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Поскольку классические гипотезы Бернулли для балок и Кирхгофа для тонких 

пластин вступают в противоречие с дополнительным для резиноподобных 

(несжимаемых) материалов условием несжимаемости (неизменяемости объёма в 

процессе деформирования), предлагается модель расчёта для изгибаемой балки, не 

приводящая к серьёзному усложнению поставленной задачи по сравнению с 

классическим решением. Неизменяемость объёма проявляется при действии 

силовой нагрузки, в случае температурной нагрузки деформация изменения объёма 

не равна нулю. Отсутствие объёмных деформаций для резиноподобных материалов 

есть следствие закона Гука для подобного рода материалов. Суммируя линейные 

деформации, выраженные через напряжения и принимая коэффициент Пуассона 

0,5, получим равенство нулю указанной суммы Многие резиноподобные материалы 

являются несжимаемыми и низкомодульными, что означает слабое их 

сопротивление растяжению и сдвигу, но сопротивление материала изменению 

объёма стремится к бесконечности, поэтому физические соотношения 

обобщённого закона Гука преобразуются в так называемые «неогуковские» 

уравнения связи напряжений и деформаций.  Из двух независимых физических 

характеристик (модулей) для несжимаемых материалов остаётся лишь один 

модуль, характеризующий сопротивление среды изменению формы. В физических 

соотношениях для несжимаемого материала произведение бесконечно большого 

объёмного модуля на деформацию изменения объема, равную нулю, представляет 

собой неопределенность, которая заменяется некоторой силовой функцией, 

имеющей размерность напряжений и являющейся дополнительной неизвестной. В 

то же время, система определяющих уравнений механики несжимаемых сред 

дополняется уравнением неизменяемости объёма. Схема решения задачи в 

перемещениях для традиционных конструкционных материалов превращается в 

смешанную схему для резиноподобных материалов, поскольку для них в качестве 

основных искомых неизвестных выступают не только перемещения, но и 

упомянутая силовая. 

 

Ключевые слова: несжимаемость, изгиб, упругость, модель, гипотезы, 

деформации, перемещения, напряжения, нагрузка, граничные условия 

 

Введение. В настоящее время опубликовано достаточно много 

работ, посвящённых уточнению классических теорий изгиба балок и 

пластин, гипотезы которых, по сути, идентичны. Одной из первых 

была работа Тимошенко С.П., который в своих работах отказался от 

гипотезы отсутствия сдвига в поперечных к основанию пластинки 

плоскостях, и привел решение с постоянным по толщине пластинки 

сдвигом и постоянными касательными напряжениями, которые в силу 

парности действуют на основаниях пластинки, что приводит к 
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искажению исходной задачи [1]. Но влияние, действующей на 

основаниях касательной нагрузки на прогиб, видимо, не является 

значительным, поэтому эту модель, называемою моделью Тимошенко, 

используют для уточнения классической теории. 

Дальнейшие уточнения связаны с аппроксимацией перемещений 

по толщине с использованием полиномиальных функций различного 

порядка, от которых зависит точность результатов. Эти уточнения 

проводились для тонких пластин и балок достаточной длины, 

выполненных из традиционных конструкционных материалов [2–4]. 

Вариационный подход к расчёту несжимаемых деталей представлен в 

работе [5]. Специфика несжимаемых композитных материалов учтена 

в работах [6]. На основе отказа от гипотезы плоских сечений можно 

построить разные модели расчёта [7]. В работах [8–10] исследуются 

специфические свойства эластичных и резиноподобных материалов.  

Для балок и пластин из несжимаемых материалов корректирующие 

расчётные модели практически отсутствуют. 

О классических гипотезах: гипотеза о ненадавливаемости волокон 

в поперечном направлении при изгибе балки большого значения для 

точности решения задачи не имеет, а две других гипотезы об 

отсутствии линейной деформации в поперечном направлении и 

сдвиговой в плоскости xy , могут привести к неприемлемому решению 

для материала с неизменяемым объёмом. Здесь и далее продольная 

координата совпадает с нейтральной линией балки, а поперечная- 

перпендикулярна к нейтральной линии. Начало координат для 

симметричных нагрузки и граничных условий на торцах 

располагается в средине нейтральной линии, а в случае отсутствия 

симметрии на одном из торцов балки. 

Проиллюстрируем доказательство неприменимости гипотез 

Бернулли к решению задачи изгиба несжимаемой балки. 

Примем 0
v

y





, тогда  v v x , 0

xy
  , отсюда 

 
u v

y x

 
 

 
 и  u v x y  .  

Подставим эти соотношения в условие несжимаемости 

 0
u v

y x

 
 

 
,  

тогда получим  u y , следовательно, v const , и прогиб является 

линейной функцией от x , чего быть не может. Здесь и далее u  — 

продольное перемещение, v  — поперечное перемещение или прогиб. 
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В рассматриваемой модели основным является представление 

сдвиговой деформации, а, следовательно, и связанных с ней 

касательных напряжений в виде функции, автоматически 

удовлетворяющей граничные условия отсутствия касательных 

напряжений на протяжённых границах несжимаемой балки. 

Продольные перемещения линейны по поперечной координате, 

поперечные перемещения (прогиб) определяются из условия 

несжимаемости. Для иллюстрации эффективности рассматриваемой 

модели рассмотрены четыре варианта граничных условий. 

Принимается, что внешняя силовая нагрузка не вызывает больших 

перемещений, напряжения зависят линейно от деформаций, 

температурная нагрузка отсутствует. 

Система уравнений плоской задачи теории упругости для 

несжимаемых материалов. Рассмотрим уравнения плоской задачи 

линейной теории упругости для изотропного несжимаемого 

материала. 

Уравнения равновесия в отсутствие объёмных сил имеют вид 

 0
xyx

x y

 
 

 
,  0

yx y

x y

  
 

 
. (1) 

Уравнения связи деформаций и перемещений (соотношения 

Коши) имеют следующий вид: 

 
x

u

x






,  y

v

y






, xy

u v

y x


 
 
 

. (2) 

Условие несжимаемости 

 0x y

u v

x y
 

 
   

 
.  (3) 

«Неогуковские» определяющие соотношения для несжимаемых 

материалов запишем следующим образом: 

 2x

u
G S

x



 


,  2y

v
G S

y



 


, xy

u v
G

x y


  
  

  
. (4) 

В приведённых уравнениях 
x , y , xy  — нормальные и 

касательное напряжения, x , y , xy  — линейные и сдвиговая 

деформации, u  — продольное перемещение и v  — прогиб балки,           

S  — силовая функция, заменяющая неопределённость   в 

физических соотношениях (4). 

Основное допущение модели. Зададим сдвиговую деформацию 

как квадратичную функцию поперечной координаты 
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  
2

2

4
xy

h
f x y

 
  

 
,  (5) 

где  f x  — произвольная функция продольной координаты, h  — 

ширина балки. 

Такое представление сдвиговой деформации позволяет заранее и 

точно удовлетворить условиям отсутствия касательных напряжений 

на протяжённых границах балки при 
2

h
y . 

Представим продольное перемещение в виде линейной функции 

поперечной координаты 

  0u u x y ,  (6) 

где  0u x  — произвольная функция продольной координаты, не 

связанная с прогибом как в классической теории изгиба балок. 

Интегрируя по поперечной координате условие несжимаемости 

(3) после подстановки в него (6) определим прогиб с точностью до 

двух произвольных функций продольной координаты 

  
2

0
0

2

du y
v v x

dx
  .  (7) 

Из этой формулы следует, что нормальный к нейтральной линии 

балки элемент, соединяющий верхнюю и нижнюю протяжённые 

границы балки не изменяет в процессе деформирования свою длину, 

иными словами, ширина балки (размер в поперечном направлении) 

остаётся неизменной, но при этом линейная деформация в поперечном 

направлении отлична от нуля. 

Имеем следующие искомые неизвестные рассматриваемой 

задачи: 

 ,x x y ,   ,y x y , 

 0u x ,  0v x ,  f x . 

Для их определения используем уравнения равновесия (1), третье 

равенство формул (2), представления (5) и (6) и формулу (7). 

Алгоритм решения задачи. Касательные напряжения в балке 

известны с точностью до произвольной функции продольной 

координаты  f x . С точностью до этой функции и одномерных 

функций интегрирования определим из уравнений равновесия (1) 

нормальные напряжения  ,x x y  и  ,y x y , подставляя в них 
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  
2

2

4
xy xy

h
G Gf x y 

 
   

 
.  (8) 

В результате интегрирования уравнений (1) получим 

 

   

   
2 3

2 ,

2 .
4 3

x

x

Gf x y y

h y
Gf x y x

 

 

 

 
   

 

  (9) 

Две новые одномерные функции — дополнительные неизвестные, 

подлежащие определению. Распорядимся функцией  x  для точного 

удовлетворения граничных условий на верхней и нижней 

протяжённых границах балки при 
2

h
y  

 y q  ,  0y  , 

соответственно, на верхней и нижней границах. 

Подставляя во второе равенство (9), получим 

 
   

   

3

3

,
12

0,
12

h
Gf x x q

h
Gf x x





  

  

  

откуда 

  
2

q
x  ,  

где q  — поперечная переменная по x  или постоянная нагрузка, 

распределённая по верхней протяжённой границе балки. 

Подставив, найденную функцию  x  в любое из двух 

приведённых выше равенств, получим обыкновенное 

дифференциальное уравнение для определения функции  f x  

   3

6q
f x

Gh
  .  

После двукратного интегрирования этого уравнения получим 

решение 

   20
1 23

3q
f x x a x a

Gh
   , 
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где 1a  и  2a  — произвольные константы интегрирования, а 

0q q const  . 

Подставим полученное решение в равенства (8) и (9) получим 

формулы для определения нормальных и касательных напряжений, 

содержащие две неопределённые константы и одномерную 

неопределённую функцию поперечной координаты 

 

 20
1 23

2 3

0 0

3

2
20

13

6
2 2 ,

6
,

4 3 2

6
.

4

x

y

xy

q
x Ga x Ga y y

h

q qh y
y

h

q h
x Ga y

h

 





 
    
 

 
   

 

  
    
  

  (10) 

Теперь можно получить дифференциальные уравнения для 

определения кинематических неизвестных 0u  и 0v , подставив (6) и (7) 

в формулу (5) и учитывая третью формулу в равенствах (2) 

 
2 2 2

20 0 0
0 12 3

6

2 4

dv d u qy h
u x a y

dx dx Gh

  
      

  
,  

откуда следуют два уравнения 

 
2

0 0
0 23

6

4

dv q h
u x a

dx Gh

 
   

 
, 

2

0 0
22 3

6
2

d u q
x a

dx Gh

 
  

 
.  

Последовательно интегрируя сначала второе, а затем первое 

уравнение получим решение для определения искомых функций 

  

 

2
30

0 1 2 33

3 2 2
40 0

0 1 2 3 1 43 3

2
,

2

6
,

2 6 2 2

q x
u x a a x a

Gh

q qx x x
v x a a a x a x a

Gh Gh

   

 
       

 

 (11) 

где 
4

a  также произвольная функция интегрирования. 

Теперь в силу того, что перемещения и нормальные напряжения 

определялись независимо друг от друга, и общая для них одномерная 

функция  f x  не обеспечивает полного соответствия между 

напряжениями, определёнными из уравнений равновесия (1) и 

напряжениями, определёнными из первых двух равенств (4), проведём 
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это соответствие с помощью не имеющей в этой модели 

самостоятельного значения силовой функции  ,S x y  

 20 0
1 2 1 23 3

212 6
2 2 2 2

q q
x Ga x Ga y S x Ga x Ga y y

h h


   
         

   
, 

откуда  

  20

3

6q
S x y y

h
   . 

Такого же соответствия для нормального напряжения 
y

  

добиться не удаётся, в связи с этим физическая связь для этого 

напряжения нарушается, как и в классической модели, что, впрочем, 

не оказывает заметного влияния на эффективность и точность 

предлагаемой модели. 

Для определения произвольных констант интегрирования 
1

a , 
2

a , 

3
a , 

4
a  и произвольной функции  y  воспользуемся граничными 

условиями на торцевых границах балки для четырёх случаев 

закрепления: 1) шарнирное опирание на обоих торцах, 2) жёсткое 

защемление на обоих торцах, 3) консольная балка с распределённой 

по верхней границе нагрузкой, 4) консольная балка, изгибаемая 

поперечной силой на торце. 

Первый вариант граничных условий. Учитывая симметрию 

рассматриваемой задачи как по граничным условиям на торцах, так и 

по нагрузке, поместим начало координат в среднем сечении балки, при 

этом необходимо в формулах (10) и (11) исключить слагаемые, 

содержащие функции продольной координаты, не соответствующие 

симметрии, поэтому положим  
1 3

0a a  . Выпишем решения для тех 

функций, относительно которых необходимо выполнить граничные 

условия на торцах при 
2

l
x   , где l  — длина балки 

 

 

2 2 2 2
40 0 0

0 2 43 3

2
20

23

20
23

3

2 2 2 4

6
,

2

6
2 .x

du q qy x x h
v v x a a

dx Gh Gh

q y
x a

Gh

q
x Ga y y

h
 

       

 
  
 

 
   
 

 (12) 
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Выполняя граничное условие 
x  при 

2

l
x   , определим  y , 

константы 
1

a , 
2

a  найдём из условия 0v   при  
2

l
x   . 

Подставив найденные константы в равенства (12), получим 

 
2

20

3

6

4
x

q l
x y

h


 
  

 
, 

   
2 2

4 2 2 2 2 2 2 20 0

3 3

33
2 3

2 4 8 4

q ql l
v x x l h l h x y

Gh Gh

   
          

   
. 

Заметим, что во втором равенстве ввиду малости h  по сравнению 

с l , можно отбросить слагаемые, содержащие 2h , и решение для 
функции прогиба упростится. 

 
4 2

4 2 2 2 20 0

3 3

33

2 4 8 4

q ql l
v x x l x y

Gh Gh

   
        

   
. 

Максимальный прогиб будет в среднем сечении балки при 0x   

 
4 2

20 0
max 3 3

3

16

q l q l
v y

Gh Gh
   . 

Положив 0y  , получим максимальный прогиб нейтральной 

линии балки, а при максимальном значении 
2

h
y    отметим 

мизерный вклад в суммарный прогиб второго слагаемого по 
сравнению с первым ввиду малости ширины балки по сравнению с 
длиной. 

Решение для продольных перемещений для рассматриваемого 
случая граничных условий имеет вид 

 2 20

3

2 3

4

q
u x x l y

Gh

 
  

 
. 

Второй вариант граничных условий. Для жёстко защемлённой 
на торцах балки имеем, как и в уже рассмотренной задаче, симметрию 
по нагрузке и граничным условиям, поэтому начало координат также 
находится в среднем сечении балки. В её торцевых сечениях 
реализуются исключительно кинематические граничные условия: при 

2
lx    0u v  . Поскольку влияние последнего слагаемого в 

первом равенстве (12) очень мало, примем 
0v v , и так как 0u u y , то 

условия на торцах примут вид: 
2

lx    
0 0 0u v  . 
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 0
23

0
4 2

q l
a

Gh
  ,  

 
2 2

2 20
2 43

6 0
32 8

q l l
h l a a

Gh
    . 

Во втором из приведённых равенств пренебрегаем слагаемым 26h  

по сравнению с 2l  ввиду малости поперечного размера балки по 

сравнению с её длиной. Определив из этих равенств обе неизвестные 

константы 2a , 4a  и подставив их в исходные формулы, получим 

 

2
20

3

2
4 2 40

0 3

2
 ,  

4

1
.

2 2 16

q l
u x x y

Gh

q l
v v x x l

Gh

 
  

 

 
     

 

 

Здесь также максимальный прогиб будет в среднем сечении балки 

при 0x   

 
4

0
max 332

q l
v

Gh
  . 

И он в два раза меньше максимального прогиба в случае 

шарнирного опирания в торцевых сечениях. 

Подставляя найденную константу 2a  во второе равенство формул 

(12) и полагая   0y  , получим окончательное решение для 

определения 
x  

 
2

20

3

6

6
x

q l
x y

h


 
  

 
. 

Если граничные условия на торцах симметричны относительно 

среднего сечения балки и также симметрична нагрузка, то решение 

для касательных напряжений не содержит констант интегрирования и 

будет одинаковым для обоих рассматриваемых случаев 

 
2

20

3

6

4
xy

q h
x y

h


 
  

 
. 

Третий вариант граничных условий. Консольная балка, левый 

торец которой защемлён, а правый свободен от закрепления и 

нагрузки, изгибается под действием постоянной, распределённой по 

верхней протяжённой границе, нагрузкой 0q . Граничные условия в 
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этом случае несимметричны относительно среднего сечения балки, 

поэтому начало координат целесообразно переместить в левое 

торцевое сечение. На левом торце при 0x   реализуются 

кинематические граничные условия 0 0u  , 0 0v v  . Для 

определения констант интегрирования воспользуемся формулами 

(11). В результате получим 
3 4 0a a  . На правом торце реализуются 

статические граничные условия: при x l  0x xy   . В результате 

получим два уравнения для определения констант 1a  и 2a . 

 

 20
1 23

2
20

13

6
2 2 0,

6
0.

4

q
l Ga l Ga y y

h

q h
l Ga y

h


 

    
 

  
    

  

  

Определив из второго равенства 1a  и подставив его в первое, 

получим 2a . Функция  y  и для этого варианта граничных условий 

оказывается лишней, поэтому положим её равной нулю. Найденные 

константы вносим в исходные формулы и получим окончательное 

решение для искомых функций перемещений и напряжений 

  
20

3

6
x

q
x l y

h
   ,  

2
20

3

6

4
xy

q h
x l y

h


 
   

 
, 

   20

3

2
2 3

q
u x x l l x

Gh
   ,  4 3 2 20

0 3
2 3

2

q
v v x lx x l

Gh
     . 

Максимальный прогиб будет в правом торцевом сечении балки 

при x l  (свободный край) 

 
4

0
max 3

q l
v

Gh
  , 

что значительно больше максимального прогиба в первых двух 

вариантах граничных условий. 

Максимальные нормальные и касательные напряжения 

реализуются в заделке при 0x   

 
2

0
max 3

6
x

q l
y

h
   , 

2
20

max 3

6

4
xy

q l h
y

h


 
   

 
. 

Четвёртый вариант граничных условий. Консольная балка 

изгибается силой, приложенной в её правом торцевом сечении, 
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распределённая по протяжённой границе нагрузка отсутствует 0 0q  . 

Граничные условия несимметричны, начало координат поместим на 

левом торце балки. Решение для искомых функций перемещений и 

напряжений (10) и (11) преобразуется к виду 

 

   

2 3 2

0 1 2 3 0 1 2 3 4

2
2

1 2 1

,    ,
2 6 2

2 ,    .
4

x xy

x x x
u a a x a v a a a x a

h
G a x a y y Ga y  

       

 
     

 

 (13) 

Выполнив граничные условия жёсткого защемления при 0x   

0 0u  , 0 0v v  , получим 
3 4 0a a  . Для определения константы 1a     

приведём касательные напряжения к действующей на свободном 

конце нагрузке P , выполнив смягчённое граничное условие при x l  

 
22 2

2

1

2 2

4

h h

xy

h h

h
dy Ga y dy P

 

 

 
   

 
  . 

Найденное отсюда 
1 3

6
 

P
a

Gh
   подставим в формулу для 

x  в (13) 

и определим 2a  из условия отсутствия этих напряжений на свободном 

крае: при x l  0x  . Очевидно, для выполнения этого условия 

функция  y  является лишней, и её можно положить равной нулю. 

Подставив найденные константы в исходные формулы, получим 
окончательное решение в виде 

  3

3
2

P
u x x l y

Gh
  ,  

 2

0 3
3

Px
v v x xl

Gh
   , 

  3

12
x

P
x l y

h
   , 

2
2

3

6

4
xy

P h
y

h


 
  

 
. 

Максимальный прогиб будет на свободном конце балки при x l , 
максимальные нормальные напряжения, а, следовательно, 
изгибающий момент — в заделке, касательные напряжения и, 
соответственно, перерезывающая сила постоянны по длине балки. 

Выводы. Представленная модель расчёта балки из 
резиноподобного материала не имеет противоречий и не приводит к 
усложнению математического аппарата по сравнению с классическим 
вариантом расчёта балок из традиционных материалов. 
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Задание сдвиговых деформаций в виде (5) с целью 

автоматического удовлетворения граничных условий отсутствия 

касательных напряжений на протяжённых границах балки приводит к 

решению, отличному от приведённого в работе (7), в которой 

использовались частично те же гипотезы, но алгоритм решения был 

другим. Следует отметить, что все рассмотренные граничные условия 

на торцах были удовлетворены точно, кроме одного смягчённого в 

четвёртом варианте задачи.  

Наличие в решении для функции прогиба квадратичного по 

поперечной координате слагаемого (12) не даёт ощутимого уточнения 

решения, поэтому при постановке граничных условий оно не 

учитывалось, но без этого слагаемого решение этой задачи было бы 

невозможно. 

Представленная модель может быть рекомендована для расчёта 

изгибных напряжений и перемещений в тонких пластинках из 

резиноподобных и традиционных материалов. 

ЛИТЕРАТУРА 

[1] Тимошенко С. П., Войновский-Кригер С. Пластины и оболочки. Москва, 

Наука, 1966, 636 с. 

[2] Васильев В.В., Лурье С.А. К проблеме построения неклассических теорий 

пластин.  Известия Академии наук СССР. Механика твёрдого тела, 1990, с. 

158–167. 

[3] Васильев В.В., С.А. Лурье С.А. Вариант уточненной теории изгиба балок из 

слоистых пластмасс. Механика композитных материалов, 1972, № 4,                             

c. 577–768. 

[4] Carrera E., Giunta G., Petrolo M. Beam Structures: Classical and Advanced 

Theories. Wiley, 2011, 204 p. 

[5] Бидерман В.Л., Мартьянова Г.В. Вариационный метод расчёта деталей из 

несжимаемого материала. Расчёты на прочность, 1977, вып. 18., c. 3–27. 

[6] Димитриенко Ю.И., Губарева Е.А., Кольжанова Д.Ю., Каримов С.Б. 

Моделирование несжимаемых слоистых композитов с конечными 

деформациями на основе метода асимптотического осреднения. 

Математическое моделирование и численные методы, 2017, № 1, с. 32–54. 

[7] Фирсанов В.В. Изгиб балки, выполненной из материала с неизменяемым 

объёмом. Механика композиционных материалов и конструкций, 2020,                         

т. 26, № 2, с. 200–211. 

[8] Победря Б.Е. Об уравнениях состояния в нелинейной теории 

вязкоупругости. Механика композитных материалов, 1967, № 3, с. 427. 

[9] Treloar L.R.G. The Physics of Rubber Elasticity. OUP Oxford, 2005, 324 p. 

[10] Herakovich C.T. A Concise introduction to elastic solids: an overview of the 

mechanics of elastic materials and structures. Springer, 2017, 136 p. 

 

Статья поступила в редакцию 29.10.2021 

 

Ссылку на эту статью просим оформлять следующим образом: 

Фирсанов В.В. Моделирование изгиба балок из резиноподобных материалов. 

Математическое моделирование и численные методы, 2021, № 4, с. 3–16. 



Моделирование изгиба балок из резиноподобных материалов 

15 

Фирсанов Виктор Васильевич — канд. техн. наук, доцент кафедры 

«Проектирование и прочность авиационно-ракетных и космических изделий» ФГБУ 

ВО «Московский авиационный институт» (национальный исследовательский 

университет) г. Москва. e-mail: kaf603@mai.ru 

 

Modeling the bending of beams made of rubber-like 

materials  

© V.V. Firsanov 

Moscow Aviation Institute (National Research University), Moscow, 105005, Russia 
 
 
 
 

Since the classical hypotheses of Bernoulli for beams and Kirchhoff for thin plates 

contradict the additional condition of incompressibility for rubber-like (incompressible) 

materials (invariability of the volume during deformation), a calculation model for a 

bending beam is proposed, which does not lead to a serious complication of the problem 

in comparison with the classical solution. The invariability of the volume is manifested 

under the action of a power load; in the case of a temperature load, the deformation of the 

volume change is not zero. The absence of volumetric deformations for rubber-like 

materials is a consequence of Hooke's law for such materials. Summing the linear 

deformations expressed in terms of stresses and taking Poisson's ratio 0.5, we obtain the 

equality of the indicated sum to zero. Many rubber-like materials are incompressible and 

low-modulus, which means their weak resistance to tension and shear, but the resistance 

of the material to change in volume tends to infinity, therefore the physical relations of the 

generalized Hooke's law are transformed into the so-called "neo- Hooke " equations of the 

relationship between stresses and strains. Of the two independent physical characteristics 

(modules) for incompressible materials, only one module remains, which characterizes the 

resistance of the medium to change in shape. In physical relations for an incompressible 

material, the product of an infinitely large volumetric modulus by the deformation of a 

change in volume equal to zero is an uncertainty that is replaced by some force function 

that has the dimension of stresses and is an additional unknown. At the same time, the 

system of governing equations of the mechanics of incompressible media is supplemented 

by the equation of invariability of volume. The scheme for solving the problem in 

displacements for traditional structural materials turns into a mixed scheme for rubber-

like materials, since for them not only displacements but also the mentioned force function 

act as the main unknown sought function. 

 
 

Keywords: incompressibility, bending, elasticity, model, hypotheses, deformations, 

displacements, stresses, load, boundary conditions 
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