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Рассматриваются вопросы анализа нелинейных динамических и стационарных                

систем на основе интегро–функциональных рядов Вольтерры и различных классов 

квадратурных формул. Используется математическая модель типа вход–выход, не 

учитывающая конкретную физическую природу динамического процесса, которую 

принято называть черным ящиком. Методы статьи применимы для основных                 

вариантов интегрально–функционального разложения Вольтерры, в том числе для 

случая стационарных динамических систем,  векторного входного сигнала. Дан при-

мер задачи оптимизации на основе рассматриваемых интегростепенных рядов. 

Отмечено, при анализе и оптимизации нелинейных динамических систем методом 

интегро–функциональных рядов может возникнуть проблема вычисления много-

мерных интегралов. Рассмотрено применение для задач анализа нелинейных дина-

мических и стационарных систем комбинированного метода, основанного на                       

интегростепенном ряде Вольтерры и сеточных методах решения соответствую-

щих одно- и многомерных интегральных уравнений. Рассматривается случай, когда 

известен некоторый набор реализаций входного и выходного сигналов, которые            

могут быть в принципе случайными процессами. По этим данным осуществляется 

отыскание ядер в разложении на основе решения соответствующего линейного 

многомерного интегрального уравнения Фредгольма I рода. Соответствующая за-

дача относится к некорректно поставленным и для ее решения применен метод 

регуляризации по А.Н. Тихонову. В статье предлагается применять в данной задаче 

в случае больших размерностей  метод квази Монте–Карло, характерный удовле-

творительной сходимостью. Исследованы вычислительные качества в рассматри-

ваемой задаче полустатистического метода решения интегральных уравнений 

большой размерности, метод квазиМонте-–Карло, метод центральных                            

прямоугольников (ячеек) и квадратурные формулы Гаусса–Лежандра. Рассматри-

ваемые подходы позволяют расширить круг решаемых задач теории анализа и                

оптимизации систем, поскольку предложены методы, практически приемлемые 

при больших размерностях интегральных уравнений в условиях ограниченной                   

информации о системе. 

 

Ключевые слова: динамическая нелинейная система, анализ, оптимизация,                    

интегро–функциональные ряды,  интегральные уравнения, высокая размерность, 

методы Монте–Карло и квази Монте–Карло, метод ячеек, квадратуры                          

Гаусса–-Лежандра 

 

Введение. В статье рассматривается математическая модель типа 

вход–выход, не учитывающая конкретную физическую природу                    

динамического процесса, которую принято называть черным ящиком. 
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На рис. 1 черный ящик, соответствует отображению  ( ) ( ),y t F x t t   

нелинейного динамического процесса. Входные факторы обозначены 

вектором  1 2, ,..., mx x xx , выходные факторы — вектором 

 1 2, ,..., ny y yy , а фактор случайности, который условно объединяет 

все случайные факторы — C .   
 

 
 

Рис. 1. Схема типа «черный ящик» многофакторного динамического                               

нелинейного объекта исследования 

 

В 1930 году итальянский математик Вито Вольтерра, комбинируя 

различные представления сигнала, в книге [1] ввел понятие интегро–

степенного ряда вида  

      1

1 1

1
( ) ... , ,..., ( ,

!
,)

n

n n r r

n r

F x t K t s s x t a bs ds
n

 

  

     (1) 

и доказал, что разложение (1) обобщает обычную формулу Тейлора 

для функций n  переменных, причем в (1) функции  1, ,...,n nK t s s              

непрерывны и не зависят от  x t . Фундаментальным результатом              

оказалось то, что ряд Вольтерры (1) описывает нелинейные системы с 

памятью. В (1)  1, ,...,n nK t s s  могут быть ядрами Вольтерры  или                  

переходными функциями (характеристиками). Для различных n                     

ряд (1) характеризует различные порядки нелинейности. Сходимость 

ряда Вольтерры гарантируется теоремой Фреше. Применение рядов 

Вольтерры к задачам механики сплошных сред, а также их обобщение 

на случай тензоров n  го ранга, можно найти  в [2, 3]. Применение 

рядов Вольтерры для задач теории фильтрации можно найти в [4]. 

Одна из основных задач состоит в восстановлении переходных ха-

рактеристик на основании откликов системы на специально подобран-

ные входные сигналы. Задача идентификации динамических систем на 

основе рядов Вольтерры, является обратной задачей. В ряде работ                  
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[5–7] отрезок ряда Вольтерры рассматривается как уравнение                     

Вольтерры I рода относительно входного вектора  x t  в предположе-

нии, что ядра уже восстановлены и требуется найти входной сигнал, 

обеспечивающий желаемый отклик.  

Моделирование стационарных динамических систем.                      
Рассмотрим  стационарные динамические системы, т.е. такие системы, 

у которых динамические характеристики за время переходного               

процесса T  остаются неизменными. При 1N   из (1), получаем          

стандартное в линейной теории автоматического регулирования           

представление выходного сигнала через интеграл типа свертки 

(Дюамеля)  

  1

1 10 0

( ) ... ,..., ( ) .

t t n

n n r r

n r

y t K s s x t s ds


 

      (2) 

Случай векторного входного сигнала и оптимизация системы. 

Оптимизация системы возможна на основе интегростепенного ряда 

Вольтерры, если вектор входного сигнала многомерный, например,

      
T

1 , , px t x t x t  . В этом случае интегростепенной ряд Воль-

терры имеет следующий вид [1, 2]: 

    
1

1

,... 1

1 1 ... 1

( ) ... , ,..., ( ) .
n r

n

n

i i n i r r

n i i p r

F x t K t s s x s ds

 

      

      (3) 

Рассмотрим пример задачи оптимизации, в которой роль управля-

ющих играют все координаты входного сигнала. Требуется                              

обеспечить поддержание требуемого выходного сигнала 

  
1

1

,... 1

1 1 ... 1

... , ..., ( ) ( ),
n r

n

n

i i n i r r

n i i p r

K t s s u s ds y t

 

      

      (4) 

при ограничениях на входные сигналы 

 2

0

1

( )
p

i

i

u s ds С



 

    

и минимальном значении некоторого критерия, например, 

 2

1( ( ) ( )) min.u s w s ds





    

Таким образом, при анализе и оптимизации нелинейных динами-

ческих систем методом интегро–функциональных рядов может                   

возникнуть проблема вычисления многомерных интегралов. В [5–7] 
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идентификация ядер разложений типа (1) осуществляется на основе 

тестовых сигналов специального вида (обычно ступенчатых) и              

выводятся формулы для ядер на их основе. Однако на практике не                   

всегда для тестирования системы можно выбирать любой желаемый 

сигнал. Для случая пассивного эксперимента такой подход, вообще               

говоря, не приемлем. В данной статье мы продолжаем исследование 

[8] и рассматриваем случай, когда известен некоторый набор реализа-

ций входного и выходного сигналов, которые могут быть в принципе 

случайными процессами. По этим данным осуществляется отыскание 

ядер в разложении (1) на основе решения соответствующего                     

нелинейного многомерного интегрального уравнения Фредгольма I 

рода. Соответствующая задача относится к некорректно поставлен-

ным и для ее решения применен метод регуляризации по                                  

А.Н. Тихонову. Таким образом, одной из основных задач является                

вычисление многомерного интеграла. Для этого в статье предлагается 

применять методы Монте Карло, квази Монте–Карло, полустатисти-

ческий метод и его варианты, метод ячеек и квадратур                                  

Гаусса–Лежандра. 

Метод Монте–Карло находит широкое применение в практике                   

решения вычислительных задач, в том числе при решении интеграль-

ных уравнений [1, 9–15]. В то же время не все возможности данного 

метода используются полностью. Так при решении интегральных 

уравнений преимущественно используется вариант этого метода,                 

основанный на суммировании резольвенты и использовании цепей 

Маркова [13]. Это обстоятельство значительно сужает класс                      

решаемых задач, так как требуется ограничение нормы интегрального 

оператора единицей.  В работе [12] предложен подход, названный                 

полустатистическим и основанный на применении квадратурной               

формулы со случайными узлами. В данной статье проводится сравни-

тельное исследование ранее перечисленных квадратурных формул. 

Примеры идентификации ядер в разложении (1). Задача 1.               

Рассмотрим приближенную модель 2–го порядка. Решается                       

интегральное уравнение типа Вольтерры (1) c учетом только                               

линейного и квадратичного членов:  

 

   

     

1 1 1 1 1

0

2 1 2 2 1 2 1 2

0 0

ˆ, ,

ˆ, , , , ( 0,1 ,, ),

t

t t

K t s X s ds

K t s s X s s ds ds y t t

 

    



 

  (5) 

где  1 1,K t s  и  2 1 2, ,K t s s  — искомые функции, ядрами интеграль-

ного уравнения являются функции 
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          1 2 1 2 1 2
ˆ ˆ, , , , , , , / 2!,X s x s X s s x s x s         

где  ,x t   — множество входных сигналов,   — некоторый                      

параметр, возможно, векторный и (или) случайный, выходные                

сигналы имеют вид  ,y t  .  

Интегральное уравнение (5) имеет неоднородную структуру и           

часто плохо обусловлено. Поэтому целесообразно осуществить его   

редукцию на два независимых интегральных уравнения для                          

раздельного отыскания функций  1 1,K t s  и  2 1 2, ,K t s s . Для этого 

применим стандартный в анализе систем прием [2], выбрав два типа 

тестовых сигналов, различающихся только знаком:  0 ,x x t    .      

Соответствующие отклики системы обозначим  ,y t  . Подставим 

тестовые сигналы в (5), после чего сложим и вычтем соответствующие 

выражения. Тогда в силу инверсии знаков получим два интегральных 

уравнения для раздельного отыскания функций  1 1,K t s  и       

 2 1 2, ,K t s s : 

    0

1 1 1 1

0

( , ) ( , )
, , ,

2

t
y t y t

K t s x s ds
   

    (6) 

      0 0

2 1 2 1 2 1 2

0 0

, , , , ( , ) ( , ).

t t

K t s s x s x s ds ds y t y t          (7) 

Для решения интегрального уравнения (6) используем, следуя [9] 

сигналы вида:  

      0

1 1 1, ,x u d u d u      

где   2d u u . 

Соответствующий отклик системы имеет вид  

   2

1 1 1 1 1, 2 2( )( ).1 ty t t e          

Для отыскания решения интегрального уравнения (7) используем, 

также следуя [9] сигналы вида: 

        0

2 1 1 1 2, 2 .x u d u d u d u         

Соответствующий отклик системы имеет вид  

       
2

2 1 2 1 1 2 1 1 2 2, , 2 , , , , .y t y t y t           



Моделирование нелинейных динамических и стационарных систем… 

73 

Известно точное аналитическое решение рассматриваемых                      

интегральных уравнений:  

    1 1 2

1 1 2 1 2, , , , .t s t s t sK t s e K t s s e e         

Данное интегральное уравнение относится к разряду некорректно 

поставленных задач. В результате применения сеточных или                

аналогичных методов уравнение с интегральным оператором                               

аппроксимируется СЛАУ вида Az d , матрица которой имеет как 

правило, ранг значительно меньший порядка системы. Поэтому                          

целесообразно применение регуляризации. Опыт показал, что наибо-

лее практичен для решения метод регуляризации по Тихонову.                            

В результате регуляризации получаем новую СЛАУ T TμA Az z A d   

с некоторым параметром регуляризации μ . 

Решение задачи при помощи полустатистического метода. 

Рассмотрим нелинейное интегральное уравнение Фредгольма вида:  

         , , ,  ,
V

u x K x y b u y y dy f x x V      (8) 

где  u x  — искомая функция,  x  — точка области V  из mмерного 

евклидова пространства,   и   — некоторые вещественные или        

комплексные числа,  ,K x y  — ядро интегрального оператора, 

 ,b u y  — некоторая непрерывная функция,  f x  — свободный член. 

Предположим, что известны n  случайных точек области 

 1 1 1

1: ,..., mV y y y , …,  1 ,...,n n n

my y y , полученные из распределения 

с плотностью  p y , y V . Условие нормировки: 

   1.
V

p y dy    

Интеграл в (8) можно приближенно вычислять при помощи                    
традиционной схемы вычисления интегралов методами Монте–Карло 

и квази Монте–Карло [8–15]. Используем точки  1 1 1

1 ,..., my y y , …, 

 1 ,...,n n n

my y y , как узлы коллокаций в известном вычислительном 

методе, при помощи которого получим из (8) соответствующая                   
квадратурную формулу: 

 
1

( , )
( , ) , ( ), 1, , .

( )

i jn
j i

i j i ij
j

K y y
u b u y f u u y i n

n p y






     (9) 

Поскольку остаточный член квадратурной суммы метода Монте–
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Карло с любой наперед заданной вероятностью стремится к нулю при 
стремлении числа узлов к бесконечности, то обоснованно                                
предполагать, что при достаточно гладком ядре и ограниченности            
оператора, обратного к оператору интегрального уравнения (8),                              
решение (9) сходится к точному в одной из вероятностных мер.                         
Отличие метода квази Монте–Карло заключается в применении                     
вместо случайных узлов низкодисперсных последовательностей типа 
последовательностей Хальтона и Соболя. Также автор применял                      
подход на основе случайных последовательностей со специально 
уменьшенной дисперсией. Применение низкодисперсных последова-
тельностей позволяет существенно улучшить сходимость метода.                
Соответствующие примеры эффективного применения отмеченного 
подхода содержатся в статьях автора [8, 10, 11]. 

Результаты численного моделирования. При численном реше-
нии бесконечные интервалы в интегральных операторах усекались до 
конечных отрезков на основе анализа поведения подынтегральных 
функций. По указанной причине интегрирование всегда осуществля-

лось на некотором конечном интервале от  a  до b . Координаты узлов 
интегрирования вычислялись при помощи последовательности                
Хальтона по правилу:  

    1 2 1( , 2), ( ,3), 1,..., .i s i ss a b a H i s a b a H i i n         

По аналогичным формулам вычислялись значения параметров 

1 2,  . 

Программное вычисление элементов последовательности                        
описывается следующим фрагментом программы на алгоритмическом 
языке Паскаль: 

 

{Последовательность Хальтона с основанием base} 

function Hs(index, base: integer): real; 

var i : integer;rs,f :real; 

begin 

  rs:=0;f:=1;i:=index; 

  while (i>0) do 

  begin 

    f:=f/base;rs:=rs+f*(i mod base);i:=floor(i/base); 

  end; 

  Hs:=rs 

 end; 

 

При численных вычислениях применялись следующие значения 
параметров интегральных уравнений, сеточного метода и параметра 
регуляризации: 

 5

1 20; ; 1; μ 10 ; 10; 100.a b t t n n        

Результаты вычислений представлены в таблицах 1 и 2. 
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Таблица 1 

Приближенные и точные значения одномерного ядра 

i  1is   1 11, iK t s  , %   1 11, iK t s  

1 0,81250 0,85976 3,707 0,82903 

2 0,18750 0,42606 3,986 0,44375 

3 0,68750 0,77302 5,660 0,73162 

4 0,43750 0,59954 5,223 0,56978 

5 0,93750 0,94650 0,755 0,93941 

6 0,03125 0,31763 16,315 0,37956 

7 0,53125 0,66460 6,202 0,62578 

8 0,28125 0,49111 0,770 0,48736 

9 0,78125 0,83808 4,300 0,80352 

10 0,15625 0,40437 5,980 0,43009 

Таблица 2 

Приближенные и точные значения двумерного ядра 

i  1is  2is    2 1 21, ,i iK t s s  , %   2 1 21, ,i iK t s s  

1 0,50000 0,33333 0,33287 6,894 0,31140 

11 0,81250 0,70370 0,69234 12,313 0,61644 

21 0,65625 0,18519 0,30602 2,523 0,31394 

31 0,96875 0,45679 0,59760 6,143 0,56301 

41 0,57813 0,82716 0,61666 11,770 0,55172 

51 0,79688 0,30864 0,42494 3,944 0,40882 

61 0,73438 0,58025 0,56999 13,115 0,50390 

71 0,88281 0,95062 0,90872 7,342 0,84656 

81 0,53906 0,00412 0,18491 20,630 0,23298 

91 0,85156 0,37449 0,48929 6,095 0,46119 

100 0,14844 0,41152 0,22422 5,358 0,23692 

 

При решении первого интегрального уравнения параметры                  

точности расчета составили: среднеарифметическая относительная 

погрешность в узлах сетки 5,3 %; среднеарифметическая абсолютная 

погрешность 0,029; среднеквадратическая погрешность 0,033. 

При решении второго интегрального уравнения параметры             

точности расчета составили: среднеарифметическая относительная 

погрешность в узлах сетки 9,7 %; среднеарифметическая абсолютная 
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погрешность 0,37; среднеквадратическая погрешность 0,14. Относи-

тельно большая абсолютная погрешность связана с некоторым                       

неравномерным распределением погрешности в узлах сетки                                    

(в некоторых узлах имеют место «выбросы»). 
Метод центральных прямоугольников. Значения координат                 

узлов квадратурной формулы при решении первого интегрального 
уравнения вычисляются по правилу:  

   1 1 1 1 1( 0,5) , ( 0,5) , 1,..., .i is a b a i n a b a i n i n            

Для второго интегрального уравнения значения координат узлов 

и параметров 1 2,  : 

 

   

   

   

1 0 2 0

1 0 2 0

0 0 2

( 0,5) , ( 0,5) ,

( 0,5) , ( 0,5) ,

1 1, 1 mod 1, 1,..., .

k k

k k

s a b a i k s a b a j k

a b a i k a b a j k

i k k j k k k n

       

         

        

  

Параметры интегральных уравнений, сеточного метода и регуля-
ризации: 

 6 2

0 1 2 00; ; 1; μ 10 ; 10; .a b t t k n n k         

Результаты вычислений представлены в таблицах 3 и 4. 

Таблица 3 

Приближенные и точные значения одномерного ядра 

i  1is   1 11, iK t s  , %   1 11, iK t s  

1 0,05 0,34874 9,827 0,38674 

2 0,15 0,41161 3,698 0,42741 

3 0,25 0,47448 0,448 0,47237 

4 0,35 0,53736 2,933 0,52205 

5 0,45 0,60023 4,035 0,57695 

6 0,55 0,66311 3,996 0,63763 

7 0,65 0,72598 3,022 0,70469 

8 0,75 0,78885 1,291 0,77880 

9 0,85 0,85173 1,043 0,86071 

10 0,95 0,91460 3,850 0,95123 

 

При решении первого интегрального уравнения параметры            
точности расчета составили: среднеарифметическая относительная 
погрешность в узлах сетки 3,4 %; среднеарифметическая абсолютная 
погрешность 0,02; среднеквадратическая погрешность 0,022. 
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Таблица 4 

Приближенные и точные значения двумерного ядра 

i  1is  2is    2 1 21, ,i iK t s s  , %   2 1 21, ,i iK t s s  

1 0,05000 0,05000 0,12214 18,339 0,14957 

11 0,15000 0,05000 0,14409 12,831 0,16530 

21 0,25000 0,05000 0,16604 9,111 0,18268 

31 0,35000 0,05000 0,18799 6,888 0,20190 

41 0,45000 0,05000 0,20994 5,911 0,22313 

51 0,55000 0,05000 0,23189 5,964 0,24660 

61 0,65000 0,05000 0,25384 6,858 0,27253 

71 0,75000 0,05000 0,27579 8,434 0,30119 

81 0,85000 0,05000 0,29774 10,553 0,33287 

91 0,95000 0,05000 0,31969 13,099 0,36788 

100 0,95000 0,95000 0,83678 7,522 0,90484 

 

При решении второго интегрального уравнения параметры                     

точности расчета составили: среднеарифметическая относительная 

погрешность в узлах сетки 4,8 %; среднеарифметическая абсолютная 

погрешность 0,017; среднеквадратическая погрешность 0,021.  

Целесообразно отметить, что ядра и плотности не всегда гладкие, 

что обесценивает квадратуры высокой точности. Примечательно, что 

для рассматриваемой задачи совершенно неэффективен такой                    

авторитетный математический аппарат, как квадратурные формулы 

наивысшей точности, в том числе квадратуры Гаусса–Лежандра.  

Метод квадратур Гаусса. Узлы и веса исходной квадратуры для 

случая двух узлов равны 

 1 2 1 21 3 , 1 3 , 1, 1.z z A A       

Координаты узлов коллокаций для одномерного интегрального 

уравнения и параметров сетки, а также матрица СЛАУ имеют вид 

 
   

   
1 1 1 1

0

1 1 1 1

2 2 , , 1,..., ,

2 , , , 1,..., .

k k k k

ij j ij

s a b b a z s k n

a b a A x s i j n

      

   
  (10) 

Соответствующие значения для второго интегрального уравнения   

 
       

   

1 2

*

1

2 2 , 2 2 ,

, 2 2 ,

k i k j

k i j k i

s a b b a z s a b b a z

A A A a b b a z

       

     
  



Абас Висам Махди Абас, Р.В. Арутюнян 

78 

   

   

     

2

0 0 2

*2 0 0

2 1 1 2 2 1 2 2

2 2 ,

1 1, 1 mod 1, 1,..., ,

4 , , , , , , 1,..., .

k j

ij j i i j i ij

a b b a z

i k k j k k k n

a b a A x s x s i j n

    

        

      

 

  Параметры интегральных уравнений, сеточного метода и                        

регуляризации: 

 6 2

0 1 2 00; ; 1; μ 10 ; 2; .a b t t k n n k         

Результаты вычислений представлены в таблицах 5 и 6. 

Таблица 5 

Приближенные и точные значения одномерного ядра 

i  1is   1 11, iK t s  , %   1 11, iK t s  

1 0,21132 0,45250 0,428 0,45445 

2 0,78868 0,81158 0,256 0,80951 

 

При решении первого интегрального уравнения параметры                            

точности расчета составили: среднеарифметическая относительная 

погрешность в узлах сетки 0,34 %; среднеарифметическая абсолютная 

погрешность 0,002; среднеквадратическая погрешность 0,002. 

Таблица 6 

Приближенные и точные значения двумерного ядра 

i  1is  2is    2 1 21, ,i iK t s s  , %   2 1 21, ,i iK t s s  

1 0,21132 0,21132 0,20487 0,799 0,20652 

2 0,78868 0,78868 0,36736 0,142 0,36788 

3 0,78868 0,21132 0,36736 0,142 0,36788 

4 0,78868 0,78868 0,65872 0,520 0,65531 

 

При решении второго интегрального уравнения параметры               
точности расчета составили: среднеарифметическая относительная 
погрешность в узлах сетки 0,4 %; среднеарифметическая абсолютная 
погрешность 0,0015; среднеквадратическая погрешность 0,002.  

Согласно вычислениям авторов, последующие квадратурные                 
формулы Гаусса–Лежандра не приносят результата, что возможно, 
связано с высокой мерой обусловленности матрицы СЛАУ,                                 
конечностью разрядной сетки. 

Задача 2. Рассмотрим приближенную модель 2–го порядка. Ре-

шается интегральное уравнение типа Фредгольма (1) на числовой оси 

и в пространстве c учетом только линейного и квадратичного членов: 
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   

   

1 1 1 1 1

2 1 2 2 1 2 1 2

ˆ, ,

ˆ, , , (, ( , ), , ),

K t s X s ds

K t s s X s s ds ds y t t





 

 

 

      



 

  

где  1 1,K t s  и  2 1 2, ,K t s s  — искомые функции, ядрами интеграль-

ного уравнения являются функции 

 
   

     

1

2 1 2 1 2

ˆ , , ,

ˆ , , , , / 2!,

X s x s

X s s x s x s

  

   
  

где  ,x t   — множество входных сигналов,   — некоторый               

параметр, возможно, векторный и случайный, выходные сигналы 

имеют вид  ,y t  . 

Осуществим редукцию интегрального уравнения на два независи-

мых интегральных уравнения для раздельного отыскания функций 

 1 1,K t s  и  2 1 2, ,K t s s . Для этого применим тот же стандартный в         

анализе систем прием [2], выбрав два типа тестовых сигналов,            

различающихся только знаком:  0 ,x x t    . В силу инверсии               

знаков получим два интегральных уравнения для раздельного                  

отыскания функций  1 1,K t s  и  2 1 2, ,K t s s : 

 

   

     

0

1 1 1 1

0 0

2 1 2 1 2 1 2

( , ) ( , )
, , ,

2

, , , , ( , ) ( , ).

y t y t
K t s x s ds

K t s s x s x s ds ds y t y t

  



 

 

 

  
 

     



 

  

Для решения одномерного интегрального уравнения используем, 

следуя [9] сигналы вида:  

      0

1 1 2 1 1 2, , ,x u d u d u         

где   u
d u e


  .  

Соответствующий отклик системы имеет вид 

 
     

   

1 1 2 1 1 1 1 2

1

, , ,

1 .
u

y t d d

d u e u


      

 
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Для отыскания решения двумерного интегрального уравнения                        

используем, также следуя [9] сигналы вида:  

      0

2 1 2 1 1 2, , .x u d u d u         

Соответствующий отклик системы имеет вид  

       
2

2 1 2 1 1 1 1 2, , .y t d d         

Известно точное аналитическое решение рассматриваемых                        

интегральных уравнений:  

 
 

 

1

1 2

1 1

2 1 2

, ,

, , .

s

s s

K t s e

K t s s e e



 




  

Результаты численного решения задачи 2. Результаты                             

вычислений методом центральных прямоугольников представлены в 

таблицах 7 и 8. 

Параметры интегральных уравнений, сеточного метода и                        

регуляризации: 

 

2

2

0 1 2 0

3; 3; 1; μ 10 ;

25; .

a b t

k n n k

    

  
  

Таблица 7 

Приближенные и точные значения одномерного ядра 

i  1is   1 11, iK t s  , %   1 11, iK t s  

1 2,88000 0,12590 124,290 0,05613 

4 2,16000 0,11356 1,529 0,11533 

7 1,44000 0,23682 0,047 0,23693 

10 0,72000 0,49130 0,935 0,48675 

13 0,00000 0,87651 12,349 1,00000 

16 0,72000 0,49130 0,935 0,48675 

19 1,44000 0,23682 0,047 0,23693 

22 2,16000 0,11356 1,529 0,11533 

25 2,88000 0,12590 124,290 0,05613 

 

При решении первого интегрального уравнения параметры                     

точности расчета составили: среднеарифметическая относительная 

погрешность в узлах сетки 13,2 %; среднеарифметическая абсолютная 

погрешность 0,014; среднеквадратическая погрешность 0,032. 
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Таблица 8 

Приближенные и точные значения двумерного ядра 

i  1is  2is    2 1 21, ,i iK t s s  , %   2 1 21, ,i iK t s s  

239 0,72000 0,24000 0,38514 0,587 0,38289 

261 0,48000 0,48000 0,39107 2,136 0,38289 

264 0,48000 0,24000 0,48865 0,391 0,48675 

289 0,24000 0,24000 0,61361 0,836 0,61878 

309 0,00000 0,96000 0,35509 7,261 0,38289 

312 0,00000 0,24000 0,70918 9,845 0,78663 

315 0,00000 0,48000 0,56783 8,234 0,61878 

335 0,24000 0,72000 0,38514 0,587 0,38289 

341 0,24000 0,72000 0,38856 1,480 0,38289 

363 0,48000 0,00000 0,56783 8,234 0,61878 

387 0,72000 0,24000 0,38514 0,587 0,38289 

 

При решении второго интегрального уравнения параметры точно-

сти расчета составили: среднеарифметическая абсолютная погреш-

ность 0,012; среднеквадратическая погрешность 0,024. 

Качественно относительно высокая точность сеточного решения 

иллюстрируется графиками на рис. 2 и 3. 

  

 
Рис. 2. График точного и приближенного решений                                                                   

одномерного интегрального уравнения 

0 1,2 2,4 3,6 4,8 6,0 u
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0, 2
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Рис. 3. Серия графиков точного и приближенного решений                                                   

двумерного интегрального уравнения 

 

Заключение. Рассмотрено применение для задач анализа                              

нелинейных динамических и стационарных систем комбинированного 

метода, основанного на интегростепенном ряде Вольтерры и сеточных 

методах решения соответствующих одно- и многомерных                                     

интегральных уравнений.  

Исследованы вычислительные качества в рассматриваемой задаче 

полустатистического метода решения интегральных уравнений                   

большой размерности, метод квази Монте–Карло, метод центральных 

прямоугольников (ячеек) и квадратурные формулы Гаусса–Лежандра.  

Рассматриваемые подходы позволяют расширить круг решаемых 

задач теории анализа и оптимизации систем, поскольку предложены 

методы, практически приемлемые при больших размерностях                    

интегральных уравнений в условиях ограниченной информации                                    

о системе.  
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The article deals with the analysis of nonlinear dynamic and stationary systems based on 

Volterra integro–functional series and various classes of quadrature formulas. A mathe-

matical model of the input–output type is used, which does not take into account the specific 

physical nature of the dynamic process, which is commonly called a black box. The meth-

ods of the article are applicable to the main variants of the Volterra integral–functional 

decomposition, including for the case of stationary dynamical systems, a vector input                     

signal. An example of an optimization problem based on the considered integrative series 

is given. It is noted that when analyzing and optimizing nonlinear dynamical systems by 

the method of integro–functional series, the problem of calculating multidimensional inte-

grals may arise. The article considers the application of the combined method based on 

the Volterra integrative series and grid methods for solving the corresponding one -— and 

multidimensional integral equations for the analysis of nonlinear dynamic and stationary 

systems. This article considers the case when a certain set of implementations of input and 

output signals is known, which can be in principle random processes. According to these 

data, the kernels are found in the decomposition based on the solution of the corresponding 

linear multidimensional Fredholm integral equation of the first kind. The corresponding 

problem belongs to the incorrectly posed ones and the regularization method according to 

A.N. Tikhonov is used to solve it.  The article proposes to apply the quasi Monte–Carlo 

method, characterized by satisfactory convergence, in this problem in the case of large 

dimensions. The computational qualities in the considered problem of a semi-statistical 

method for solving integral equations of large dimension, the quasi Monte–Carlo method, 

the method of central rectangles (cells) and the quadrature formulas of Gauss–Legendre 

are studied. The approaches under consideration allow us to expand the range of problems 

to be solved in the theory of analysis and optimization of systems, since methods are pro-

posed that are practically acceptable for large dimensions of integral equations in condi-

tions of limited information about the system. 

 
 

Keywords: dynamic nonlinear system, analysis, optimization, integro–functional series, 

integral equations, high dimension, Monte–Carlo and quasi Monte–Carlo methods, cell 

method, Gauss–Legendre quadratures 
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