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В данной работе рассматривается оптимизация перелета спутника малой массы 

с Земной орбиты на орбиту Марса с использованием ионных двигателей. Ионный 

двигатель позволяет минимизировать расход топлива и разогнать космический               

аппарат до довольно высоких скоростей вдали от планет солнечной системы.                    

Рассмотрению подлежит гелиоцентрический участок полета. Ставится задача 

минимизации времени перелета. В работе приняты следующие допущения: орбиты 

Земли и Марса являются круговыми и лежащими в одной плоскости. В качестве 

управления выбирается угол между тангенциальной скоростью космического               

аппарата в гелиоцентрической системе и направлением действия тяги. При                            

составлении алгоритма оптимизации использован принцип максимума Понтрягина, 

который приводит задачу оптимизации функционала к краевой задаче для системы 

обыкновенных дифференциальных уравнений. Решение краевой задачи найдено                      

одним из численных методов — методом пристрелки, дающим наиболее точные                     

результаты. Проведен анализ полученных результатов и проведено сравнение с    

данными, полученными ранее в подобных расчетах зарубежными авторами другим 

численным методом решения. Делается вывод о работоспособности метода                         

пристрелки при решении подобных задач. 

 

Ключевые слова: ионные двигатели, метод пристрелки, краевые задачи обыкновен-

ных дифференциальных уравнений, оптимальное управление, принцип максимума 

Понтрягина, перелет между орбитами Земли и Марса 

  

Введение. Рассматривается перелет между орбитами Земли и 

Марса с помощью двигателя с малой тягой, а именно, ионного. Этот 

двигатель относится к электрическим ракетным двигателям, принцип 

работы которых основан на преобразовании электрической энергии в 

направленную кинетическую энергию частиц и которые позволяют             

существенно увеличить мощность двигателя на единицу расхода                 

рабочего тела, а, следовательно, уменьшить запасы топлива и                            

увеличить полезную нагрузку [1]. Принцип работы ионного двигателя 

описан в [2]. К достоинствам данного вида двигателей относят малый 

расход топлива и длительное время активной работы, а к                                    

недостаткам — малую величину тяги. Ионные двигатели невозможно 

использовать для старта с планеты, однако, в условиях невесомости 

при достаточно долгой работе они позволяют разогнать космический 

аппарат до скоростей, которых невозможно достичь при использова-

нии других двигателей. 

Марс является наиболее перспективной кандидатурой в качестве 
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цели для исследуемых перелетов, примеры этого приведены в [3]. 

Начиная с 1960 года, было предпринято немало попыток исследовать 

Марс, и ещё несколько миссий по его исследованию запланировано в 

наше время [4]. 

Математическая модель задачи оптимизации перелета с Земной 
орбиты на орбиту Марса с использованием принципа максимума 
Понтрягина представляет собой краевую задачу для системы                             
обыкновенных дифференциальных уравнений (состоящих из                             
уравнений движения и кинематических соотношений), которая                             
решалась методом пристрелки. Этот метод заключается в сведении 
краевой задачи к задаче Коши, для решения которой существует много 
численных методов решения, позволяющих получать результат с                       
гарантированной точностью [5]. В качестве управления был выбран 
угол между касательной к окружности с центром в Солнце и                                 
направлением действия тяги. Следует отметить, что принцип                             
максимума Понтрягина представляет собой необходимое условие                               
существования экстремума рассматриваемого функционала, которое 
позволяет среди всех возможных допустимых процессов отобрать те, 
которые могут претендовать на роль оптимальных [6], [7]. 

Аналогичная задача была решена в работе [8], где она решалась с 
помощью метода функций нагружения для рассмотрения связей,  
наложенных на конечные значения. Метод пристрелки позволяет                     
получить наиболее точное решение при правильно выбранных         
начальных значениях вектора независимых переменных (параметров 
пристрелки), что представляет собой нетривиальную задачу.                          
Сложности, связанные с выбором начального приближения,                                  
к сожалению, приводят часто к несходимости метода, что                                     
ограничивает возможность его применения при решении задач                           
оптимизации в реальных инженерных задачах. Оптимальность                            
полученного решения была проверена сравнением с данными работы 
[8] и сравнением полной и частной производных функции Понтрягина, 
которые должны быть равны между собой при выполнении                                      
необходимого условия существования экстремума [6]. 

Постановка задачи математическое моделирование перелета с 
Земной орбиты на орбиту Марса. Уравнения движения для расчетов 
и некоторые технические характеристики двигателя были взяты                       
аналогичными тем, что использовались в работе [8]: 
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где t  — время, с; u  — скорость движения ракеты вдоль радиуса, м/с; 

v  — скорость движения ракеты по касательной к окружности с                  

центром в Солнце, м/с; R  — расстояние до Солнца, м;   — полярный 

угол положения ракеты, рад; 
0R  — начальное положение радиуса                  

Земной орбиты, м;   — угол между касательной к окружности с                          
центром в Солнце и направлением действия тяги (управление), рад; 

0
0 2

0 0

cF M
A G

m R
  , м/с2; 0F  — сила гравитационного притяжения в 

начальный момент времени, Н; 0m  — масса ракеты, кг; G  — гравита-

ционная постоянная, 3 2м с кг ; 
cM  — масса Солнца, кг;                 

0отнQ Q m  — отношение расхода топлива двигателя к исходной массе, 
1с ; 0отнT T m  — отношение тяги двигателя к исходной массе, м/с2. 

Минимизируемый функционал  

 1

0

min.

t

J dt t     

Функция Понтрягина в условиях данной задачи принимает                   
следующий вид: 
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Здесь u , 
v , R ,   — сопряженные переменные. 

Традиционно при решении задачи быстродействия методами          
проекции градиентов или условного градиента последнее слагаемое 

(подынтегральную 1, умноженную на 
0 1   ) не учитывают, так как 

она не влияет на нахождение экстремума. Для метода пристрелки ее 
наличие принципиально, так как будет использована невязка по                  
равенству нулю функции Понтрягина в конце процесса, что следует из 
принципа максимума при свободном времени на правом конце.  

Вычислив производную по управлению и приравняв ее к нулю 

0H    , получим для оптимального управления *tg u v   ,               

откуда, используя тригонометрическое соотношение  

 2 *

2 *

1
tg 1,

cos



    

выводятся следующие выражения: 



Моделирование и оптимизация перелета спутников малой массы… 

57 

 

*

2 2

*

2 2

sin ,

cos .

u

u v

v

u v




 




 







  

Знаки у выражений выбирались при условии выполнения следую-

щего неравенства, обеспечивающего наличие максимума функции 

Понтрягина: 

 
2

2
( sin cos ) 0.

(1 )

отн
u v

отн

TH

Q t
   




   

  
  

Отсюда получается для управления: 

 (sin ) ( ), (cos ) ( ).u vsign sign sign sign       

Сопряженная система имеет вид: 
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Краевые условия — известные значения для Земли 0v , 0u , 
0R , 0  

(начальные условия) и для Марса fv , fu , fR  (конечные условия). Из 

условий трансверсальности получим, что 1( ) 0.t   Так как эта                    

сопряженная функция постоянна по времени,  10 0,t t     и,                

соответственно, можно исключить из сопряженной системы послед-

нее уравнение, а в остальных убрать все слагаемые, зависящие от  . 

В качестве параметров пристрелки выбираются недостающие 

начальные условия, а, именно, u , v , R . Дополнительного                       

параметр пристрелки — время перелета 1t , начальное приближение      

которого выбирается, как известное примерное время перелета с 

Земли на Марс, равное 210 дням [9]. Этот параметр пристрелки                           

необходим при переходе к системе ДУ по другому аргументу: 

 1 0,1отнt t t  , который обеспечит более аккуратный выход из                
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модуля численного интегрирования. Выберем в качестве первого            

приближения начальный угол  , равный 
0 045 u v   . 

Особенности численного алгоритма решения задачи. Получен-

ная задача решается с помощью метода пристрелки, описанного в [10] 

и [11], схема которого приведена на рис. 1.  

 

 
 

Рис. 1. Схема алгоритма численного решения простейшей задачи                                  

оптимального управления методом пристрелки 

 

Интегрирование во внутреннем цикле проводилось методом                         

Рунге–Кутта четвертого порядка [12]. Метод Рунге–Кутта обладает 

значительной точностью и широко используется при численном                     

решении дифференциальных уравнений [13]. Внешний цикл —                               

модифицированный метод Ньютона [14] вычисляет последующие    

значения параметров пристрелки, линеаризуя систему алгебраических 

нелинейных уравнений, уравнений невязок. Для оптимизации шага в 

модифицированном методе Ньютона вычислялась локальная норма 

[15], улучшающая сходимость в ряде отдельных случаев. 

За невязки приняты: 

Ввод исходных 
данных. Задание

начального
приближения
параметров
пристрелки.

Метод Ньютона. Решение
системы алгебраических
нелинейных уравнений.

Вычисление матрицы Якоби.

Решение СЛАУ.

Шаг по параметрам пристрелки.

Вывод на печать
результатов 

расчета.

Вычис-
ление

невязок

Метод
Рунге-
Кутта.

Интегри-
рование
системы 

ДУ.

Метод
Гаусса.

Вычис-
ление
произ-

водных.

нет

да

if
max

(abs( ))
<

i




Моделирование и оптимизация перелета спутников малой массы… 

59 

 

1

0

2

0

0

3

0

4 1

0,

0,

0,

( ) 0.

f

f

f

u

v v

v

R R

R

H t









 


 


 

 

  

В нашем случае переменные, из которых состоят дифференциаль-

ные уравнения, очень разных порядков, что увеличивает вычислитель-

ную погрешность. Чтобы избежать этого, все параметры пристрелок и 

уравнения невязок используются в относительном виде. Программа 

расчета написана на языке программирования С++ с переменными, 

описанными двойной степени точности. 

Для решения системы линейных алгебраических уравнений                      

используется метод LUP–разложения, алгоритм которого                                   

приведен в [16].  

Для проверки оптимальности полученного решения сравниваются 

полная и частная производные функции Понтрягина по времени.     

Частная производная в данной задаче имеет следующий вид: 
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Полная производная может быть численно получена, как:  

 1 .i iH HdH

dt t


   

Результаты расчетов. Для проведения численных расчетов были 

использованы следующие исходные данные: 
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Начальные значения для неизвестных сопряженных переменных 

выбирались в качестве параметров пристрелки и были выбраны                   

равными   

 
0 0

5

0

( ) ( ) 842;

( ) 10 .

u v

R

t t

t

 

 

 

 
  

Время перелета с Земли на Марс — 200 суток. Также 0( ) 45t  . 

Остальные переменные, участвующие в системе и выбранные в каче-

стве константных, принимают следующие значения:  
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Точность решения, при которой выполнялся выход из метода 

Ньютона, составляла 610 . Для метода Рунге–Кутта было выбрано 

1000 шагов. 

На рис. 2—5 показаны графики фазовых переменных, полученные 

в результате решения поставленной задачи.  
 

 
 

Рис. 2. График скорости ракеты u  вдоль радиуса R   

 

 
 

  Рис. 3. График касательной скорости ракеты v   
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Рис. 4. График изменения радиуса от Солнца до ракеты R   
 

  
 

Рис. 5. График изменения полярного угла    

На рис. 6—8 показаны графики для сопряженных переменных. 
 

 
 

Рис. 6. График изменения сопряжённой переменной 
u   

2,3

2, 2

2,1

2,0

1,9

1,8

1,7

1,6

1,5

0 25 50 75 100 125 150 175 , дниt

11, 10 мR 

140

120

100

80

60

40

20

0

0 25 50 75 100 125 150 175 , дниt

, рад

0 25 50 75 100 125 150 175 , дниt

400

200

0

200

400

600







u



Т.Ю. Мозжорина, Л.О. Чуванова 

62 

 
 

Рис. 7. График изменения сопряжённой переменной 
v   

 

 
 

Рис. 8. График изменения сопряжённой переменной 
R   

На рис. 9 показан график изменения функции Понтрягина, а на 

рис. 10 — график изменения управления  . 
 

 
 

Рис. 9. График изменения функции Понтрягина 
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Рис. 10. График изменения управления 
 

Используя радиус и полярный угол, можно построить траекторию 

полета космического аппарата, показанную на рис. 11. Для большей 

наглядности на графике также изображено Солнце в соответствующем 

масштабе. 
 

 

 
 

Рис. 11. Траектория полета 
 

Далее проводится проверка корректности решения. Для этого 

строится совместный график полной и частной производных функции 

Понтрягина, показанный на рис. 12. Совпадение данных по производ-

ным составляет 6 значащих цифр. 

Решение было получено за 11 итераций метода Ньютона. Время 

полета получилось равным около 193 дней. 
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Рис. 12. Совместный график полной и частной производных                                  
функции Понтрягина 

 

Заключение. Анализ результатов расчета показал возможность 
применения метода пристрелки для решения задачи перелета между 
орбитами планет в солнечной системе, однако, возникла                                    
необходимость применения модифицированного метода Ньютона 
вместо классического, поскольку классический метод не давал                            
сходимости. Метод пристрелки применим и при решении задач                        
оптимального управления с переключением [15], [17]. Кроме этого, 
применение локальной нормы улучшило сходимость метода.              
Полученное решение прошло проверку корректности. Результаты                 
решения оказались близкими полученным в [8]. Точность интегриро-
вания системы ДУ была проверена просчетом от конца к началу для 
сошедшегося варианта. На всех шагах сохранилось совпадение                       
данных по всем переменным с точностью до 6–го знака. 
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In this paper, optimization of the transfer of a low–mass satellite from Earth orbit to Mars 

orbit using ion thrusters is considered. The ion engine allows you to minimize fuel             

consumption and accelerate the spacecraft to fairly high speeds far from the planets of the 

solar system. The heliocentric section of the flight is subject to consideration. The task is 

to minimize the flight time. The following assumptions are made in the work: the orbits of 

the Earth and Mars are circular and lying in the same plane. The angle between the                   

tangential velocity of the spacecraft in the heliocentric system and the direction of thrust 

action is selected as a control. When compiling the optimization algorithm, the Pontryagin 

maximum principle was used, which leads the optimization problem of a functional to a 

boundary value problem for a system of ordinary differential equations. The solution to the 

boundary value problem was found by one of the numerical methods — the false position 

method, which gives the most accurate results. The analysis of the results obtained is                

carried out and a comparison with the data obtained earlier in similar calculations by 

foreign authors by another numerical solution method is carried out. The conclusion is 
made about the efficiency of the false position method when solving such problems. 

Keywords: ion thrusters, the false position method, boundary value problems of ordinary 

differential equations, optimal control, Pontryagin's maximum principle, flight between the 

orbits of the Earth and Mars 
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