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На основе математической модели теплового взаимодействия включения и мат-
рицы выполнена оценка влияния отклонения формы включений от шаровой на эф-
фективный коэффициент теплопроводности композита и связанное с таким от-
клонением возможное возникновение анизотропии композита по отношению к 
свойству теплопроводности. С использованием двойственной вариационной фор-
мулировки стационарной задачи теплопроводности в неоднородном теле построе-
ны двусторонние оценки эффективных коэффициентов теплопроводности. 

 
Ключевые слова: композит, включение, эффективная теплопроводность, матема-
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Введение. В качестве конструкционных и строительных мате-

риалов, а также функциональных материалов в различных приборных 
устройствах находят широкое применение композиты, состоящие из 
матрицы и включений различной формы. К композитам можно от-
нести большинство применяемых в технике материалов, являющихся 
гетерогенными твердыми телами. Исследованию теплопроводности 
таких тел посвящено значительное число научных публикаций, напри-
мер [1–7]. Расчетные формулы для оценки эффективного коэффициен-
та теплопроводности гетерогенных тел в этих работах получены, как 
правило, либо в результате обработки экспериментальных данных 
применительно к конкретным материалам, либо путем априорного за-
дания распределения температуры и теплового потока в моделях 
структуры гетерогенных тел. 

Если включения в композите имеют близкие размеры во всех на-
правлениях, то в первом приближении их можно рассматривать как 
шаровые, поскольку шар является статистически усредненной фор-
мой таких включений. Близкую к шаровой форму имеют некоторые 
наноструктурные элементы (в том числе фуллерены), которые в по-
следнее время рассматриваются как перспективные включения для 
композитов различного назначения [8, 9]. 

Для композита с шаровыми включениями удается построить аде-
кватные математические модели, позволяющие достаточно досто-
верно прогнозировать зависимость его эффективного коэффициента 
теплопроводности от коэффициентов теплопроводности матрицы и 
включений и от объемной концентрации включений. В силу электро-
тепловой аналогии [10, 11] математические модели, описывающие 
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процесс теплопроводности в таком композите, могут быть примене-
ны для оценки электропроводности, диэлектрической и магнитной 
проницаемости композита. Именно оценке электропроводности неод-
нородной среды с шаровыми включениями была посвящена первая 
известная в этом направлении работа, опубликованная К. Максве-
ллом [12] еще в 1873 г. 

Если материалы матрицы и шаровых включений изотропны по от-
ношению к свойству теплопроводности, то такой композит также бу-
дет обладать свойством изотропии, т. е. его эффективный коэффици-
ент теплопроводности будет одинаков во всех направлениях. В ряде 
работ выдвинуто предположение о том, что в случае близости разме-
ров включения в различных направлениях его форму можно в первом 
приближении принять как шаровую. Оценим количественно влияние 
отклонения формы включений от шаровой на эффективный коэффи-
циент теплопроводности композита и связанное с таким отклонением 
возможное возникновение анизотропии композита по отношению к 
свойству теплопроводности. 

Математическая модель теплового взаимодействия включе-
ния и матрицы. В качестве возможной формы включения, отличаю-
щейся от шаровой и позволяющей построить математическую модель 
теплового взаимодействия включения и матрицы, является трехос-
ный эллипсоид.  

Рассмотрим тепловое взаимодействие отдельно взятого эллипсо-
идального включения с неограниченным объемом окружающей его 
матрицы. Начало прямоугольной декартовой системы координат 

1 2 3O    выберем в центре эллипсоида, причем направления коорди-

натных осей совпадают с осями симметрии эллипсоида, уравнение по-

верхности которого имеет вид 2 2 2 2 2 2
1 1 2 2 3 3/ / / 1b b b     , где kb  — 

полуоси эллипсоида ( 1, 2, 3k  ). Примем, что на достаточно большом 
расстоянии от центра включения по сравнению с длиной наибольшей 
полуоси эллипсоида составляющие градиента установившегося рас-

пределения температуры равны ,kT   (запятая перед нижним индексом k  

означает производную по направлению оси kO ). Тогда во включении 

возникнет установившееся распределение температуры с составляю-
щими градиента [13] 

0

,
, , ,

1 (1 / )
k

k
m

T
T k

D

  
  



  

где 0  и m  — коэффициенты теплопроводности включения и мат-

рицы соответственно, а 
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1 2 3
2

0

, ,
2 ( ) ( )

b b b du
D k

b u f u






  
                        (1) 

причем 2 2 2
1 2 3( ) ( )( )( )f u b u b u b u     и 1 2 3 1D D D      (в частнос-

ти, для шара 1/ 3D 
 ). 

Интегралы в формуле (1) можно выразить через эллиптические 
интегралы [14]. Например, при 1 2 3> >b b b  

2 3 2 3 2
1 3 2 22 2 2

32 32 3 3

( ( , ) ( , )) ( , )
= , = ( ),

(1 ) 1 1

b b F K E K b b b E K
D D

bb bb b b

   


  
   

где 2 2 1= /b b b  и 3 3 1= /b b b , а ( , )F K  и ( , )E K  — эллиптические 

интегралы соответственно первого и второго рода с амплитудой и 

модулем 2 2 2
3 2 3arcsin 1 и (1 ) / (1 ).b K b b       

Температура вне эллипсоидального включения в точке M  с коор-
динатами k  будет (здесь и далее использовано правило сумми-

рования по повторяющемуся латинскому индексу)  

,
( ) = , ( 1) , = ,

1 ( 1)
k k

k k
D T

T M T k
D





    

  




                 (2) 

где 0= / m    и  

1 2 3
2

= .
2 ( ) ( )

b b b du
D

b u f u




                                (3) 

Здесь   — положительный корень уравнения  

2 2 2 2 2 2
1 1 2 2 3 3/ ( ) / ( ) / ( ) = 1,b b b                      (4) 

характеризующий положение точки M  с координатами k . 

Из формулы (2) следует, что наличие включения создает в мат-
рице возмущение температурного поля относительно линейного рас-
пределения на большом удалении от этого включения, описываемое 
соотношением 

,
= (1 ) , = .

1 ( 1)
k kD T

T k
D





  

  




  

Далее рассмотрим случай, когда 1 2, = , = 0T T  ; тогда для возму- 

щения температурного поля получим 
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1 3 3
3

3

,
= (1 ) .

1 ( 1)

D T
T

D


 

  




                                  (5) 

Предположим, что в композите все эллипсоидальные включения 
имеют одинаковые форму и размеры и одинаково ориентированы от-
носительно выбранной системы координат. Это приведет к различию 
эффективных коэффициентов теплопроводности в направлениях раз-
личных координатных осей, т. е. к анизотропии композита по 
отношению к свойству теплопроводности. Пусть N  таких включений 
находится в объеме NV , ограниченном поверхностью эллипсоида с 

уравнением 2 2 2 2 2 2
1 1 2 2 3 3/ / / = 1B B B      и равном 1 2 34 / 3B B B , где 

0=k kB C b , 0 = const 1C  . Поскольку объем каждого включения равен 

1 2 34 / 3b b b , объемную концентрацию включений можно определить 

величной 3
0= /VC N C . Для точки с координатами k , удаленной от ка-

ждого из включений на весьма большое расстояние по сравнению с 

длиной наибольшей из полуосей эллипсоидов, в силу 2( / ) 1b     

( = k ) в уравнении (4) можно принять = k k   . Тогда, согласно фор-

муле (5), в этой точке N  весьма удаленных включений, расположен-
ных в объеме NV  в виде эллипсоида с полуосями kB , вызовут возму-

щение температуры  

3 3 3
3

3

,
= = (1 ) .

1 ( 1)

D T
T N T N

D


  

  




                         (6) 

Если считать эллипсоид объемом NV  представительным элемен-

том композита с рассматриваемыми включениями, то этот элемент с 
искомым значеним 3  эффективного коэффициента теплопровод-

ности в направлении оси 3O  создаст в той же весьма удаленной точ-

ке с координатами k  с учетом формулы (5) такое же возмущение 

температуры: 




*
3 3 3

3
33

,
= (1 ) ,

1 ( 1)

D T
T

D


 

  



                              (7) 

где 3 3= / m    и  

* 1 2 3
3 2

3

= ,
2 ( ) ( )

B B B du
D

B u F u



                              (8) 

причем 2 2 2
1 2 3( ) = ( )( )( )F u B u B u B u   . Приравняв правые части фор-

мул (6) и (7), запишем  
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 3 3 3
3

3 3

1 ( 1)( (1 ) )
= ,

1 ( 1) (1 )
V

V

D D D C

D D C

    


   

 

                          (9) 

где *
3 3 3= /D D D , т. е. равно отношению интегралов при = 3  в фор-

мулах (3) и (8). Для весьма удаленной точки 1| |  , что в уравне-
нии (4) равносильно   и стремлению к нулю каждого из этих 
интегралов. Для раскрытия неопределенности типа 0 / 0  используем 
правило Лопиталя, продифференцировав каждый из интегралов по 
переменному пределу  . В итоге получим  

2
3

3 2
3

( ) ( )
1.lim

( ) ( )

B F
D

b f

 
 

 
 

Таким образом, формула (9) принимает вид [15]  

 3 3
3

3

1 ( 1)( (1 ) )
= .

1 ( 1) (1 )
V

V

D D C

D C

    


   

 

                        (10) 

В частном случае шаровых включений при 3 =1/ 3D  композит 
будет изотропным, а формула (10) совпадает с известной формулой 
Максвелла [13, 15, 16] 

  2 2(1 )
= = .

2 (1 )
V

V

C

C

   
 

   
                           (11) 

Аналогичным путем можно найти формулы для 1 1= / m    и 


2 2= / m   , где 1  и 2  — эффективные коэффициенты теплопро-

водности композита в направлении осей 1O  и 2O  соответственно. 
В итоге при = 1,2,3  имеем  

 1 ( 1)( (1 ) )
= .

1 ( 1) (1 )
V

V

D D C

D C
 




    


   

 

                     (12) 

Двусторонние оценки. С целью проверки степени достоверности 
прогноза значений эффективного коэффициента теплопроводности 
рассматриваемого композита применим двойственную вариационную 
формулировку задачи стационарной теплопроводности в неоднород-
ном теле [17, 18] для получения двусторонних оценок этого коэффи-
циента. Используем трехфазную модель композита в виде цилиндри-
ческой области V , имеющей в направлении координатной оси 3O  
высоту H  и ограниченной параллельными основаниями, каждое с 
достаточно большой площадью 0S  (рис. 1). Эта область содержит по-

ловину эллипсоидального включения с полуосями 1b , 2b  и 3b , по-
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крытого слоем матрицы, ограниченным половиной поверхности эл-

липсоида с полуосями *
1 * 1=b C b , *

2 * 2=b C b  и *
3 * 3=b C b , * >1C , центр 

которого совпадает с началом выбранной системы координат 

1 2 3O   . Плоскости симметрии половины включения и слоя матрицы 
совпадают с основанием цилиндра, лежащим в координатной плоско-
сти 1 2O  . Остальная часть области содержит однородный материал 
с искомыми свойствами композита. 

Боковую поверхность цилиндра 
примем идеально теплоизолирован-
ной, температуру основания при 

3 = 0  положим равной нулю, а на 

втором основании при 3 = H  зада-

дим температуру 3,T H . Таким обра-
зом, в неоднородной цилиндричес-
кой области объемом 0 0=V HS ,  

ограниченной поверхностью S , 
распределение температуры ( )T M  
и коэффициент теплопроводности 

( )M  являются функциями коор-

динат точки M V , причем функ-
ция ( )M  кусочно постоянна в ка-

ждой из подобластей области V  
(см. рис. 1). 

Примем в качестве допустимого 
для минимизируемого функционала [17] 

21
[ ] = ( )( ( )) ( ),

2
V

J T M T M dV M   

где   — дифференциальный оператор Гамильтона, линейное по вы-
соте цилиндра распределение температуры с постоянной составляю-

щей градиента 3,T  . Получим 

2 * * * 2
3 1 2 3 3

3 3 0 1

* * * 2 2
1 2 3 1 2 3 3 1 2 3 3

0

( , ) 2 ( , )
[ ] =

2 3 2

( , ) ( , )
2 2 .

3 2 3 2m

T b b b T
J T HS

b b b b b b T b b b T


   


     

 

 
 

         (13) 

Для максимизируемого функционала [17] 
2

0

1 ( ( ))
[ ] ( ) ( ) ( ) ( ) ( ),

2 ( ) T
V S

M
I dV M f P P P dS P

M
   

 
q

q q n  

 

Рис. 1. Модель структуры компо-
зита при построении двусторонних 

оценок 
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где n  — единичный вектор внешней нормали к поверхности 0S ; в 

качестве допустимого распределения вектора q  плотности теплового 

потока примем постоянное значение 3 3= ,q T   единственной состав-

ляющей этого вектора, перпендикулярной основаниям цилиндра.  
В этом случае  

2 * * * * * *
1 3 0 1 2 3 1 2 3 1 2 3

3
3

21 2 3
3 3 0

0

( , ) 2 / 3
[ ] 2

2 3

           2 ( , ) .
3

m

T HS b b b b b b b b b
I q

b b b
T HS

         


    





 

  
   (14) 

Принятые допустимые распределения температуры и вектора 
плотности теплового потока для неоднородной области не совпадают 
с действительными, поэтому значения 3[ ]J T  и 3[ ]I q  не будут совпа-

дать, причем 3 3[ ] > [ ]J T I q . В промежутке между этими значениями 

должно быть расположено и значение 2
0 1 3 0= ( / 2)( , )J T HS   миними-

зируемого функционала для однородной области с коэффициентом 

теплопроводности 1 . Тогда при * * * 3
1 2 3 1 2 3 */ ( ) =1/ = Vb b b b b b C C  с уче-

том формулы (13) из условия 3 0[ ]J T J  получим верхнюю оценку  

 
3 1 = ,V VC C                                       (15) 

а с учетом формулы (14) из условия 3 0[ ]I q J  найдем нижнюю оценку 

 
3 1/ (1 / ) = .V VC C                                  (16) 

Использованные достаточно простые допустимые распределения 
плотности теплового потока и температуры учитывают лишь объем-
ное содержание каждой из трех изотропных фаз в принятой трехфаз-
ной модели композита. Поэтому для всех трех направлений коорди-
натных осей представленные в формулах (15) и (16) оценки эффек-
тивного коэффициента теплопроводности композита будут идентич-
ными. 

Результаты расчетов. На рис. 2 и 3 при различных значениях   
приведены построенные по формулам (15) и (16) графики зависи-

мостей от VC  оценок   и  . Для эллипсоидального включения со 

значениями 2 = 3 / 2b  и 3 = 1/ 2b  получим амплитуду = / 3   и мо-

дуль =1/ 3K  эллиптических интегралов со значениями [19]  
( , ) = 1,1049 и ( , ) = 0,9945.F K E K   
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По этим значениям вычислены 1 = 0,221D , 2 = 0,274D  и 

3 = 0,506D , а затем по формуле (12) на рис. 2 и 3 для тех же значений 

  построены сплошными кривыми графики зависимостей   от VC , 

причем гладким кривым соответствуют зависимости для 1 , кривым 

с квадратами — для  2  и кривым с точками — для 3 . 

 

 

Рис. 2. Графики зависимостей при 

< 1  верхней   и нижней   
оценок эффективного коэффициента 

теплопроводности и оценок 1  — 3   

от объемной концентрации VC  

Рис. 3. Графики зависимостей при 

> 1  верхней   и нижней   
оценок эффективного коэффициента 

теплопроводности и оценок 1  — 3   

от объемной концентрации VC  

 
Из рис. 2 и 3 видно, что для фиксированного значения   все 

сплошные кривые расположены в полосе между соответствующими 
кривыми, причем в случае малого отклонения значения   от едини-

цы для выбранной формы включения различие между значениями   
невелико, т. е. анизотропия композита оказывается сравнительно сла-
бой. По мере отклонения   от единицы, несмотря на совпадение оце-

нок и значений   при = 0VC  и = 1VC , разность      для проме-

жуточных значений VC  становится значительной и одновременно 

увеличивается различие между значениями  , что приводит к более 
существенной анизотропии композита. Тем не менее разница между 

значениями   и   для выбранной формы эллипсоидального вклю-
чения остается сравнительно малой. 
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Отмеченная тенденция сохраняется и для других сочетаний полу-
осей эллипсоидального включения, причем необходимые для приме-

нения формулы (12) значения коэффициентов D
  могут быть опре-

делены с помощью графиков зависимостей 1D  и 3D  от 2b  при раз-

личных значениях 3b  (рис. 4). В случае 3 = 1b  и 2 (0; 1)b   включение 

имеет форму сплющенного эллипсоида вращения (сфероида) и 

1 3=D D  . Для 3 < 1b  ординаты кривых ниже этой кривой равны значе-

ниям 1D , а выше этой кривой — значениям 3D , по которым затем 

можно вычислить 2 1 3=1D D D    . 

 

Рис. 4. Графики зависимостей 1D
 и 3D

 от 2b  при раз-

личных значениях 3b  

 
При хаотической ориентации эллипсоидальных включений ком-

позит станет изотропным по отношению к свойству теплопровод-
ности. При этом значение   его эффективного коэффициента тепло-

проводности будет равно 1/3 первого инварианта тензора теплопро-
водности анизотропного композита [20], т. е.  

   
1 2 3= / = ( ) / 3.m                                (17) 

В случае принятого выше соотношения между полуосями эллип-
соидального включения отличие значения   от значения  , вычис-
ленного по формуле (11) для композита с шаровыми включениями, 
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мало. Ясно, что эти значения совпадают при = 1  и любых значени-
ях VC  объемной концентрации включений, а также при = 0VC  и 

= 1VC  и любых значениях  . В таблице приведены отношения  /   

для тех же значений  , которые использованы при построении гра-
фиков на рис. 2 и 3. 

 
VC  = 0,1  = 0, 2  = 0,5  = 2  = 5  = 10  

0,1 0,997042 0,998231 0,999720 1,000501 1,005848 1,013258 

0,2 0,995335 0,997213 0,999558 1,000799 1,009514 1,021948 

0,3 0,994563 0,996771 0,999492 1,000929 1,011447 1,027188 

0,4 0,994495 0,996770 0,999501 1,000925 1,011956 1,029601 

0,5 0,994952 0,997096 0,999564 1,000819 1,011269 1,029503 

0,6 0,995793 0,997653 0,999662 1,000644 1,009583 1,027011 

0,7 0,996897 0,998347 0,999775 1,000434 1,007118 1,022123 

0,8 0,998137 0,999076 0,999884 1,000227 1,004198 1,014894 

0,9 0,999329 0,999705 0,999967 1,000066 1,001414 1,006049 

 
Более детальный количественный анализ влияния отклонения 

формы включений от шаровой проведем применительно к включе-
ниям в виде эллипсоидов вращения, для которых интегралы в форму-
ле (1) можно выразить через элементарные функции [13]. Для сплю-
щенных эллипсоидов вращения (сфероидов) при условии 1 2 3= >b b b   

2

1 2 32 3/2 2 3/2

arcctg / (1 ) 1/ arcctg
= = , = ,

2(1 ) (1 )
D D b D b

b b

     
 

    

где 2= / 1b b  ; 3 1= / < 1b b b , а для вытянутых эллипсоидов вра-

щения при условии 1 2 3= <b b b   

2
*

1 2 2 3/2 2
*

2
*

3 2 3/2
*

2 1
= = ln ,

14(1 ) 1

1
= ln 2 ,

12(1 )

b
D D

b

b
D

b

  
   

 
    





 

где 2= 1 b  ; * 1 3= / < 1b b b . Эти формулы используем для расчета 

значений   по формуле (17) с применением равенств (12). 
На рис. 5 для включений в виде сфероидов представлены графики 

зависимостей отношения  /   от VC  при различных значениях пара-

метра b , указанных около соответствующих кривых, причем сплош-
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ным кривым соответствует достаточно малое значение = 0,01 , пре-

рывистым — сравнительно большое значение = 100 . Даже при отли-
чии на два порядка коэффициентов теплопроводности включения и 

матрицы при = 0,01  погрешность замены значения   значением   

для шаровых включений не превышает 11 % и в случае = 0,1b , т. е. 
для сильно сплющенных сфероидов. При обратном отношении коэф-
фициентов теплопроводности включения и матрицы ( = 100 ) такая 
же погрешность возникнет для менее сплющенных сфероидов  

( = 0,5b ), причем в этом случае  >  . 

 

  

Рис. 5. Графики зависимостей отноше-

ния /    от VC  при различных значе-

ниях  параметра  b   для  включений  
в виде сфероидов 

Рис. 6. Графики зависимостей отно-

шения /    от VC  при различных 

значениях параметра b  для вклю-
чений  в  виде  сильно  вытянутых  

эллипсоидов вращения 
 
На рис. 6 для включений в виде вытянутых эллипсоидов враще-

ния построены графики зависимостей отношения  /   от VC  при 

различных значениях параметра *b , указанных около соответст-

вующих кривых, для = 0,01  (сплошные линии) и = 100  (преры-

вистые линии). При = 0,01  для включений в виде сильно вытяну-
тых эллипсоидов вращения, которые можно рассматривать как весь-

ма тонкие волокна, погрешность замены величины   величиной   
не превышает 3 % (кривая с кружками). При обратном отношении ко-
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эффициентов теплопроводности включения и матрицы ( = 100 ) по-
грешности такой замены для одинаковых значений *b  и b   

(см. рис. 5) практически совпадают. 
Заключение. Проведенный количественный анализ влияния от-

клонения формы включений от шаровой даже при существенном отли-
чии параметра   от единицы показывает, что отклонение отношения 
 /   от единицы будет сравнительно небольшим для включений с 
близкими размерами во всех направлениях. При этом возникающей 
анизотропией композита по отношению к свойству теплопроводности  
в силу малого различия между значениями эффективного коэффициен-
та теплопроводности композита в ортогональных направлениях можно 
в первом приближении пренебречь. Эти обстоятельства расширяют 
область практического применения расчетных формул, полученных  
в предположении шаровой формы включений. 

 
Работа выполнена при финансовой поддержке гранта Прези-

дента РФ для государственной поддержки ведущих научных школ 
(проект НШ-1432.2014.8), гранта Президента РФ для государ-
ственной поддержки молодых российских ученых — кандидатов наук 
(проект МК-6618.2013.8) и проекта № 1.2640.2014 в рамках реали-
зации государственного задания. 
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Effective thermal conductivity of a composite in case 
of inclusions shape deviations from spherical ones 

© V.S. Zarubin, G.N. Kuvyrkin, I.Yu. Savelyeva 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
On the basis of mathematical model of thermal interaction between inclusion and the 
matrix we estimated influence of inclusions deviations from spherical shape on the 
effective thermal conductivity coefficient of the composite and associated with such 
deviation a possible occurrence of the anisotropy of the composite with respect to the 
property of thermal conductivity. Using the dual variational formulation of the stationary 
problem of heat conduction in an inhomogeneous body we built bilateral estimates of 
effective thermal conductivity. 
 
Keywords: composite, inclusion, effective thermal conductivity, mathematical model. 
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