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На основе теории непрерывных марковских процессов разработана модель двухсто-

роннего боя двух однотипных боевых единиц стороны X против двух разнотипных 

единиц противника. Получены расчётные формулы для вычисления текущих и            

окончательных состояний при различных тактиках ведения боя стороной Х.                    

Разработанная модель двухстороннего боя может быть использована для оценки 

боевой эффективности многоцелевых комплексов вооружения. 

 

Ключевые слова: непрерывный марковский процесс, боевая единица, эффективная 

скорострельность, тактика ведения боя 

  

Введение. На различных этапах проектирования технической                 

системы необходима оценка качества её работы, что позволяет сделать  

математическая модель её функционирования [1–2]. Основой оценки 

разрабатываемых образцов вооружения и военной техники являются 

показатели их боевой эффективности, так как они в конечном итоге 

позволяют оценить степень приспособленности образца к решению 

поставленных боевых задач. [3–5]. В качестве основы такой оценки 

необходимо использовать модель двухсторонних боевых действий, 

так как она позволяет более полно и достоверно исследовать влияние 

этих показателей на исход боя, чем модель без учёта ответного огня 

[6–8]. А поскольку процесс боевых действий является стохастическим, 

целесообразно использовать вероятностные модели. 

Достаточно точным способом описания процесса боевых              

действий является использование теории непрерывных марковских 

процессов [9]. Процесс, протекающий в системе, называется марков-

ским, если вероятности всех возможных состояний системы в                       

будущем зависят только от её состояния в настоящий момент и не                  

зависят от того, каким образом система пришла в это состояние                       

[10–11]. Последовательность выстрелов, проводимых каждой               

участвующей в бою единицей, представляется в виде пуассоновского 

потока событий [12]. Используется также приём, позволяющий                    

перейти от потока выстрелов к потоку успешных выстрелов, который 

тоже полагается пуассоновским [3]. Выстрел, который поражает                      

боевую единицу противника, назовём успешным [13]. 

Описание процесса боевых действий. Исследуем следующую 

ситуацию. Двум однотипным боевым единицам стороны Х поставлена 

задача отразить атаку (или преодолеть оборону) двух разнотипных            
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боевых единиц стороны Y, причём первая из них менее уязвима и          

более опасна (в дальнейшем будем её называть первой единицей Y). 

Ранее была исследована вероятностная модель боя одной единицы 

против двух разнотипных [14–15]. 

Возможны следующие варианты действий стороны Х: 

 обе единицы Х сначала ведут обстрел первой единицы Y и в 

случае её поражения огонь переносят на вторую (вариант 1); 

 обе единицы Х сначала стреляют по второй единице Y и в 

случае её поражения обстреливают первую единицу Y (вариант 2); 

 одна единица Х сначала стреляет по первой единице Y, а другая 

по второй. В случае поражения одной единицы X и сохранения обеих 

единиц Y далее ведётся стрельба по первой единице Y (вариант 3); 

 сначала одна единица Х сначала стреляет по первой единице Y, 

а другая по второй. В случае уничтожения одной единицы X и 

сохранения обеих единиц Y далее ведётся стрельба по второй единице 

Y (вариант 4). 

Возникает вопрос, какую тактику ведения боя должна выбрать 

сторона Х, чтобы достичь наилучшего результата. 

Основные соотношения математической модели. Введём               

следующие обозначения: 1 2,x xp p  — вероятности поражения одним 

выстрелом единицы X  первой и второй единиц Y соответственно, 

1 2,y yp p  — вероятности поражения единицы X  одним выстрелом    

первой и второй  единиц Y, 1 2,x x   — практические скорострель-                

ности единиц X при стрельбе по первой и второй единицам Y соответ-

ственно, 1 2,y y   — практические скорострельности первой и второй 

единиц Y, величины 

 
1 1 1 2 2 2

1 1 1 2 2 2

, ,

, ,

x x x x

y y y y

v p v p

u p u p

 

 

 

 
  

назовём эффективными  скорострельностями  боевых единиц, считая 

их в течение боя постоянными. При этом 1 2 1 2,v v u u  .  

При использовании теории непрерывных марковских процессов 

протекание боя характеризуется системой  , ,i j k . Величина i                

отражает состояния единиц стороны X : при 2i   обе единицы X  

продолжают бой, при 1i   одна единица стороны X  уничтожена, а 

вторая продолжает бой, 0i   соответствует тому, что обе боевые           

единицы X  уничтожены. Величины j  и k  характеризуют состояния 

первой и второй единиц стороны Y  соответственно.  Значения j  и k , 

равные 1, соответствуют тому, что данная единица продолжает бой,  

значения j  и k , равные 0 — тому, что данная боевая единица                   
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уничтожена. Состояние  0,0,0  не является состоянием данной                   

системы, так как вероятность одновременного поражения двух и более 

единиц является бесконечно малой величиной. 

Системы уравнений, описывающие процесс протекания боя при 

использовании стороной Х различных вариантов его ведения,                             

приведены в [16]. 

Введём обозначения:  

 1 2 2

1 1 1

; ;
v v u

a b c
u u u

     

(при этом 0 , 0 1a b c    ).  

  Вероятности окончательных состояний (то есть к окончанию 

боя) 
   1

ijkF  , при использовании стороной Х  варианта 1 ведения боя 

вычисляются следующим образом: 
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 

  (1) 

 где 
   l

ijkF   — вероятность того, что при использовании стороной Х 

варианта l  ведения боя в момент времени t  система находится в                    

состоянии  , ,i j k , 
   l

ijkF   — вероятности окончательных состояний 

системы (то есть к окончанию боя) при использовании стороной Х              

варианта l  ведения боя. 

Так как обе единицы стороны Х начинают вести огонь по второй 

единице стороны Y только после уничтожения первой, состояния 

 2,1,0 ,  1,1,0  и  0,1,0  в данном случае состояниями системы                         

не являются. 

Если сторона  Х  ведёт боевые действия согласно варианту 2,                

вероятности окончательных состояний системы 
   2

ijkF   находятся 

следующим образом:  
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  (2) 

В данном случае состояниями системы не являются состояния 

 2,0,1 ,  1,0,1  и  0,0,1 . 

При использовании стороной  Х  варианта 3 ведения боя, когда  

2 1 1v v u    1b a  , вероятности окончательных состояний 
   3

ijkF   

имеют вид 
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При  2 1 1 1v v u a b     получаем   
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Вероятности 
           3 3 3

200 011 010, ,F F F    вычисляются по                  

формулам (3). 

При ведении боя стороной Х  согласно варианту 4, когда 

2 1 1v v u   1b a  , вероятности окончательных состояний системы  

вычисляются  следующим образом: 
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При 2 1 1v v u    1a b   получаем   
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Полученные в настоящей статье формулы позволяют вычислить  

основные показатели боя, к  которым в первую очередь относятся                 

вероятность победы 
 l

oxP  стороны Х  и математическое ожидание 
 l
xM  

количества сохранившихся боевых единиц стороны Х к концу боя   при 

выборе стороной Х варианта l  ведения боя. Эти величины                      

вычисляются следующим образом: 
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 Результаты численного моделирования. Выясним, какой из                

вариантов ведения боя является оптимальным для стороны Х.                      

В качестве критерия оптимальности используем максимум                         

вероятности её победы (5). На рис. 1 представлены области                                

выгодности различных тактик ведения боя стороной Х. Область,                  

расположенная ниже красных линий соответствует оптимальности                 

варианта 1, область выше синих линий — оптимальности варианта 2, 

область между синими и красными линиями — оптимальности                   

варианта 3. Однако в этих случаях вариант 3 даёт незначительное                 

преимущество по сравнению с вариантом 1 или 2: oxP  увеличивается 

не более чем на 0,004. Вариант 4 никогда не является оптимальным.  
Во многих случаях правильный выбор стороной Х тактики                              

ведения боя значительно увеличивает её преимущество. При 

1 0,009v  ; 2 0,010v  ; 1 0,020u  ; 2 0,004u   (при этом 0,45a  ; 

0,50b  ; 0,20c  ) получаем 
 1

0,520oxP  ; 
 2

0,339oxP  ; 
 3

0,456oxP  .     

А при 1 0,014v  ; 2 0,015v  ; 1 0,020u  ; 2 0,006u   (при этом  

0,70a  ; 0,75b  ; 0,30c  ) имеем 
 1

0,614oxP  ; 
 2

0,474oxP  ;  

 3
0,567oxP  .  Таким образом, в этих случаях стороне  Х следует                  

использовать первый вариант ведения боя, что позволяет ей заметно 
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увеличить её преимущество. На рис. 1 этим случаям соответствуют 

точки 1A  и 2A . 

С другой стороны, при 1 0,009v  ; 2 0,036v  ; 1 0,020u  ; 

2 0,019u   (при этом 0,45a  ; 1,80b  ; 0,95c  ) имеем 
 1

0,377oxP  ; 

 2
0,466oxP  ; 

 4
0,442oxP  . А при 1 0,007v  ; 2 0,033v  ; 1 0,20u  ; 

2 0,018u   (при этом 0,35a  ; 1,65b  ; 0,90c  ) 
 1

0,322oxP  ; 

 2
0,402oxP  ; 

 4
0,380oxP  . В этих случаях стороне Х целесообразно ис-

пользовать 2-ой вариант ведения боя, хотя увеличение вероятности её 

победы не так существенно, как в предыдущих случаях. На рис. 1 этим 

случаям соответствуют точки 3A  и 4A .    

 

 
Рис. 1. Области выгодности различных тактик ведения боя стороной X   

 

Выводы. Результаты настоящей статьи позволяют сделать следу-

ющие выводы: 

1. на основе теории непрерывных марковских процессов 

разработана вероятностная модель боя двух однотипных боевых 

единиц против двух разнотипных; 

2. полученные в настоящей статье формулы для вычисления 

основных показателей боя позволяют стороне Х определить 

оптимальную тактику ведения боя в различных боевых ситуациях; 

3. разработанная в настоящей статье модель боя может быть 

использована для оценки боевой эффективности многоцелевых 

комплексов вооружения. 
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Stochastic model of combat operations of the same type of 

combat units against ones of different types  

 V.Yu. Chuev, I.V. Dubograi 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
On the basis of the theory of continuous Markov processes, a model of a two–way battle 

of two similar combat units of side X against two different types of enemy units is devel-

oped. Calculation formulas are obtained for calculating the current and final states for 

various tactics of fighting by the X–side. The developed model of two–way combat can be 

used to assess the combat effectiveness of multi-purpose weapons systems. 
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