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Статья посвящена построению модели деформирования слоистых упруго–                              

пластических композитов с периодической структурой. Все слои композита                   

подчиняются теории пластического течения (ассоциативному закону                             

пластичности) с различными поверхностями пластичности. Для решения указанной 

задачи применяется метод асимптотического осреднения Бахвалова–Победри.            

Получено аналитическое решение локальных задач пластического течения на ячейке 

периодичности. Построены эффективные упруго–пластические определяющие                      

соотношения слоистого композита. Приведены примеры численного расчета                        

диаграмм циклического деформирования упруго–пластического композита при                      

различных сочетаниях слоев в композите.  

 

Ключевые слова: слоистые композиты, теория пластического течения, метод 

асимптотического осреднения, тензор скоростей деформации, диаграммы                          

деформирования  

 

Введение. Композиционные материалы широко применяются в            

самых различных отраслях промышленности: авиационной, ракетно–

космической, судостроительной, атомной, автомобильной,                           

двигателестроительной, строительной и других [1–4]. При определен-

ных условиях многие типы композитов проявляют существенные 

упруго–пластические свойства. Так, металлокомпозиты, образован-

ные различными металлическими сплавами, например, Ti/Al, сталь/Al, 

сталь/Ni, W/Mo [2], обладают значительными пластическими                     

свойствами, особенно при высоких температурах. Упруго–                                

пластические свойства могут проявлять и некоторые типы                                   

полимерных композитов,  в частности на основе термопластической 

матрицы [5].  

Моделированию упруго–пластического поведения композитов 

посвящены многие исследования, отметим лишь некоторые работы               

[6–9], однако, как правило, все они основаны на определенных                   

структурных допущениях относительно микроскопического                       

напряженно–деформированного состояния компонентов композитов. 

От этого недостатка свободен метод гомогенизации (метод асимпто-

тического осреднения), предложенный в работах Н.С. Бахвалова, Г.П. 

Панасенко [10], Б.Е. Победри [11], Э. Санчес–Паленсии [12], А. 

Bensoussan, J.D. Lions, G. Papanicolaou [13].  Применению этого метода 

для упруго–пластических композитов посвящены работы [14–19].   
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Однако, как правило, в этих работах используется или деформацион-

ная теория пластичности [16–19], или теория течения с формальным 

построением решений, и с последующим приближенным их реше-

нием, или с численным анализом задач на ячейках периодичности [15]. 

Целью настоящей работы являлась разработка алгоритма                

асимптотического осреднения задачи теории пластического течения 

слоистого композита с периодической структурой, и построение                 

аналитических решений локальных задач, позволяющих строить                     

эффективные диаграммы деформирования упруго–пластического 

композита. 

Основные допущения асимптотической теории слоистых          

композитов. Рассмотрим слоистый композит V  с периодической 

структурой. Обозначим ix  — декартовы координаты с ортонормиро-

ванным базисом 
ie , в котором радиус–вектор каждой точки имеет вид: 

i ixx e . 

В силу периодичности слоистого композита у него можно                    

выделить ячейку периодичности V  — слой толщиной l .  

 3 1 2 0: , ( , ) ,
2 2

i

l l
V x x x x

 
     
 

  (1) 

где 
0  — часть плоскости 1x , 2x . Введем характерный размер L         

области V , занятой всем композитом, а также введем малый параметр 

1l L    и  два типа безразмерных координат: 

 
3 3

;

,

i
i

x
x

L

x x

l






 

  (2) 

где   — безразмерная локальная координата («быстрая» координаты), 
ix  — безразмерные глобальные координаты («медленные»                          

координаты).  

Координаты 3x  и  , как обычно, в методе асимптотического 

осреднения рассматриваются как независимые переменные [10–13], 

координата   для одной ЯП изменяется в диапазоне 0,5 0,5   .  

Модель теории пластического течения cлоев композита.                 

Каждый слой композита будем полагать изотропным упругопластиче-

ским материалом, подчиняющимся модели теории пластического                 

течения [20–22], и деформирующимся в условиях малых деформаций. 

Тогда для каждого слоя композита имеют место следующие                             

определяющие соотношения:  



Моделирование деформирования слоистых периодических композитов… 

17 

 

 

  

  2

;

;

0, 1,2;

,

p

ij ijkl kl kl

p

kl

kl

p

ij ij

p

ij

С

f
h

f f I H

H H I



  

 


  



  



 


    

 

  (3) 

где обозначены компоненты следующих тензоров: 
ij  — тензора 

напряжений, 
kl  — тензора полных деформаций, p

kl  — тензора               

пластических деформаций, p

ij  — тензора скоростей пластических               

деформаций. В системе (3) также обозначены:   — параметр                     

нагружения, h  — индикатор пластического деформирования: 

 
0, 0;

1, 0,

f
h

f


 


  (4) 

здесь  ( )ijf I a  — функция поверхности пластичности, зависящая от 

двух инвариантов ( )ijI a , 1,2   тензора 
p

ij ij ija H    : 

        1 2, ,ij ij ij kk ij ij ij ijkl ij klI a a a I a p a p a B a a      (5) 

где  1 ijI a ,  2 ijI a  — функции первого и второго главного инвариан-

тов тензора ija  [23]; здесь  
1

3
ij ij kk ijp a a a    — девиатор тензора           

ija , который можно представить в следующем виде [23] 

 

 

 

;

1 1
;

2 3

.

ij ijkl kl

ijkl ik jl il jk ij kl

ijkl ijmn mnkl

p a a

B

     

 

   

  

  (6) 

В соотношениях (3) также введен параметр упрочнения 

  2

p

ijH H I  , зависящий от инварианта  2

p

ijI  . Для этой                               

зависимости будем применять степенную модель  

 0

2

2

, 0 1, 0;
1 n

p

H
H n

I



   


  (7) 

  2 2

2 2 .p p p

p ij ijkl ij klI I B      (8) 
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Функцию пластичности  ( )ijf I a  для всех слоев композита               

зададим с помощью модели Губера–Мизеса [22] 

     
2

2

1
( ) 0,

2

p

ij ij ij Yf I a I H         (9) 

где Y  — предел текучести. 

Во второе соотношение формулы (4) входит параметр нагружения 

 , для которого  получим явное выражение. Для этого продифферен-

цируем функцию  ( )ijf I a  (9) по времени t   

 
2

1

0.p

ij ijp

ij ij

I If
f

I

 

 

 
 

  
       
   (10) 

С учетом  (9), уравнение (10) принимает вид 

 
2 2

2 2 0.p

ij ijp

ij ij

I I
 

 

 
 

 
  (11) 

Запишем явное выражение для инварианта  ijI a , с учетом              

выражения (5)  

     2 2

2 2( ) .p p p

ij ij ij ijkl ij ij kl klI a I H B H H            (12) 

Вычисляем частные производные от этого инварианта по                     

тензорным аргументам [23] 

 

 
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2 ,

p
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ijkl kl kl ij ijmpp p
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 
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  (13) 

где  
1

2
mnij mi nj mj ni       — единичный тензор 4–го ранга,                               

образованный с помощью символов Кронекера. 

Вычислим производные от параметра упрочнения (7) 

 
 

 

2( 1)2
0 22

22 2
2 2

2
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2 0

2

1

2
.

n

p p

ijmp ijp p n
mp p mp p

p

ijmp ij

n

p

H nIIH H
B

I I

H n B

I H




  
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



 
   

   

 

  (14) 
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Подставляя частную производную параметра упрочнения (14) в 

формулу частной производной инварианта по пластическим деформа-

циям (13), получим: 

 
2

2

2(1 )

2

2 2 ,p

ij ijmp mp ij ijmpp p n

mp mp p

I H H
A H A S

I


  

  
         

  (15) 

где обозначены следующие тензоры: 

 

 
2(1 )

2

0

;

2
.

p

ij ijkl kl kl

n p p

ijmp p mpij klmp kl ij

A B H

nH
S I B

H

 


 

 

  
  (16) 

Тогда производную по напряжениям (13) можно представить          

через введенный выше тензор ijA : 

 
2

2 2 .ij

ij

I
A







  (17) 

Вычислим частную производную функции пластичности 
mn

f






 с 

учетом (13) и (16), (17) 

  
2

21 2
.

2 2

p

mnij ij ij mn

mn mn

If
B H A 

 


   

 
  (18) 

Подставим теперь формулы (15) и (17) в соотношение (11): 

 
2(1 )

2

0.p

ij ij ij ijmp mp n

p

H
A A S

I
 


    (19) 

Подставим в эту формулу второе выражение из системы (3) для
p

mp : 
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2

0,ij ij mpn

p mp

H f
A R

I


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


 


  (20) 

где обозначено .mp ij ijmpR A S   

Тогда из уравнения (20) получаем искомое явное выражение для 

параметра нагружения  : 
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2 2
, или ,

n n

p ij p ij

ij ij

klmp kl mp
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I A hI A
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   


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  (21) 
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Рассмотрим случай первоначальной пластичности. Если 

 * 0p

kl t  , где *t  — момент первого входа на поверхность пластично-

сти 0f  , то имеем 

 2(1 )

0 2; ; ,n

ij ijkl kl ijmp p mpijA B H H S I       (22) 

 
0

.
ij ij

mp mp

A

H A A


    (23) 

В результате получаем начальное значение параметра нагружения 

  в момент *t . 

Подставим второе выражение (21) для параметра   и формулу 
(18) во второе соотношение (3) для скоростей пластической                                  
деформации  

 

2(1 )

2

n

p kl ijp

kl ij

kl spmp sp mp

hI A Af
h

HS A A
  






 


  (24) 

и введем обозначение  

 

2(1 )

2
.

n

p kl ij

ijkl

spmp sp mp

I A A
Q

HS A A



   (25) 

Тогда соотношение для тензора скоростей пластических                           
деформаций (24) можно представить в следующем более простом виде  

 .p

kl klij ijhQ    (26) 

Определяющие соотношения теории пластичности в                            
скоростях. Дифференцируя первое соотношение в (3), получим 

  .p

ij ijkl kl klC      (27) 

Подставляя выражение (26) в (27), приходим к следующему                   
выражению  

 ,mp mpkl klC    (28) 

где 

 
1

mpkl mpij ijklC T C   (29) 

 приведенный тензор модулей упругости, а 
1

ijuvT 
 — тензор обратный 

к тензору   

 
2(1 )

2 .
ijkl kl mpn

ijmp ijmp ijkl klmp ijmp p

swqr sw qr

C A A
T hC Q hI

HS A A

        (30) 
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Тензор ijklC  зависит от p

ij  и kl . 

Подставляя (28) в (26), получаем соотношение между скоростями 

пластических деформаций и скоростями полных деформаций 

 ,p

kl klij ijhY    (31) 

где обозначен тензор концентрации пластических деформаций 

 .klij klmp mpijY Q C   (32) 

Для вычисления пластических деформаций и напряжений по                   

известным скоростям этих тензоров используем формулы  

 

     

     

   

0

0

0

0 ;

0 ;

.

t

ij ij ij

t

p p p

ij ij ij

t

ij ij

t d

t d

t d

    

    

   

 

 









  (33) 

Постановка линеаризованной задачи теории пластического 

течения для слоистого композита..  Разобьём промежуток времени 

 0, t  на N  промежутков  1,m mt t , 1,...,m N , и обозначим значения 

тензоров скоростей изменения напряжений,  деформаций и                           

пластических деформаций в моменты времени mt  следующим                             

образом: 
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Используя формулу трапеции для приближенного вычисления  

интегралов, с учетом  обозначений (34), придем к формулам для                      

вычисления тензоров напряжений, деформаций и пластических                    

деформаций   
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  (35) 
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Для вычисления значений { }m

ij , { }m

ij  и { }p m

kl  рассмотрим линеари-

зованные определяющие соотношения (28) и (31) 

 

{ } { 1} { }

{ } { 1} { }

;

.

m m m

ij ijkl kl

p m m m

kl klij ij

С

hY

 

 








  (36) 

где  m  — номер итерации,  а  компоненты приведенного тензора            

модулей упругости { 1}m

ijklС   и компоненты тензора { 1}m

klijY   — зависят от 

пластических деформаций { 1}p m

kl   и напряжений { 1}m

ij   на { 1}m                 

итерации и определяются по формулам  (29) и (32).  

Рассмотрим для слоистого композита трехмерную задачу теории 

пластичности в тензорной форме [22], записанную в скоростях для 

m го приближения 

 
 

   
2 1

{ }

{ } { 1} { }

{ } { 1} { }

{ } { } { }

{ } { }

3

0;

;

;

1
;

2

; ;

0; 0,

m

i ij

m m m

ij ijkl kl

p m m m

kl klij ij

m m m

kl i k k l

m m

i ei i ij ej

i i

С

hY

V V

V V n S

V



 

 











 

 









  

  

  

  (37) 

и состоящую из уравнений равновесия в скоростях, определяющих               
соотношений, соотношений Коши в скоростях, граничных условий на 

внешней границе 1 2     всего композита, 
eiV  — заданный вектор 

скорости. На поверхности раздела слоев композита задаются условия 

идеального контакта, где  iV  — скачок функций при переходе через 

границу раздела слоев, iV  — компоненты вектора скорости,                

i

ix


 


  — частные производные по координатам ix , in  —                       

компоненты вектора нормали.  

Асимптотические разложения для основных неизвестных                 
задачи для упругопластического слоистого композита. В силу                 
периодичности слоистого композита решение задачи (37) будем                     

искать в виде квазипериодических функций ( ) ( , )i k i kV x V x   от                  

медленных и быстрой координат (2). Квазипериодические функции 
дифференцируются по правилу дифференцирования сложной                   
функции [10–13]: 
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, 3 /3

1
,i j j i i jV V V


     (38) 

где обозначены производные по медленной и быстрой координате: 

 , /3, .
j j

j i j

i

V V
V V

x 

 
 
 

  

Для каждого слоя приведенные модули упругости { 1}m

ijklС   и             

компоненты тензоров { 1}m

klijhN  , вообще говоря, различны, поэтому в 

определяющих соотношениях (36), записанных для всех слоев, эти        

величины можно рассматривать как разрывные функций от                          

координаты   и зависящие от sx : 

 
{ 1} { 1} { 1} { 1}( , ); ( , ).m m m m

ijkl ijkl s klij klij sС С x Y Y x        (39) 

 С учетом (38) и (39) решение задачи (37) будем искать в виде 

асимптотических разложений по параметру   в виде квазипериодиче-

ских функций: 

 

{ } { }(0) { }(1)

2 { }(2) 3 { }(3)

( , ) ( ) ( , )

( , ) ( , ) ... .

m m m

k s k s k s

m m

k s k s

V x V x V x

V x V x

  

   

  

  
  (40) 

С учетом четвертой группы уравнений в (35) и (38) для скоростей 

деформаций также имеет место асимптотическое разложение  

 
{ } { }(0) { }(1) 2  ...,m m m

ij ij ij        (41) 

где  

  { }( ) { }( ) { }( 1) { }( 1)

3 /3 3 /3

1
, 0;

2

m n m n m n m n

ij ij j i i jV V n          (42) 

  { } { }( ) { }( )

, ,

1
.

2

m m n m n

ij i j j iV V     (43) 

В аналогичном асимптотическом виде ищем выражения для самих 

деформаций { }m

ij , пластических деформаций { }p m

ij , скоростей                         

пластических деформаций 
{ }p m

ij , напряжений 
{ }m

ij  и скоростей            

напряжений 
{ }m

ij   

 

{ } { }(0) { }(1) 2

{ } { } { } { } { } { }

  ...,

{ , , , , }.

m m m

m m p m p m m m

ij ij ij ij ij

 

    

     

 
  (44) 
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Поскольку { 1}( , )m

ijkl sC x   и { 1}m

klijZ   зависят от { 1}p m

kl   и { 1}m

ij  , то для 

них также имеют место асимптотические разложения  

 

{ 1} { 1}(0) { 1}(1) 2 { 1}(2)

{ 1} { 1}(0) { 1}(1) 2 { 1}(2)

( , ) ( , ) ( , ) ...;

( , ) ( , ) ( , ) ... .

m m m m

ijkl ijkl s ijkl s ijkl s

m m m m

klij klij s klij s klij s

C C x C x C x

Y Y x Y x Y x

    

    

   

   

   

   
  (45) 

Подставляя разложения (44) и (45) в определяющие соотношения 

системы (37), получим следующие соотношения между членами                     

различных приближений в асимптотических рядах 

 

{ }( ) { 1}( ) { }( )

0

{ }( ) { 1}( ) { }( )

0

;

.

n
m n m s m n s

ij ijkl kl

s

n
p m n m s m n s

ij ijkl kl

s

C

h Y

 

 

 



 










  (46) 

Подставляя выражение (44) для { }m

ij  в первое уравнение системы 

(37), получим асимптотическое разложения уравнений равновесия  

 

{ }(0) { }(0) { }(1) { }(1)

3/3 , 3/3 ,

{ }(2) 2 { }(2)

3/3 ,

1

... 0.

m m m m

i ij j i ij j

m m

i ij j


   

 

  

   

   

  (47) 

Задачи теории пластического течения на ячейке                                        

периодичности слоистого композита.  Приравнивая в (47) члены при 

одинаковых степенях малого параметра к нулю, получаем                                         

рекуррентную систему уравнений равновесия. Если присоединить к 

этой системе соответствующие определяющие соотношения (46) и                

кинематические соотношения (43), с граничными условиями на                   

поверхностях раздела слоев в ЯП, то получим следующую                             

рекуррентную последовательность задач на ЯП. 

Задача нулевого приближения ( 0n  ) на ЯП 

 

{ }(0)

3/3

{ }(0) { 1}(0) { }(0)

{ }(0) { 1}(0) { }(0)

{ }(0) { } { }(1) { }(1)

3 /3 3 /3

{ }(0) { }(1)

3

{ }(1) { }(0)

3

{

0;

;

;

2 2 ;

[ ] 0, [ ] 0;

[[ ]] 0, [[ ]] 0;

m

i

m m m

ij ijkl kl

p m m m

ij ijkl kl

m m m m

ij ij j i i j

m m

i i

m m

i i

m

i

C

hY

V V

V

V

V



 

 

   















  

 

 

}(1) 0.

  (48) 
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Задача n  го приближения на ЯП 

  

{ }( 1) { }( )

, 3/3

{ }( ) { 1}( ) { }( )

0

{ }( ) { 1}( ) { }( )

0

{ }( ) { }( ) { }( 1) { }( 1)

3 /3 3 /3

{ }( ) { }( 1)

3

0;

;

;

1
;

2

[ ] 0, [ ]

m n m n

ij j i

n
m n m s m n s

ij ijkl kl

s

n
m n m s m n s

ij ijkl kl

s

m n m n m n m n

ij ij j i i j

m n m n

i i

C

h Y

V V

V

 

 

 

   





 



 



 



 





  

 





{ }( 1) { }( )

3

{ }( 1)

0;

[[ ]] 0, [[ ]] 0;

0.

m n m n

i i

m n

i

V

V





 



  (49) 

Здесь обозначены условия периодичности функций: 

1/2 1/2
[[ ]] 0

  
    , а также обозначена операция осреднения: 

1/2

1/2

( , ) ( )i ix d x 


     . Условие { }( 1) 0m n

iV    в этих задачах на 

ЯП является условием нормировки,  оно присоединяется для                           

однозначности решения задачи.  

В задаче нулевого приближения (48) основными неизвестными      

являются компоненты вектора скорости { }(1)m

iV , а осредненные скоро-

сти деформации 

  { } { }(0) { }(0)

, ,

1

2

m m m

kl k l l kV V     (50) 

являются входными данными задачи. 

В задаче n  го приближения (49) основными неизвестными                

являются компоненты вектора скорости { }( 1)m n

iV  , а скорости                         

деформации 
{ }( )m n

ij , а также скорости напряжений { }( )m n s

kl   и скорости 

деформаций { }( )m n s

kl  , 0,1,..., 1s n   являются входными данными            

задачи. 

Осредненные уравнения теории течения для слоистого композита. 

Если  задача (48) на ЯП решена, т.е. найдены функции скорости               
{ }(1)m

iV , зависящие параметрическим образом от функций скорости в 

нулевом приближении { }(0) ( )m

iV x , то для нахождения этих функций 

следует использовать осредненную систему уравнений теории               

пластического течения, которая состоит из осредненных уравнений 
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равновесия в системе (50), осредненных определяющих соотношений 

и соотношений Коши: 

 

{ }(0)

,

{ }(0) { 1} { }(0)

{ }(0) { 1}(0) { }(0)

{ } { }(0) { }(0)

, ,

0;

;

;

2 .

m

ij j

m m m

ij ijkl kl

p m m m

ij ijkl kl

m m m

ij i j j i

C

h Y

V V



 

 







 

 





 

  (51) 

Здесь учтена периодичность функций по быстрым координатам: 
{ }( )

3/3 0m n

i  . К системе (51) присоединяются осредненные граничные 

условия из системы (37) 

 { }(0) { }(0)

3; .
u

m m

i ei i iV V S



 
    (52) 

Решение задачи теории течения на ЯП в нулевом                                          

приближении. На каждом mм шаге итерации задача (48) является 

линейной, тогда ее решение можно представить в виде формальной     

зависимости от входных данных — от тензора { }m

mn   

 { }(1) { 1} { },m m m

k kij ijV N    (53) 

где { 1}( , )m

kmn iN x   — компоненты некоторого тензора, зависящего от 

 ,ix  , от { 1}(0)m

iV   и { 1}(0)m

kl   и не зависящего от { }m

ij . 

Подставляя выражение (53) в четвертое соотношение системы 

(48), получаем зависимость между тензором скоростей деформаций и 

осредненным тензором скоростей деформаций 

 
{ }(0) { 1} { },p m m m

kl klij ijB    (54) 

где введен 
{ 1}m

klijB 
 — тензор концентрации деформации: 

  { 1} { } { 1} { 1}

/3 3 /3 3

1
.

2

m m m m

klij klij kij l lij kB N N         (55) 

Подставляя выражение (54) во второе и третье уравнения системы 

(47), записываем их следующим образом: 

 
{ }(0) { 1} { }ˆ

;m m m

ij ijkl klC    (56) 

 
{ }(0) { 1} { }ˆ ,p m m m

ij ijkl klhY    (57) 

где обозначены  
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{ 1} { 1}(0) { 1}

{ 1}(0) { 1} { 1}

ˆ
;

ˆ .

m m m

ijsp ijkl klsp

m m m

ijsp ijkl klsp

С C B

Y Y B

  

  




  (58) 

Подставим выражение (56) с учетом (58) и (55) в первое уравнение 

системы (48), тогда получим обыкновенное дифференциальное           

уравнение для нахождения функций { 1}m

kijN   с точностью до констант 

  { 1}(0) { } { 1} { 1}

3 /3 3 /3 3

/3

1
0.

2

m m m m

i kl klmn kmn l lmn kC N N     
     
  

  (59) 

Интегрируя один раз это уравнение, получаем   

 
{ 1}(0) { 1} { 1} { 1}(0)

3 3 /3 3 ,m m m m

i k kqr iqr i qrC N C        (60) 

где { 1}m

iqr

  — тензор, который не зависит от  , но может зависеть               

от ix . 

Интегрируя полученное выражение (60) по  , находим                        

выражение для тензора 
{ 1}m

kqrN 
  

 

{ 1} { 1}(0) 1 { 1}

3 3

0,5

{ 1}(0) 1 { 1}(0) { 1}

3 3 3

0,5

( )

( ) ,

m m m

sqr s i iqr

m m m

s i i qr sqr

N C d

C C d U









   



   



  

 





  (61) 

где 
{ 1}m

sqrU 
 — тензор, не зависящий от  . 

Применяя условие периодичности и условие нормировки к              

уравнению (61), находим тензоры { 1}m

imn

  и { 1}m

smnU    

 
1

{ 1} { 1}(0) 1 { 1}(0) 1 { 1}(0)

3 3 3 3 3( ) ( ) ;m m m m

lmn l s s i i mnC C C


         (62) 

 

{ 1} { 1}(0) 1 { 1}(0)

3 3 3

0,5

{ 1}(0) 1 { 1}

3 3

0,5

( )

( ) .

m m m

sqr s i i qr

m m

s i iqr

U C C d

C d









   



  



 

 





  (63) 

После подстановки (62) и (63) в (61) и введения обозначений 

    
0,5 0,5

,f f d f d

 


   

 

     (64) 
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 { 1} { 1}(0) 1 { 1}(0)

3 3 3( ) ,m m m

sqr s i i qrZ C C      (65) 

итоговое выражение для { 1}m

smnN   можно записать так 

 
1

{ 1} { 1} 1 { 1} 1 { 1} { 1}

3 3 3 3 .m m m m m

sqr s i i k kqr sqrN C C Z Z



          (66) 

Подставляя это выражение в (55), вычисляем  тензор концентра-

ции деформации { 1}m

klijB    

 

1
{ 1} { } { 1} 1 { 1} { 1} 1 { 1} 1

3 3 3 3 3 3 3 3

{ 1} { 1}

3 3

1
( )

2

1
( ).

2

m m m m m m

klij klij q r rij k q l l q k

m m

kij l lij k

B C Z C C

Z Z

 

 


       

 

    

 

  (67) 

Тогда, после подстановки (67) в (58), находим выражения для 
{ 1}(0)m

ijspС 
 и { 1}(0)m

ijspY    

 

 

{ 1} { 1}(0) { 1}(0) { 1}(0) 1

3 3 3

1
{ 1}(0) 1 { 1}(0) 1 { 1}(0) { 1}(0)

3 3 3 3 3 3

ˆ
( )

( ) ( ) ;

m m m m

ijsp ijsp ijk k q

m m m m

q r r l l sp q sp

С C C C

C C C C

    


     

  

 
  (68) 

 

 

{ 1} { 1}(0) { 1}(0) { 1}(0) 1

3 3 3

1
{ 1}(0) 1 { 1}(0) 1 { 1}(0) { 1}(0)

3 3 3 3 3 3

ˆ ( )

( ) ( ) .

m m m m

ijsp ijsp ijk k q

m m m m

q r r l l sp q sp

Y Y Y C

C C C C

    


     

  

 
  (69) 

Эффективные определяющие соотношения для упруго–        
пластического слоистого композита. Подставив эти выражения в 
(56) и (57), применим к получившимся уравнениям операцию                   
осреднения, тогда получим эффективные определяющие соотношения 
упруго–пластического слоистого композита 

 
{ } { 1} { };m m m

ij ijmn mnC    (70) 

 
{ } { 1} { },p m m m

ij ijkl klhY    (71) 

где обозначены средние по ЯП значения компонент тензоров                      
скоростей напряжений и скоростей пластических деформаций  

 { } { }(0) { } { }(0); ,m m p m p m

ij ij ij ij       (72) 

а также введены эффективный приведенный тензор модулей                                
упругости и эффективный тензор концентраций пластических                               
деформаций слоистого композита  

 
{ 1} { 1} { 1} { 1}ˆ ˆ; .m m m m

ijsp ijsp ijsp ijspC С Y Y       (73) 
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Таким образом, после решения задачи на ячейке периодичности в 

явном виде были получены эффективные упругопластические                                

соотношения, которые связывают компоненты среднего тензора                         

скоростей напряжений и компоненты среднего тензора скоростей                       

деформаций. 

Скорости напряжений и пластических деформаций в слоях                         

композита. Для того, чтобы выразить { }(0)m

ij  через 
{ }m

ij , обратим                         

соотношение  (70) 

 { } { 1} { },m m m

ij ijmn mn     (74) 

где обозначен тензор эффективных упругих податливостей  

 { 1} { 1} 1.m m

ijmn ijmnC      (75) 

Подставляя (75) в (56) и (57), получим  

 { }(0) { 1} { };m m m

ij ijsp sp     (76) 

 { }(0) { 1} { }p m m m

ij ijkl klhR    (77) 

— формулы для вычисления скорости напряжений и скорости                           

пластических деформаций в слоях композита, если известные                        

осредненные значения тензора напряжений. Здесь обозначены                          

тензоры концентрации напряжений  

 
{ 1} { 1} { 1}ˆ

;m m m

ijsp ijkl klspC       (78) 

 
{ 1} { 1} { 1}ˆ .m m m

ijsp ijkl klspR Y      (79) 

Численный расчет диаграмм деформирования слоистого 

упругопластического композита в модели теории течения.                                     

C использованием разработанного алгоритма по формулам (70), (71) 

были проведены расчеты осредненных  диаграмм деформирования 

( )ij ij mnF   слоистого композита при одноосных нагружениях для 

одного цикла: нагрузка — разгрузка. ЯП состояла из 2–х слоев: 

сталь/алюминий. Слои композита были изотропные,  для них тензор 

модулей упругости ijklC  имел стандартный вид [22] 

  { 1} 0 2 ;m

ijkl ijkl ijkl ij kl ik jl il jkC C C               (80) 

 
    

; ,
1 1 2 2 1

E E
 

  
 

  
  (81) 

где  ,   — константы Ламе, E  — модуль Юнга, v  — коэффициент 

Пуассона [22].  
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При численном расчете были приняты следующие значения: 

 для алюминиевого сплава: 70 ГПаE  ; 

 для высокопрочной стали: 200 ГПа, 0,31E v  . 

Константы, характеризующие пластические свойства слоев,                        

согласно модели (7), (9) приведены в таблице 1. 

Таблица 1 

Константы, описывающие пластические свойства                                                    

материалов слоев композита 

Материал 0H , ГПа   n  
T  , ГПа 

Сталь 100 0,7 0,9 0,6400 

Алюминий 40 0,5 0,7 0,0625 

 

Были рассмотрены 3 варианта композита с различным соотноше-

нием относительных их толщин: Sh  и 1A Sh h  : 

 0,7Sh  ; 

 0,5Sh  ; 

 0,1Sh    

Диаграммы деформирования были рассчитаны для одноосного 

нагружения в продольном направлении 1Ox , в поперечном  направле-

нии 3Ox  и при межслойном  сдвиге в плоскости 
1 3Ox x . 

На рис. 1 показаны диаграммы деформирования 11 11                         

композита при одном цикле: нагружение — разгрузка в продольном 

направлении. Диаграммы построены  для отдельных слоев композита 

и для самого композита при различных значениях соотношения Sh  

толщин слоев. 
Диаграмма деформирования для композита располагается между 

соответствующими диаграммами для отдельных его слоев: слоя стали, 

обладающей более высокими характеристиками упругости и                        

пластичности, и слоя алюминия с более низкими значениями упруго–

пластической диаграммы деформирования.   

Аналогичные эффективные диаграммы деформирования пред-

ставлены на рис. 2 при одноосном нагружении в поперечном направ-

лении (
33 33  ),и на рис. 3 — при межслойном сдвиге (

13 13  ). 

На рис. 4 представлены сравнительные эффективные диаграммы 

деформирования 11 11  , 
33 33   и 13 13   при одинаковых                  

значениях параметра Sh . Эти результаты иллюстрируют проявление               

анизотропных упруго–пластических свойств слоистого композита, 

различных для продольного и поперечного направлений.  
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Рис. 1. Диаграммы деформирования 
11 11   при одноосном растяжении                                

в продольном направлении: 

1 — сталь; 2  — алюминий; 3 — композит сталь/алюминий 

а — 0,7Sh  ; б — 0,5Sh    
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Рис. 2. Диаграммы деформирования 
33 33   при одноосном растяжении                                

в продольном направлении: 
1 — сталь; 2  — алюминий; 3 — композит сталь/алюминий 

а — 0,7Sh  ; б — 0,5Sh    

 
 

а 

 

б 

Рис. 3. Диаграммы деформирования 
33 33   при одноосном растяжении                                

в продольном направлении: 
1 — сталь; 2  — алюминий; 3 — композит сталь/алюминий 

а — 0,7Sh  ; б — 0,5Sh    
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Рис. 4. Диаграммы деформирования ij ij   композита сталь/алюминий, 

при различных видах нагружения и разгрузки 

1 — 
11 11  ; 2  — 

33 33  ; 3 — 
13 13    

а — 0,7Sh  ; б — 0,5Sh    
 

Диаграмма деформирования композита в продольном                               
направлении располагается выше диаграммы деформирования в                    
поперечном направлении, поскольку, как и для модели чисто упругого 
деформирования, на свойства в поперечном направлении у слоистого 
композита наибольшее влияние оказывает наиболее «слабый» слой, с 
более низко располагающейся диаграммой деформирования.  

Выводы. В работе предложен вариант метода асимптотического 
осреднения для слоистых упруго–пластических композитов, слои                
которых подчиняются теории пластического течения.  Применен                     
метод последовательных приближений, который позволил получить 
явные аналитические выражения для решения локальных задач теории 
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анизотропной теории пластичности композита.  
Приведен численный пример, демонстрирующий возможность 

расчета диаграмм деформирования слоистого упруго–пластического 
композита по разработанной математической модели и численному 
алгоритму. 
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Modeling the deformation of layered periodic composites 

based on the theory of plastic flow  

 Yu.I. Dimitrienko, E.A. Gubareva, M.S. Cherkasova  
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The aim of this work is to find the constitutive relations for a layered elastoplastic                 
composite according to the flow theory using the method of asymptotic averaging. This 
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goal is achieved by developing an algorithm for solving the problem of the theory of plastic 
flow for a layered composite material, taking into account various characteristics and 
properties of these layers of the material, followed by visualizing the result in the form of 
effective plasticity diagrams connecting the components of averaged stress tensors and 
components of averaged strain tensors. 
 
Keywords: layered composites, plastic flow theory, asymptotic averaging method, strain 
rate tensor, deformation diagrams  
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