (2); 0,02 (3);0,03 (4); 0,04(5) и 0,05 (6) 

Рис. 5. зависимости параметра 
3b  от 

3max ( )Y  , полученные прямым          

решением задач 
pqL  (кривая 1) и с 

помощью аппроксимации (68)             
(кривая 2) 

 
 

 
 
 

 
 

 

Рис. 6. Диаграммы деформирования 

3 3 3 2max( ) ( ( ),  ( ))Y F Y Y    для ДАКМ, 

полученные по траекториям № 4   

с помощью прямого решения задач pqL

(кривые —1) для различных значениях 

2max ( )Y  =0 (1): 0 (1); 0,01 (2); 0,02 (3);         

0,03 (4); 0,04(5) и 0,05 (6) 

Рис. 7. зависимости параметра 
3b от 

2max ( )Y  , полученные прямым       

решением задач pqL (1) и с помощью 

аппроксимации (68) 
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Для верификации разработанной модели были проведены                    

проверочные расчёты по направлениям нагружения (33), которые не 

были использованы при определении констант модели. Эти                          

направления задавались координатным столбцом значений 

11 22 33 12 13 23{ } { , , , , , }       .  

На рис. 8 показаны диаграммы деформирования 

2 2 2( ) ( ( ))Y F Y  , полученные прямым решением задач pqL  и                     

с помощью микроструктурной модели, при нагружении 

{ } {2,0,5,0,5,0,0,0}  , составленном из 2-х видов: объемного                  

сжатия и растяжения с нулевым первым инвариантом, как для                      

траектории № 3, а также при  нагружении { } {1, 0,5, 0,5,1,0,0}    , 

составленном из сдвига и растяжения с нулевым первым инвариан-
том. Относительная ошибка, которая получается при использовании 
микроструктурной модели, составляет 7,124% — для первого их    
указанных нагружений и 0,537%  — для второго. 

На рис. 9 показаны диаграммы деформирования 

3 3 3( ) ( ( ))Y F Y  , полученные прямым решением задач pqL  и                   

с помощью микроструктурной модели, при нагружении 

{ } {1,1,1,1,0,0}  , составленном из 2-х видов: объемного сжатия и 

сдвига, а также при  нагружении { } {1, 0,5, 0,5,1,0,0}    ,                       

составленном из сдвига и растяжения с нулевым первым инвариан-
том. Относительная ошибка, которая получается при использовании 
микроструктурной модели, составляет 0,218% — для первого их             
указанных нагружений и 4,08%  — для второго. 
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Рис. 8. Диаграммы деформирования 2 2 2( ) ( ( ))Y F Y  для ДАКМ, полученные           

с помощью прямого решения задач pqL  (кривые —1) и с помощью                           

микроструктурной модели (кривые — 2) по траекториям: 

а — { } {2,0,5,0,5,0,0,0}  ; б — { } {1, 0,5, 0,5,1,0,0}     
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Рис. 9. Диаграммы деформирования 
3 3 3( ) ( ( ))Y F Y  для ДАКМ, полученные              

с помощью прямого решения задач 
pqL  (кривые —1) и с помощью                            

микроструктурной модели (кривые — 2) по траекториям: 

а — { } {2,0,5,0,5,0,0,0}  ; б — { } {1, 0,5, 0,5,1,0,0}     

 

Заключение.  Предложена микроструктурная модель                      

деформационной теории пластичности квази-изотропных                          

композиционных материалов, основанная на тензорно-симметрийном 

представлении определяющих соотношений теории анизотропной 

пластичности,  конкретных моделях спектральных функций                           

пластичности и методе асимптотического осреднения  для определе-

ния констант этой модели. Проведен численный пример расчетов 

констант модели для дисперсно-армированного композиционного 

материала на алюминиевой матрице, для  которого вычислены все 

константы модели. А также проведены верификационные расчеты 

диаграмм пластичности  при различных путях нагружения, показано, 

что разработанная модель обеспечивает высокую точность                           

прогнозирования упруго-пластических свойств композита. 
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Modeling microstructural model of the plasticity defor-

mation theory for quasi-isotropic composite materials 
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A model of constitutive relations for elastic-plastic composites with cubic symmetry of 

properties is proposed. This class includes a significant number of composite materials: 

dispersed-reinforced composites, which have an ordered rather than a chaotic              

reinforcement system, as well as some types of spatially reinforced composites. To build 

a model of nonlinear constitutive relations, a tensor-symmetry approach was used, based 

on the spectral expansions of stress and strain tensors, as well as the spectral                       

representation of nonlinear tensor relations between these tensors. The deformation             

theory of plasticity is considered, for which the tensor-symmetric approach is used, and 

specific models are proposed for plasticity functions that depend on the spectral                 
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invariants of the strain tensor. To determine the model constants, a method is proposed in 

which these constants are calculated based on the approximation of deformation curves 

obtained by direct numerical solution of three-dimensional problems on the periodicity 

cell of elastic-plastic composites. These problems arise in the method of asymptotic             

averaging of periodic media. To solve problems on a periodicity cell, a finite element 

method and special software was used that implements solutions to problems on                 

periodicity cells, developed at the Scientific and Educational Center for Supercomputer 

Engineering Modeling and Development of Software Packages of Bauman Moscow State 

Technical University. An example of calculating the constants of a composite model             

using the proposed method for a dispersed-reinforced composite based on a metal matrix 

is considered. Also, the verification of the proposed model for various ways of multiaxial 

loading of the composite was carried out with direct numerical simulation. It is shown 

that the proposed microstructural model and the algorithm for determining its constants 

provide a sufficiently high accuracy in predicting the elastic-plastic deformation of the 

composite. 

 
 

Keywords: composites, numerical simulation, deformation theory of plasticity,                   

quasi-isotropic materials, microstructural model, asymptotic averaging method, finite 

element method, dispersed-reinforced composites, metal composites, deformation             

diagrams, invariants 
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