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В работе представлена математическая постановка и приведены результаты                

расчетов в задаче о деформировании металла на литейно-ковочном модуле с                      

измененным приводом боковых бойков. Рассматривается сложная пространствен-

ная задача по определению напряженно-деформированного состояния области                

течения при нагружении внешней нагрузкой, изменяющейся с течением времени. 

Определяющие соотношения задачи основаны на теории течения. При решении              

задачи используется апробированный численный метод, а также численные схемы 

и комплекс программ, использованные ранее при решении подобных задач.                         

В комплексе программ реализован шаговый алгоритм нагружения с учетом истории 

процесса и изменяющейся геометрии области течения. Малый временной шаг                     

ассоциируется с поворотом эксцентричного вала на угол 10°. Область деформации 

разбивается на элементы ортогональной системой поверхностей (элементы 

имеют ортогональную форму). Для каждого элемента записывается в разностном 

виде сформулированная система уравнений, которая решается по разработанным 

численным схемам и алгоритмам с учетом начальных и граничных условий.                              

Результатом решения являются поля напряжений и скорости перемещений по                    

пространственной области. Приводится анализ полученных результатов.                     

Делается сравнение с результатами решения действующей конструкции.                        

В качестве деформируемого материала взят свинец, физические свойства                                      

которого аппроксимированы аналитической зависимостью по имеющимся экспери-

ментальным данным. Физическая нелинейность системы уравнений реализуется 

при решении итерационным методом. Проведены локальные расчеты решения                    

задачи на трех вариантах разбиения области на элементы. Обоснован выбор                           

плотности сетки, накладываемой на рассматриваемую область деформации.          

Результаты решения представлены в графическом виде. Показана эффективность 

процесса деформации по усовершенствованному способу на новой конструкции                       

литейно-ковочного модуля.  

 

Ключевые слова: моделирование, кристаллизующийся металл, деформация                   

заготовки, литейно-ковочный модуль, математическая модель, программный                 

комплекс 

 

Введение. Теоретические и экспериментальные исследования      

процесса разливки с последующей деформацией закристаллизовавше-

гося металла в заданный профиль на литейно-ковочном модуле (ЛКМ) 

широко представлены в диссертационных работах [1–8], освещены в 

монографиях [9, 10]. В их основу легли изобретения [11, 12] в которых 

предложены схемы разливки и деформации затвердевшего металла. 
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Это — ЛКМ вертикального типа [9, 11] и ЛКМ горизонтального типа 

[10, 12], в которых предложены схемы разливки. Подобными                               

исследованиями занимаются и за рубежом [13–19]. 
В данной работе теоретически исследуется процесс деформации 

металла на модифицированной конструкции ЛКМ [20] и дается оценка 
её использования в сравнении с ЛКМ [9, 11]. 

На рис. 1 представлены рассматриваемые схемы ЛКМ [20].                
По схеме (рис. 1, а) жидкий металл подается из ковша 1 в сборный 
охлаждаемый кристаллизатор, состоящий из пары бойков 2,                                     
вращающихся на эксцентриковых валах 3 и пары бойковых плит 4, 
плотно прилегающих к бойкам 2 и совершающих перемещение в                    
вертикальной плоскости от эксцентриков, находящихся на нижних 
приводных валах. При этом эксцентрики, приводящие в движение                  
вертикальные плиты, повернуты относительно эксцентриков,                              

приводящих боковые бойки, на 90 . Тогда, при сближении боковых 

бойков, деформирующих закристаллизовавшийся металл, вертикаль-
ные плиты поднимаются вверх, проскальзывая по сдавливаемому                 
боковыми бойками металлу; когда боковые бойки расходятся,                          
вертикальные плиты подают заготовки вниз. 

Схема устройства [20] (рис. 1, б) отличается от схемы [11]                     
(рис. 1, а) тем, что левый боковой боек неподвижен и имеет прямую 
вертикальную поверхность. Боковые плиты 4 так же, как и в первой 
схеме (рис. 1, а), приводятся в движение эксцентриковыми втулками,                               
сидящими на нижних приводных валах. Левый боковой боек установ-
лен на цилиндрических втулках на валах 3, 6. 

При этом кинематика схемы деформации металла в обоих случаях 
значительно отличается. В первой схеме (рис. 1, а) закристаллизовав-
шийся металл подхватывается боковыми бойками с двух сторон и            
симметрично обжимает движущимися по круговой траектории 
навстречу друг другу. По второй схеме (рис. 1, б) правый боек                            
деформирует закристаллизовавшийся металл, двигаясь по круговой 
траектории. При этом металл, деформируясь правым бойком, скользит 
по вертикальному прямому бойку. Этому скольжению препятствуют 
силы трения, создающие подпор движению, а значит увеличивающие 
величины сдвиговых деформаций. Это должно положительно влиять 
на структуру получаемой заготовки и способствовать более интенсив-
ному залечиванию имеющихся в литом металле пузырей, раковин, 
трещин. 

Математическая постановка задачи. На рис. 2, а представлена 
расчетная схема процесса (рис. 1, б) с учетом симметрии в плоскости

3 0x  . При этом будем рассматривать деформацию сплошной                   

заготовки. Примем деформируемый материал несжимаемым,                      
изотропно упрочняющимся, массовыми и инерционными силами                
будем пренебрегать.  
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Рис. 1. Схемы конструкций литейно-ковочного модуля: 

а — двухсторонняя деформация металла при симметричном обжиме по круговой 

траектории; б — односторонняя деформация металла при круговой траектории 
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величины угла   и величины эксцентрика 2e  (рис. 2), определяющего 

ход вертикальных боковых плит.  
 

 

 
Рис. 2. Расчетная схема процесса деформирования                                                                          

с учетом симметрии в плоскости 
3 0x    

Рассмотрим процесс деформации заготовки с неподвижным                    

боковым бойком при повороте эксцентрикового вала на 180. Тогда 

весь процесс движения бойков разобьем на малые временные шаги 

m . Будем пренебрегать упругими деформациями, примем среду                    

вязкопластичной [21]. Используя теорию течения [22] и декартову          

систему координат, запишем определяющую систему уравнений на 

временном шаге m : 
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где , 1,2,3i j   (суммирование по повторяющимся индексам i, j);             

ij  — компоненты тензора напряжения; 
ij  — компоненты тензора                     

скоростей пластических деформаций; vi — проекция скоростей                    

перемещения по координатным осям ix  ( 1,2,3i  );   — температура; 

функция ( , , )T T H E   определяется из эксперимента; H  — интен-

сивность скоростей деформаций сдвига; E  — степень деформации. 

Начальные условия. 00      ; 0E E , где  — текущий угол 

поворота эксцентрикового вала; E0 — начальная степень деформации 
металла. 

Граничные условия (рис. 2). Полагаем, что граница исследуемой 
области описывается системой ортогональных поверхностей, тогда с 
учетом плоскости симметрии имеем 
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Таким образом решается контактная задача. Для решения системы 

уравнений (1) при наличии граничных условий (2) использовался                  

численный метод, описанной в работе [23], суть которого состоит в 

том, что исследуемая область разбивается на ортогональные                                    

криволинейные элементы. Для каждого элемента в общем виде                             

записываются в разностной форме уравнения (1), через значения длин 

дуг, напряжений и скорости перемещений по центральным граням,                

которые решаются по разработанным численным схемам при наличии 

начальных и граничных условий (2). Результатом решения являются 

поля напряжений, скоростей перемещений в исследуемой области на 

каждом временном шаге. При решении задачи использовался                           

программный комплекс «Одиссей» [24]. 

Выбор плотности сетки. Точность решения задачи зависит от     

выбора плотности сетки, накладываемой на рассматриваемую                         

область деформации. Были проведены локальные просчеты решения 

задачи на трех вариантах разбиения области на элементы:                                         

вариант I  — 
1 2 3 11 5 4 220N N N      (элементов); вариант II  — 

14 7 6 588    (элементов); вариант III  — 19 13 9 2223                          

(элемента); 
iN  — количество элементов по координате ix  ( 1,2,3i  ). 

Решается физически линейная задача: в системе (1) принималась 

9,81   (МПа·сек).  Расчет производился локально для двух значений 

30    и 60   . Начальные геометрические параметры (при 

0 0   ) 
0 30h   мм, 

1 8h   мм, 1 50R   мм, 
1 3e   мм, 

2 10e   мм, 

1 45l   мм. Текущие геометрические параметры рассматриваемой         

области вычислялись из геометрических построений. На рис. 3 приве-

дены некоторые результаты решения. На рис. 3 а, б изображены 

эпюры скорости 1v  и напряжения 
22  в локальных поверхностях                      

области в плоскости симметрии 3 0x  . Пунктирными линиями                 

изображены эпюры по схеме разбиения I , точками — эпюры по схеме 

II , сплошными линиями — эпюры по схеме III . 

Видно, что эпюры по разным сеткам очень близки друг к другу. 

Сближаются в основном от больших по абсолютной величине к                     

меньшим по мере изменения (увеличения) сетки. Полнее проследить  

насыщение решения можно по таблице 1, в которой даны численные 

значения 1v , 11  и 
22  по различным сеткам ( I , II , III ) в точках,           

общих для различных сеток, обозначенных на рис. 3, в в сечении 

3 0x   точками 1, …, 10, при 60   . Итак, за исходную сетку при 

решении задачи принята сетка III . 
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Таблица 1 

Численные значения 
1

v , 
11

  и 
22

  по различным сеткам (I, II, III)             

в точках 1,…, 10 (рис. 3, в) при =60o 

Ф
и

зи
ч

ес
к
а
я
 

в
ел

и
ч

и
н

а
 

Н
о

м
ер

 с
ет

к
и

 

Элементы, совпадающие при различном разбиении области 

1 2 3 4 5 6 7 8 9 10 

v1,  

мм/с 

III   –11,3 –54,9 –92,9   21,1 4,1 40,6 104 27,4 

II –11,6 –60,0 –94,8   28,6 16,2 52,9 100 41,5 

I –9,6 –68,9 –99,2   45,4 37,6 63,8 106 58,4 

σ11, 

МПа 

III      –47,1 –47,1    

II      –49,1 –51,0    

I      –54,0 –57,9    

22 , 

МПа 

III     –17,7 –33,3     

II     –25,5 –37,3     

I     –45,1 –53,0     

Алгоритм численного решения задачи. 

1. Задаются начальные геометрические размеры расчетной                             

области. 

2. Весь процесс деформации разбивается по времени τ на p шагов 

p

p

   . 

3. Задается временной шаг p . 

4. Исследуемая область разбивается системой ортогональных                  

поверхностей на конечные элементы. 

5. Принимается const  , тогда система (1) становится                                    

линейной.  

6. Задаются граничные условия (2). 

7. Определяется матрица длин дуг ортогональных элементов, и                

записываются в общей форме в разностном виде уравнения (1) по                     

каждому элементу, в соответствие с работой [23]. 

8. Производится свертка исходной системы разностных                                   

уравнений в эквивалентную систему с меньшим количеством                             

неизвестных (≈10 раз), описанная в [23]. 

9. Осуществляется решение линейной системы уравнений по       

стандартной программе. 

10. По найденному решению находятся vi  и ij  ( , 1,2,3i j  ) по 

каждому элементу. 

potya
Выделение
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11. Производится переназначение граничных условий (если они 
есть) по формулам (3). 

12. В соответствии с принятой моделью деформируемой среды 

уточняется по каждому элементу 
k

  ( 1, ,k N ),где N  — общее                 

количество элементов. 

13. Если 
1( ) ( )k n k n

 

     , следует операция 14, если нет, то                           

следует операция 8; n – номер итерации на временном шаге 
p . 

14. Производится шаг по времени и насчитывается текущий угол 

поворота α . 

15. Если    , выполняется операция 16. Если    , вычисления 
завершаются.  

16. По углу α  высчитывается геометрия новой области. 
17. Выполняется операция 6. 
Результаты численного моделирования. Рассмотрена задача по 

холодной деформации свинцового образца. Задавались геометриче-

ские и кинематические параметры (рис. 2): 
0 15h   мм; 1 4h   мм; 

30b   мм; 1 45l   мм; 1 50R   мм; 
1 3e   мм; 

2 10e   мм; 8  ; 

0 100n   об/мин — скорость вращения приводного вала; 
1 1,75  ; 

0,7t  ; 4,5,6t  ; 9 0,1  . 

При теоретических расчетах принималась модель деформируемой 

среды ( , , )T T H E   в системе (1) в виде (гипотеза единой кривой)  

  0,36 0,0916, М87 .Па3T H     (4) 

Формула (4) построена по экспериментальным данным [25]                        

с учетом / 3ST   , / 3H   , / 3E  . Коэффициенты в (4) 

найдены методом наименьших квадратов. Погрешность аппроксима-

ции не превышает 5%. Примем временной шаг 0,955   сек, что           

соответствует повороту приводного вала на 10. Для малых деформа-

ций справедливо /ij ij     [22], где ij  — компоненты тензора            

малых деформаций, тогда  

 / ,k

k k p

p

H H H        

где 
k

pH  — значение H  в k  м элементе на p  шаге нагружения. 

Прослеживалась траектория каждого элемента при переходе на 
другой временной шаг. Некоторые результаты расчета представлены 
на рис. 4, 5, 6. 

На рис. 4 приведены эпюры скоростей течения металла в плоско-

сти симметрии 3 0x   для некоторых значений угла поворота             
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приводного вала. Как и следовало ожидать, металл течет (скорость       

1v ) в основном в сторону, обратную выходу заготовки, увеличиваясь 

по абсолютной величине с возрастанием α  (0 ÷ 120). Скорость 2v  (на 

поверхности подвижного бойка) сначала увеличивается (до α 90 ) на 
наклонной его части, а затем уменьшается (по абсолютной величине). 

На свободной части заготовки наблюдается по скорости 2v  вспучива-

ние верхней поверхности. 

На рис. 4, д показана эпюра касательного напряжения 
12  на        

неподвижном бойке при 3 0x  . 

На рис. 5 приведены в том же сечении эпюры напряжений 11  и 

22 . Напряжения сжимающие, примерно одного порядка, что                          

указывает на всестороннее сжатие металла при деформации. Это                                 

подтверждают эпюры 
33  (рис. 6, а, б, в). 

Пунктирными линиями (рис. 5, г и рис. 6, б, в) изображены эпюры 

напряжений 
ii  ( 1,2,3i  ) при 1 0  , т.е. при отсутствии трения на 

неподвижном бойке. Видим резкое уменьшение численных значений 

ii  ( 1,2,3i  ),а значит уменьшение внутреннего давления и снижение 

эффективности к залечиванию внутренних дефектов (раковин, трещин 

и т. д.). 

На рис. 6, г приведен график давлений металла на боковой боек 2 

и подвижные стенки 4 при повороте приводного вала. Пунктирными 

линиями показаны кривые при 1 0    

На рис. 7, 8, 9 приведены результаты решения задачи при геомет-

рических параметрах 
0 30h   мм, 

1 8h   мм. Поведение течения                   

металла (скорости 1v  и 2v ) при повороте приводного вала показаны 

на рис. 7. Сравнивая кинематику течения металла с предыдущими 

(рис. 4), видим, что скорости 1v  в передней части заготовки раньше 

начинают изменять свое направление (уже при 30  ). В периферий-

ной части заготовки характер течения (скорости 1v  ) не изменился. 

На рис. 8 изображены эпюры напряжений 11  и 
22 . Сравнивая 

это решение с предыдущим решением (
0 15h  мм, 1 4h   мм), видим, 

что характер поведения напряжений не изменился, а изменились 

только количественные значения (меньше по абсолютной величине). 

На рис. 8, г пунктирными линиями нанесены эпюры 11  и 
22  при                 

способе деформации, показанном на рис. 1, а. При этом принималось 

0 15h   мм, 1 4h   мм, так как плоскость 2 0x   является плоскостью 

симметрии, на которой 
1

21 0
S

  .   

potya
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Рис. 4. Эпюры скоростей металла 
1v ,

2v   и эпюра касательного напряжения 
21σ   

на неподвижном бойке при 
0 15h   мм, 

1 4h   мм  

в плоскости симметрии 
3 0x   для угла поворота приводного вала: 

а — 
oα 30 ; б — 

oα 60 ; в —
oα 90 ; г — 

oα 120 ; д — 
oα 120   
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Рис. 5. Эпюры напряжений 
11σ  и 

22σ  при 
0 15h   мм, 

1 4h   мм  

в плоскости симметрии 
3 0x   для угла поворота приводного вала: 

а — 
oα 30 ; б — 

oα 60 ; в —
oα 90 ; г — 

oα 120 ; д — 
oα 120   

   — постановка задачи при отсутствии трения на неподвижном бойке 
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Рис. 6. Эпюры напряжений 
22σ , 

33σ  и давление металла  P τ : 

а — эпюры напряжений 
33σ  при 

0 15 ммh  , 
1 4h   мм                                                      

в плоскости симметрии 
3 0x   для угла поворота приводного вала oα 90 ; 

б — эпюры напряжений 
33σ  при 

0 15 ммh  , 
1 4h   мм                                                      

в плоскости симметрии 
3 0x   для угла поворота приводного вала oα 120 ; 

в — эпюры напряжений 
22σ  и 

33σ  при 
1 4h   мм в сечении А-А для угла поворота 

приводного вала oα 120 ; г — давление металла  P τ   на боковой боек 2 и                   

подвижные стенки 4 при повороте приводного вала 
   — постановка задачи при отсутствии трения на неподвижном бойке 

 

На рис. 9, а, б приведены эпюры 33σ . Цифрой 1 обозначены эпюры 

33σ  при 2 0x  , 3 0x  ; цифрой 2 — эпюры 33σ  при 
2x h , 3x b , где 

h  — текущая высота полосы вдоль 1x . Сплошными линиями изобра-

жены эпюры по способу деформации на рис. 1, б, пунктирными —
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эпюры по способу деформации на рис. 1, а. На рис. 10 приведены 

эпюры 
22σ  и 33σ  по способу на рис. 1, б в поперечном сечении A A  

(рис. 2). Сплошные линии соответствуют o30  , пунктирные — 
o60  . 
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б 

 

в 

 

г 

Рис. 7. Эпюры скоростей металла 
1v  и 

2v   при 
0 30h   мм, 

1 8h   мм  

в плоскости симметрии 
3 0x   для угла поворота приводного вала: 

а — 
oα 30 ; б — 

oα 60 ; в —
oα 90 ; г — 

oα 120 ; д — 
oα 120   
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Рис. 8. Эпюры напряжений 
11σ  и 

22σ  при 
0 30h   мм, 

1 8h   мм  

в плоскости симметрии 
3 0x   для угла поворота приводного вала: 

а — 
oα 30 ; б — 

oα 60 ; в —
oα 90 ; г — 

oα 120 ; д — 
oα 120   

   — способу деформации на рис. 1, а при котором принималось 

0 15h   мм, 
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б 

Рис. 9. Эпюры напряжений 
33σ  при 

0 30 ммh  , 
1 8h   мм 

для угла поворота приводного вала:   

а — oα 60 ; б — oα 120 ; 

1 — при 
2 0x  , 

3 0x  ; 2 — при 
2x h , 

3x b , 

где h  — текущая высота полосы вдоль 
1x ;  

  — эпюры по способу деформации на рис. 1, а; 

  — эпюры по способу деформации на рис. 1, б 

 

 
Рис. 10. Эпюры напряжений 

22σ  и 
33σ  по способу на рис. 1, б в поперечном  

сечении А–А для угла поворота приводного вала: 

  — oα 30 ;   — oα 60   

 

Проведенный анализ показывает, что деформация металла по               

способу на рис. 1, б предпочтительней, так как величина сжимающих 

напряжений 11σ , 
22σ  значительно выше, чем по способу на рис. 1, а. 

Выводы. 1. Продемонстрирован способ деформации металла на 

литейно-ковочном модуле новой конструкции. 2. Анализ проведенных 
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теоретических исследований показал эффективность нового способа 

деформации на ЛКМ по сравнению с известным ранее способом.                    

3. Построенная математическая модель и программный комплекс                     

будут использованы в технологическом процессе по получению 

непрерывно-литой деформированной заготовки по способу (рис. 1, б). 
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Mathematical modeling of the metal deformation                    

process on a casting and forging module                                          

with a modified drive of the side strikers  

 V.I. Odinokov, E.A. Dmitriev, A.I. Evstigneev,                                                      

D.A. Potianikhin, A.E. Kvashnin  

Komsomolsk-na-Amure State University, Khabarovsk Territory, 

Komsomolsk-on-Amur, 681013, Russia 

 

This paper presents the mathematical formulation and the results of calculations of the 

problem of metal deformation on a casting-forging module with modified side strikers’ 

drive. A complex spatial problem of determination the stress-strain state of the flow             

region under loading with an external load that changes over time is considered. The                

fundamental equations are based on flow theory. At solving the problem, a proven                              

numerical method is used, as well as numerical schemes and the software package used 

earlier at solving similar problems. The software package implements a step-by-step                   

loading algorithm considering the history of the process and the changing geometry of the 

flow region. A small time step is associated with a 10° rotation of the eccentric shaft. The 

deformation area is divided into elements by an orthogonal system of surfaces (elements 

have an orthogonal shape). For each element, the formulated system of equations is written 

in a difference form, which is solved according to the developed numerical schemes and 

algorithms, that consider the initial and boundary conditions. The result of the solution is 

the fields of stresses and velocities of displacements in the spatial area. The analysis of the 

obtained results is given. A comparison with the results of the current structure module 

solving has been made. Lead is taken as a deformed material, the physical properties of 

which are approximated by an analytical dependence according to the available experi-

mental data. The physical nonlinearity of the system of equations is realized during solving 

by the iterative method. Local calculations of the solution of the problem were carried out 

on three variants of division of the area into elements. The choice of the mesh density                 

imposed on the considered deformation region is substantiated. The solution results are 

presented graphically. The efficiency of the de-formation process according to the                        

improved method on a new design of the casting and forging module is shown. 

 

Keywords: modeling, crystallizing metal, workpiece deformation, casting and forging 

module, mathematical model, software package 
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