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Для выбора оптимального в смысле вычислительной эффективности итерацион-
ного метода решения систем линейных алгебраических уравнений, возникающих 
при дискретизации дифференциальных уравнений в частных производных, помимо 
скорости сходимости следует учитывать такие характеристики системы и ме-
тода, как число обусловленности, коэффициент сглаживания, показатель «за-
тратности». Последние две характеристики вычисляют по коэффициентам уси-
ления гармоник, которые позволяют судить о сглаживающих свойствах итераци-
онного метода и его «затратности», т. е. о том, насколько хуже метод подавля-
ет низкочастотные компоненты ошибки по сравнению с высокочастотными. 
Предложен способ определения коэффициентов усиления гармоник, основанный на 
использовании дискретного преобразования Фурье. В качестве примера приведён 
анализ эффективности метода BiCGStab c ILU и многосеточным предобусловли-
ванием при решении разностных аналогов уравнений Гельмгольца и Пуассона. 
 
Ключевые слова: разреженные линейные системы, предобусловливание, сглажива-
тели, дискретное преобразование Фурье, многосеточные методы. 

 
Введение. Основной объём вычислительной работы при числен-

ном моделировании технических систем, физических явлений и тех-
нологических процессов, как правило, приходится на решение систем 
линейных алгебраических уравнений (СЛАУ), возникающих при дис-
кретизации соответствующих дифференциальных или интегродиффе-
ренциальных уравнений [1]. 

С практической точки зрения наиболее важной характеристикой 
итерационного метода решения СЛАУ является время, затрачиваемое 
на решение с заданной точностью конкретной задачи на конкретной 
ЭВМ, которое определяет вычислительную эффективность метода 
применительно к данной задаче. В то же время при теоретическом 
исследовании итерационных методов основное внимание уделяется 
скорости сходимости, т. е. скорости уменьшения ошибки, а также 
кластеризации собственных значений матрицы перехода от итерации 
к итерации. Однако опыт применения различных итерационных ме-
тодов при решении задач механики сплошной среды показывает, что 
прямой связи между скоростью сходимости метода и его вычисли-
тельной эффективностью для конкретных задач может не быть. Это 
связано с тем, что теоретические оценки строятся для наиболее обще-
го случая и не учитывают специфику решаемой задачи, а также в них 
не учитывается вычислительная трудоемкость каждой итерации. По-
этому для выбора оптимального в смысле вычислительной эффектив-
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ности итерационного метода помимо скорости сходимости следует 
также учитывать и другие характеристики: число обусловленности, 
коэффициент сглаживания, показатель «затратности». 

Постановка задачи. Рассмотрим систему линейных алгебраиче-
ских уравнений  

= , , , ( ) , det 0,d
d d

N
N NR M R   Ax b x b A A          (1) 

возникающую при дискретизации уравнения =Lu f , где L  — диффе- 
ренциальный либо интегродифференциальный оператор, возникающий 
при решении задач математической физики; u  — искомая функция; 
f  — известная функция. Будем считать, что невырожденная матрица 
A  системы является разреженной и не обладает специальными 
свойствами (симметрией, положительной определенностью). 

Целью настоящей работы является построение методики анализа 
вычислительной эффективности различных итерационных методов 
решения задачи (1) и априорного выбора метода решения данной 
задачи, обладающего высокой вычислительной эффективностью. Под-
черкнём, что при таком анализе будут учитываться лишь свойства 
матрицы системы и матрицы перехода от итерации к итерации, в то 
время как технические детали реализации алгоритма (распа-
раллеливание операций, эффективность использования кэш-памяти и 
т.д.) в рамках данной работы не рассматриваются. Поэтому вполне 
возможно, что решение систем, аналогичных рассматриваемым, ите-
рационными либо прямыми методами, реализованными в известных 
библиотеках (PETSc [2], HYPRE [3], INTEL MKL [4] и др.), будет да-
вать результаты, отличающиеся от представленных в работе. 

Анализ скорости изменения итерационной ошибки. Для реше-
ния системы (1) применим итерационный метод, записанный в форме 
метода, основанного на расщеплении:  

1 = , = .n n  Mx Nx b M N A                             (2) 

Здесь nx  — n -е итерационное приближение к искомому решению x . 

Пусть =n nr b Ax  — вектор невязки, =n nz x x  — итераци-

онная ошибка, 1=n n n p x x  — вектор коррекции. В дальнейших 
рассуждениях будем пользоваться тем, что  

1 1=n n z M Nz ,                                         (3) 

и если собственные векторы k  матрицы 1M N  перехода от итера-

ции к итерации образуют базис в dNR , то 0

=1

=
dN

k
k

k

az  , где ka  — не-

которые константы, соответственно 
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1 11 1 0 1 1

=1 =1

= = , , = = ( ) .
d dN N

k n n n k
k k k k

k k

a a
     M N M Nz M Nz z M Nz   (4) 

Обычно [5, 6] для анализа свойств итерационного метода иссле-
дуются коэффициенты усиления отдельных гармоник, возникающих 
из решения разностного аналога одномерной спектральной задачи  
с однородными граничными условиями на равномерной сетке. Собст-
венные числа возникающей при этом матрицы являются коэффици-
ентами усиления соответствующих гармоник, поскольку из (4) видно, 
что за одну итерацию вклад k -й гармоники в ошибку изменяется в 

1

k


M N  раз, а собственные векторы естественным образом делятся на 

низкочастотные гармоники, соответствующие номерам = 1, [0,5 ]dk N , 

и высокочастотные — при = [0,5 ] 1,d dk N N ; здесь [ ]  — целая 

часть числа R . 
Это обстоятельство является чрезвычайно важным для анализа 

эффективности итерационного метода: низкочастотные гармоники 
являются длинноволновыми (длина волны 4h  , h  — величина ша-
га по пространству), а высокочастотные — коротковолновыми  
( 2 < 4h h  ). Наличие длинно- и коротковолновых компонент ошиб-
ки обеспечивает жесткость задачи (3), заключающуюся в различной 
скорости их убывания. 

Такие итерационные методы, как метод Якоби, Гаусса – Зейделя 
и другие редко используются для решения жёстких задач, поскольку 
за первые несколько итераций они практически полностью устраня-
ют высокочастотные компоненты ошибки, тогда как низкочастотные 
подавляются очень медленно. Таким образом, указанные методы дей-
ствуют как фильтры низких частот, поэтому их называют сглажива-
телями, а максимальный коэффициент усиления высокочастотных 
гармоник — коэффициентом сглаживания итерационного метода sm . 

На этом эффекте основаны многосеточные методы [5–9]: на подроб-
ной сетке с характерным линейным размером ячейки h  в результате 
выполнения нескольких итераций сглаживателя подавляются высоко-
частотные компоненты ошибки, а затем осуществляется переход на 
более грубую сетку с размером ячейки 2h . Высокочастотные (корот-
коволновые) компоненты ошибки исходной задачи на этой сетке ста-
нут неразрешимыми, а половина низкочастотных (на исходной сетке) 
компонент — высокочастотными на грубой сетке. На новом се-
точном уровне снова выполняется несколько итераций сглаживателя 
для подавления появившихся высокочастотных компонент ошибки, 
после чего снова осуществляется переход на следующий сеточный 
уровень. На самой грубой сетке задача решается либо прямым мето-
дом, либо итерационным с приемлемой точностью. Такой подход по-
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зволяет понизить «затратность» метода: на каждом сеточном уровне 
подавляются только те компоненты ошибки, которые являются на 
нем высокочастотными (коротковолновыми). 

Вычисление коэффициентов усиления гармоник. Поскольку 
скорость убывания компоненты ошибки определяется коэффициен-
том усиления соответствующей гармоники, для анализа эффективно-
сти численного метода при решении конкретной задачи необходимо 
уметь вычислять эти коэффициенты. В общем случае собственные 
векторы матрицы 1M N  перехода от итерации к итерации не являют-
ся гармониками в указанном выше смысле, поэтому для определения 
коэффициентов усиления гармоник в данной работе предлагается 
пользоваться следующей схемой. 

Для того чтобы перейти в (4) от собственных векторов к гармони-
кам используем дискретное преобразование Фурье (ДПФ) [10]. По-
скольку для sNRx  его ДПФ sNCX  является сопряжённо-симмет-
ричным, а для аппроксимации исходной дифференциальной задачи 
(линеаризованной на шаге) используется разностная схема, точная 

для решения, равного константе (т. е. 1
=1

= 0
sN

k
k

X x  ), обратное преоб-

разование Фурье (ОПФ) будет иметь следующий вид:  
0,5( 1)

1 1
=1

1 2 ( 1)
= 2 | | cos Arg( ) , = 1, .

sN

k n n s
s sn

k n
x X X k N

N N



 
  

 
 

       (5) 

Для анализа изменения итерационной ошибки (4) необходимо ис-
следовать коэффициенты усиления первых dN  гармоник (гармоники 

с более высокими номерами на сетке с dN  ячейками неразрешимы). 
Из (5) следует, что для получения коэффициентов усиления для тако-
го числа гармоник должно выполняться соотношение = 2 1s dN N  ,  

т. е. для Nk dR  необходимо получить ДПФ 2 1.dNk C   

Заметим, что любая сеточная функция sNRx  может быть интер-
претирована как дискретный сигнал, а её ДПФ sNCX  — как дис-

кретные отсчёты спектральной функции 
1

1
0

( ) =
sN

i k
k

k

S x e


 




   этого 

сигнала (т. е. спектральные отсчёты), соответствующие частотам 
2

=n
s

n

N


 :  

1 = ( ), = 0, 1.n n sX S n N                                (6) 

Из определения спектральной функции следует, что если доба-
вить к набору отсчётов дискретного сигнала sNRx  некоторое коли-
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чество нулей, ( )S   не изменится, а ДПФ полученного при этом набо-

ра отсчётов 1= { , , , 0, , 0}
sNx x  x  даст большее число спектраль-

ных отсчётов, соответствующих частотам, более тесно расположен-
ным в интервале [0; 2 ) , т. е. при дополнении сигнала нулями спек-
тральное разрешение ДПФ повышается (рис. 1). 

 

Рис. 1. Повышение спектрального разрешения ДПФ при дополнении 
сигнала нулями: 

а — исходный сигнал и модуль его ДПФ; б — сигнал, дополненный нулями, 
 и модуль его ДПФ 

 

Именно этим приёмом воспользуемся для получения 2 1.dNk C   

Пусть 
2 ( 1)

= cos
2 1

p
j p

d

p j

N

  
   

, =1, dj N , = 1, dp N , =p

Arg ( )pX R  . Тогда согласно (5), собственные векторы матрицы 

перехода от итерации к итерации можно представить в виде следую-
щей линейной комбинации гармоник:  

1
=1

1
= | | , = 1, .

0,5

dN
k k p

p d
d p

k N
N 

                         (7) 

В качестве модельного примера рассмотрим ситуацию, когда  

в (4) 0
=1

=
dN

k

k
z  , т. е. итерационная ошибка есть сумма всех собствен-

ных векторов матрицы перехода от итерации к итерации. Поскольку 
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1

k


M N  — коэффициент усиления k -го собственного вектора, сум-

марное усиление с учётом (7) есть  

1 1

1
=1 =1 =1

1

1
=1 =1

1
= | |

0,5

1
= | | ,

0,5

d d d

d d

N N N
k k p

k k p
dk k p

N N
k p

k p
d p k

N

N

 





   


 
     

  

 





M N M N

M N

 



 

 
          (8) 

т. е. коэффициентом усиления p -й гармоники является сумма 

1

1
=1

= | |
dN

k
p k p

k

g


  M N . 

Наиболее информативными с точки зрения анализа вычислитель-
ной эффективности итерационного метода являются максимальный 
коэффициент усиления высокочастотных гармоник (коэффициент 
сглаживания) sm  и максимальный коэффициент усиления низкочас-

тотных гармоник maxg , а также их отношение max=
sm

g



, которое на-

зовём показателем «затратности» итерационного метода для рассмат-
риваемой задачи. Это отношение показывает, во сколько раз медлен-
нее затухают низкочастотные гармоники по сравнению с высокочас-
тотными, т. е. насколько плохо метод преодолевает жёсткость зада- 
чи (3). Чем ближе   к единице и чем ближе к нулю спектральный 

радиус матрицы итераций 1( ) M N , тем лучше метод подходит для 
решения данной задачи. Как показывают вычислительные экспери-
менты, два различных итерационных метода, обладающие близкими 
значениями спектрального радиуса, но имеющие на решаемой задаче 
различные значения показателя «затратности», могут существенно 
различаться по вычислительной эффективности. 

Вычислительные эксперименты. В качестве примеров систем 

рассмотрим разностные аналоги уравнений Гельмгольца ( 2
1( ) = ,k u f  

\{0}k R ) и Пуассона ( 2=p f ), возникающих при решении хорошо 

известной модельной задачи о расчёте течения вязкой несжимаемой 
жидкости в каверне. Данное течение описывается уравнениями Навье – 
Стокса; переход к следующему временному слою осуществляется в 
несколько этапов: сначала решается система линейных алгебраиче-
ских уравнений — разностный аналог уравнения Гельмгольца для 
прогноза поля скоростей, а затем — уравнения Пуассона для поправ-
ки давления. 

Одновременное рассмотрение двух линейных систем связано  
с тем, что их матрицы обладают различными характеристиками с 
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точки зрения численного решения итерационными методами. На при-
мере этих задач можно увидеть, как различия в свойствах дискрети-
зируемого оператора отражаются на величине введённого показателя 
«затратности». Кроме того, их сравнение показывает, что упомяну-
тые ранее многосеточные методы, несмотря на свою высокую эффек-
тивность, не являются универсальными, и в некоторых случаях (на-
пример, для разностного аналога уравнения Гельмгольца) лучше ра-
ботают более «простые» методы. 

Для решения систем использовался метод BiCGStab (метод би-
сопряжённых градиентов со стабилизацией), предложенный Х. ван 
дер Ворстом в 1992 г. [9, 11, 12]. Преимуществом данного метода яв-
ляется высокая скорость сходимости и возможность его использова-
ния для решения систем достаточно общего вида: симметрия и поло-
жительная определенность матрицы не имеют принципиального зна-
чения. Поскольку итерационные коэффициенты n , n  и n  вычис-

ляются из условия минимума нормы невязки на итерации  

( 2

=1

= ( )
Nd

n n
j

j

rr ), матрица перехода, а значит, и коэффициенты уси-

ления гармоник будут меняться от итерации к итерации. С одной 
стороны, это делает метод весьма эффективным, поскольку гармони-
ки, имеющие на n -й итерации довольно высокие коэффициенты уси-
ления, на ( 1)n -й могут иметь, наоборот, низкие коэффициенты уси-
ления. Таким образом исключается ситуация, когда вклад высокочас-
тотных гармоник уменьшается быстро, а вклад низкочастотных — 
медленно. С другой стороны, на отдельных итерациях вклад некото-
рых гармоник может не уменьшаться, а увеличиваться (рис. 2), по-
этому при решении систем методом BiCGStab наблюдается немоно-
тонная зависимость нормы невязки от номера итерации (рис. 3). 

 

Рис. 2. Коэффициенты усиления гармоник для метода BiCGStab на разных 

итерациях при решении разностного аналога уравнения Пуассона ( = 16dN ) 

 
Повысить скорость сходимости метода можно путем применения 

различных предобуславливателей. Их влияние будет выражаться в 
умножении матрицы перехода от итерации к итерации метода BiCGStab 

на матрицу перехода предобуславливателя 1M N , = N M A . Таким 
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образом, анализируя характеристики матрицы 1M N , можно судить  
о повышении скорости сходимости итерационного процесса. 

 

Рис. 3. Зависимость нормы невязки от номера итерации 

при решении тестовой СЛАУ методом BiCGStab ( = 654481dN ) 

 
Одним из простейших и часто используемых методов предобу-

словливания является неполное LU -разложение матрицы, тогда 
= M LU A . Проанализируем, насколько эффективным является ис-

пользование такого подхода для решения рассматриваемых систем. 
Представляющие интерес характеристики систем и итерационного 

метода для различных сеток с dN  ячейками приведены в табл. 1 и 2  

( max / minA A
A k k

kk
M     — оценка числа обусловленности). 

Как видно из табл. 1 и 2, показатель «затратности»   практически 

не зависит от dN , в то время как остальные характеристики зависят от 

размерности задачи весьма существенно. Это очень важно, поскольку 

при больших dN  вычисление 
1

k


M N , dNk R  и 2 1| | dNk R   пре-

вращается в очень громоздкую задачу, поэтому для рассматриваемой 
системы (1) и метода (2) важно иметь характеристику, которая опреде-
ляется видом дискретизируемого оператора L  и мало зависит от dN , 

т. е. от величины шага по пространству. 
Для разностного аналога уравнения Гельмгольца рассматривае-

мый метод весьма эффективен: для достижения необходимой точно-
сти достаточно выполнения 1–2 итераций. Это согласуется с вышеиз-
ложенными предположениями о влиянии спектрального радиуса мат-
рицы перехода и показателя «затратности» на скорость сходимости: 

для рассмотренных случаев 1( ) M N  не превышает 62 10 , а   не 
превышает 1,15. 
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                                                                                             Таблица 1 

Числовые характеристики матрицы перехода 
ILU-предобуславливателя при решении разностного аналога 

уравнения Гельмгольца 

dN  12 56 240 

AM  1,00 1,00 1,00 

1( ) M N  91, 5 10  82,8 10  61, 7 10  

sm  91, 7 10  87, 3 10  51, 5 10  
  1,01 1,14 1,09 

 
                                                                                              Таблица 2 

Числовые характеристики матрицы перехода 
ILU-предобуславливателя при решении разностного аналога 

уравнения Пуассона 

dN  16 64 256 

AM  85,88 589,89 3292,74 

1( ) M N  0,82 0,97 0,99 

sm  0,13 0,24 0,30 

  3,34 3,25 3,32 

 
Численное решение разностного аналога уравнения Пуассона 

требует 30–50 итераций (при dN  порядка нескольких сотен), при 

этом спектральный радиус матрицы перехода приближается к едини-
це при измельчении сетки (т. е. с увеличением dN ), а показатель «за-

тратности» 3,3  . Следует отметить, что число обусловленности 

матрицы системы растёт с увеличением dN . Для повышения скоро-

сти решения разностного аналога уравнения Пуассона следует ис-
пользовать предобусловливатель, позволяющий более эффективно 
подавлять низкочастотные компоненты ошибки по сравнению с ILU-
предобуславливателем. Такому требованию отвечает многосеточный 
(MG) предобуславливатель. Многосеточное предобусловливание оз-
начает, что вместо построения матрицы M  и решения на каждой ите-
рации метода BiCGStab системы вида =n nMy p  находится прибли-

женное решение системы =n nAy p  с исходной матрицей A  многосе-
точным методом в модификации, описанной в [13]. 

В указанной модификации есть три параметра, значения которых 
можно варьировать. Это параметр релаксации   в используемом  
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в качестве сглаживателя методе ADLJ (Alternating Damped Line 
Jacobi), число предсглаживаний pren  и число постсглаживаний postn . 

В [14] указано, что для подобного подхода оптимальным выбором будет 
= 6 2 7 0,7085   , = 0pren  и = 1postn  или = 2postn . Однако рас-

считав спектральный радиус 1( ) M N  матрицы перехода [6] и пока-
затель «затратности»   (рис. 4), можно сделать вывод, что для сис-
тем, полученных при дискретизации уравнения Пуассона, в двумер-
ном случае наилучшим выбором является = 0,8559 , = 1pren  и 

= 1postn . При этих параметрах наблюдается наименьший спектраль-

ный радиус при близком к единице показателе «затратности»: 
1( ) 0,16 M N , 0,11sm  , 1,25   при = 16dN  и 1( ) 0, 25 M N , 

0,15sm  , 1,16   при = 64dN . 

 

Рис. 4. Зависимость характеристик многосеточного предобусловливания 
от параметра релаксации   в ADLJ-сглаживателе при решении 

уравнения Пуассона для = 16dN  (слева) и = 64dN  (справа): 

1 — = 0pren , = 1postn ; 2 — = 0pren , = 2postn ; 3 — = 1pren , = 1postn ; 

4 — = 0pren , = 3postn ; 5 — = 1pren , = 2postn ; 6 — = 2pren , = 1postn ; 

7 — = 0pren , = 5postn ; 8 — = 0pren , = 4postn  

 

В табл. 3 приведено число итераций, необходимых для решения 
уравнения Пуассона в тестовой задаче при = 17 760dN  и ограниче-

нии на норму невязки 6=10  на первом шаге по времени. Значения 
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в двух нижних строках приведены для сравнения. Необходимость 
рассмотрения при анализе вычислительной эффективности итераци-
онного метода помимо спектрального радиуса матрицы перехода от 
итерации к итерации показателя «затратности» видна из второй и 
четвёртой строк таблицы: при этих параметрах 1( ) M N  у многосе-
точных методов довольно близки, а   различаются почти в 2 раза;  
в итоге методу с бóльшим значением показателя «затратности» тре-
буется почти в 3 раза больше итераций для получения решения зада-
чи с заданной точностью. 

Таблица 3 

Число итераций при решении разностного аналога уравнения Пуассона 
методом BiCGStab с различными предобуславливателями 

Предобуславливатель   pren  postn  1
( )

 M N    Число 
итераций 

ILU – – – – – 158 
MG 1,0000 1 2 0,21 5,04 29 
MG 0,8559 1 1 0,16 1,25 9 

MG [14] 0,7085 0 2 0,22 2,53 11 
MG 0,1000 0 2 0,77 1,01 23 

 
На рис. 5 в логарифмическом масштабе показаны значения собст-

венных чисел матрицы перехода от итерации к итерации для мето-
дов, перечисленных в табл. 3. Видно, что кластеризация собственных 
чисел имеет место только для метода, соответствующего = 0,1 , что 
вместе с близостью показателя «затратности»   к единице и объясня-
ет достаточно малое число итераций, несмотря на сравнительно боль-
шой спектральный радиус. Для остальных методов явно выраженной 
кластеризации собственных чисел не наблюдается; это подтверждает 
необходимость анализа величины показателя «затратности», что на-
глядно проявляется при сравнении методов, соответствующих 

= 1,0  и = 0,7085.  
Следует отметить, что трудоемкость одной итерации метода 

BiCGStab с многосеточным предобусловливанием в несколько раз 
выше, чем при использовании ILU-предобусловливания, тем не ме-
нее при использовании многосеточного предобусловливания с опти-
мальными параметрами общее время решения линейной системы 
удается сократить примерно в 4 раза. 

Приведённые выше примеры решения задач относительно малой 
размерности (до 100 000), которые возникают при решении задач ма-
тематической физики на достаточно грубых сетках, следует рассмат-
ривать как источник информации о коэффициентах усиления гармо-
ник и показателе «затратности». 
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Рис. 5. Cобственные числа матриц перехода для многосеточных методов 
 

 

Рис. 6. Структура временных затрат при решении тестовой задачи расчёта 
течения в каверне методом BiCGStab с различными предобусловливателями 

(OpenFOAM, = 10000dN ): 

a — время счёта 243 с; б — время счёта 76 с; в — время счёта 68 с 

 
Аналогичные результаты получаются и при решении данной за-

дачи средствами пакета OpenFOAM [15] на сетке 100 100 : наимень-
шее время счёта также получается при использовании ILU-предобу-
словливания для решения разностного аналога уравнения Гельмголь-
ца и многосеточного предобусловливания для решения разностного 
аналога уравнения Пуассона. На рис. 6 приведена структура времен-
ных затрат при решении тестовой задачи расчёта течения в каверне: 
серым обозначена доля затрат на решение уравнения Гельмгольца, 
белым — доля затрат на решение уравнения Пуассона, чёрным — 
прочие затраты. В результате выбора итерационного метода и пара-
метров многосеточного предобусловливателя для данной задачи вре-
мя счёта удалось сократить почти в 4 раза по сравнению с использо-
ванием методов решения, приведенных в OpenFOAM в соответст-
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вующем учебном примере. При этом важно, что параметры, подоб-
ранные в результате анализа итерационной ошибки на грубой сетке, 
остаются весьма эффективными и при решении той же задачи на бо-
лее подробной сетке. 

Таким образом, можно предложить эффективную методику выбо-
ра итерационного метода решения линейных систем, возникающих 
при дискретизации некоторой задачи: 

1) необходимо построить разностный аналог задачи для доста-
точно грубой сетки; 

2) для этой задачи строится матрица перехода от итерации к ите-
рации; 

3) вычисляются собственные числа и собственные векторы мат-
рицы перехода; 

4) с помощью вышеописанной схемы вычисляются коэффициен-
ты усиления гармоник; 

5) оценивается близость спектрального радиуса матрицы перехо-
да к нулю и показателя «затратности» к единице; 

6) если 1( ) M N  и   оказываются достаточно велики, следует 
выбрать другой метод (предобусловливатель) и вернуться к п. 2. 

Заключение. Определение коэффициентов усиления гармоник 
позволяет получить некоторые характеристики итерационного мето-
да, по которым можно судить о его эффективности при решении той 
или иной задачи. Для определения этих коэффициентов удобно ис-
пользовать дискретное преобразование Фурье. 

Расчеты показывают, что для итерационного метода решения 
СЛАУ отношение наибольшего коэффициента усиления низкочас-
тотной гармонии к наибольшему коэффициенту усиления высокочас-
тотной гармоники (показатель «затратности») определяется видом 
дискретизируемого дифференциального оператора L  и мало зависит 
от dN , т. е. от густоты сетки. Это позволяет предложить эффектив-

ную методику выбора параметров используемого итерационного ме-
тода и предобусловливателя на основе анализа величины спектраль-
ного радиуса матрицы и показателя «затратности», который может 
быть выполнен на достаточно грубых сетках. 

На примере расчета течения вязкой несжимаемой среды в квад-
ратной каверне показано, что для решения разностного аналога урав-
нения Гельмгольца для прогноза скорости целесообразно использо-
вать итерационный метод BiCGStab с ILU-предобусловливанием, в 
то время как для разностного аналога уравнения Пуассона более эф-
фективным оказывается многосеточное предобусловливание с пара-
метрами, выбранными в соответствии с предложенной методикой. 
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When sampling partial differential equations one has to solve a system of linear 
algebraic equations. To select the optimal in the sense of the computational efficiency of 
iterative method for solving such equations, in addition to the rate of convergence we 
should take into account such characteristics of the system and method, as the condition 
number, the smoothing factor, the indicator "costs on." The last two characteristics are 
calculated by the coefficients of harmonics amplification that give evidence of the 
smoothing properties of the iterative method and its "costs on", i. e. how worse the 
method suppresses frequency components of the error as compared with the high-
frequency ones. The suggested method of determining harmonic gain factors is based on 
of the discrete Fourier transform. As an example, an analysis of the effectiveness of the 
BiCGStab method with ILU and multigrid preconditioning when solving difference 
analogues of the Helmholtz and Poisson equations is described. 
 
Keywords: sparse linear systems, preconditioning, smoothers, discrete Fourier 
Transform, multigrid methods. 
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