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Разработка метода анализа динамики изменений экономических характеристик 

инновационного процесса, начиная с изобретения или предпринимательской идеи до 

реализации новшества на рынке, является актуальной задачей, поставленной прак-

тикой в связи с необходимостью минимизации рисков и сроков проектирования и 

внедрения инноваций. Полученные в статье теоретические и экспериментальные 

результаты доказывают возможность решения этой задачи на основе неавтоном-

ных систем дифференциальных уравнений и применения первого метода Ляпунова 

для анализа устойчивости положений равновесия. Исследована математическая 

модель движения финансовых средств при производстве и реализации технической 

инновации, представленная в форме системы дифференциальных уравнений баланса 

с единичной импульсной функцией в правой части системы. Разработан алгоритм 

анализа устойчивости положений равновесия производственного процесса, учиты-

вающий влияние внешней среды как «слева» (подготовка производства), так и 

«справа» (состояние рынка). Выявлены требования к дискретной модели подго-

товки производства для корректного определения начальных условий решения неав-

тономной системы, а также к дискретной модели рынка для вычисления зависящих 

от его состояния коэффициентов системы дифференциальных уравнений. Резуль-

таты анализа динамики изменений экономических характеристик инновационного 

процесса на этапе производства продукта представлены в виде трёхмерных фазо-

вых портретов.  

 

Ключевые слова: инновационный процесс, уравнения баланса, импульсная функция, 

неавтономная система, математическая модель, устойчивость, первый метод  

Ляпунова, фазовый портрет 

  

Введение. По отношению к техническим (технологическим)             

инновациям в настоящее время применяются понятия, установленные 

Руководством Осло и нашедшие отражение в международных                          

стандартах [1].  

Инновационный процесс в [1] определяется как деятельность, в 

которой изобретение или предпринимательская идея получают эконо-

мическое содержание, т.е. это совокупность экономических состояний 

инновации, сменяющих друг друга в процессе преобразования началь-

ного состояния (например, предложенной конструкторской или техно-

логической идеи новшества) в конечное состояние (поступившие в     

потребление новые материалы, изделия, методы, технологии).  

Смена экономических состояний инновации это нелинейный             
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процесс, отдельные свойства которого изучались различными авто-

рами методами математического моделирования. В обзорных работах 

[2, 3] рассматриваются вопросы математического моделирования,                

в том числе с помощью дифференциальных уравнений, распростране-

ния широкого круга инноваций посредством информационных, соци-

альных и экономических связей между всеми элементами системы 

производства и потребления. 

В [4] математическое моделирование инновационных процессов 

на этапе научно-исследовательских работ (НИР) осуществляется на 

основе автономных динамических систем. В работе [5] предложена  

неавтономная система [6, 7], отражающая экономическое состояние 

инновации на этапе выполнения опытно-конструкторских работ 

(ОКР) с использованием аппарата смещённых единичных импульсных 

функций и уравнений баланса.  

Применение дифференциальных уравнений для оптимизации и 

анализа устойчивости инновационных процессов не является чем-то 

необычным и не отличается принципиально от их применения при               

исследовании, например, физических процессов. Вместе с тем, на                

сегодняшний день в области планирования инновационной деятельно-

сти отсутствует математическое и алгоритмическое обеспечение удоб-

ных для применения программных приложений с интуитивно понят-

ными интерфейсами. В практике проектирования, производства и ры-

ночной реализации технических инноваций актуален запрос на разра-

ботку такого метода (алгоритма) анализа динамики инновационного 

процесса, который бы на основе обобщённой математической модели, 

отражающей во взаимосвязи все (или основные) экономические состо-

яния исследуемых инноваций, позволил бы создать такое программ-

ное приложение.  

Учитывая определение неавтономной системы [6, 7] и зависи-

мость динамики производственного процесса технической инновации 

от состояний окружающей инвестиционной и рыночной сред, которые 

в свою очередь являются функциями времени, можно предположить, 

что подход к моделированию ОКР как неавтономной системы, пред-

ложенный в [5], применим и для моделирования экономического со-

стояния инновации на этапе производства. 

Целью работы является исследование неавтономной системы, как 

модели экономического состояния процесса производства техниче-

ской инновации, и реализация на этой основе алгоритма анализа 

устойчивости положений равновесия производственного процесса. 

Математическая постановка задачи моделирования и приня-

тые допущения. Пусть M  — объём оборотных средств предприятия, 

а P  — объём готовых продуктов на складе в денежном выражении. 

Тогда применив балансовое уравнение, получим 
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,

.

M M

P p

dM
L R

dt

dP
L R

dt


 


  


  (1) 

Источником ML  являются денежные средства, вкладываемые в 

процессы производства в момент времени t , а потери MR  — денежные 

средства, потраченные в процессе производства в момент времени t . 

В этом случае 
dM

dt
 описывает скорость изменения (движения) денеж-

ных средств предприятия, выполняющего производство продукта. 

Введем в рассмотрение величину W , которая показывает объем 

выручки от реализации продукта и вычисляется по формуле: 

 
min

,m

P
W Q

P P



  (2) 

где mQ  — максимальное количество продукта, которое может быть ре-

ализовано на рынке;   — рыночная цена единицы продукта; minP  — 

минимальное количество продукта на складе. 

Так же введём в рассмотрение смещённую единичную импульс-

ную функцию 

   1

1

1

, если ,

0, если

t t
t t

t t


 
  


  (3) 

для скачкообразного изменения значения M  на величину exM , которая 

показывает объемы внешних заимствований в моменты времени 1.t   

Таким образом, в системе уравнений (1) математическая модель 

источника ML  будет иметь вид: 

  1 .M exL W M t t     (4) 

Затраты в момент времени t  состоят из производственных издер-

жек M c  ( c  — время оборота финансовых средств), выплат по кре-

диту ex crM c  ( crc  — кредитная ставка), амортизации капитальных вло-

жений собственных средств предприятия amK c  (1 amc  — норма амор-

тизации), затрат на хранение готового продукта на складе sP c                 

(1 sc  — доля оборотных средств, затрачиваемая на хранение единицы 

готовой продукции в единицу времени), т.е. 
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 .ex
M

cr am s

MM K P
R

c c c c
      (5) 

После подстановки в первое уравнение системы (1) выражений 

(4) и (5), получим: 

  1 .ex
ex

cr am s

MdM M K P
W M t t

dt c c c c
         (6) 

Рассмотрим вычисление производной 
dP

dt
 ,  характеризующей 

скорость изменения объема произведённого продукта на складе. Вели-

чина pL  равняется объему произведенной продукции в момент вре-

мени t : 

 ,P

M
L k

c
   (7) 

 ,
n

k



   (8) 

где n  — внутренняя цена продукта. 

Потерям PR  в этом случае соответствует объем выручки W  от ре-

ализации продукта. 

С учетом (7) второе уравнение системы (1) примет вид: 

 .
dP M

k W
dt c

    (9) 

Объединения (6) и (9) получим систему обыкновенных дифферен-

циальных уравнений: 

 1

min

( ) ,

,

.

ex
ex

cr am s

m

MdM M K P
W M t t

dt c c c c

dP M
k W

dt c

P
W Q

P P






      




 






  (10) 

Рассмотрим систему (10). Она нелинейная и неоднородная по 

определению [8], является неавтономной, поскольку в правой части 

системы имеем переменную t  в явном виде [6]. Наиболее полно соот-

ветствующие виду (10) неавтономные системы с разрывной правой  

частью исследованы в [9] для решения экологических задач. Заметим 
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так же, что система (10) — стохастическая система, поскольку её пра-

вая часть включает в себя функцию  mQ t , являющуюся случайным 

процессом. 

Для исследования математической модели (10) требуется опреде-

лить количественные значения параметров и начальных условий,               

характеризующих с достаточной точностью текущее состояние среды 

производства и реализации технологической инновации. В технико-

экономических системах это всегда связано с трудностями, преодоле-

ние которых представляет собой самостоятельную задачу, которая в 

данной работе не рассматривается.  

Преобразуем неавтономную систему (10) в автономную детерми-

нированную систему, приняв следующие допущения: 

 пусть 0 1 ,t t    где   — бесконечно мало; это позволит 

исследовать систему (10) в случае, когда  1 0t t   , то есть когда её 

правая часть непрерывна; 

 будем анализировать систему (10) в предположении, что 

 mQ t Q ; это допустимо, так как в каждый момент времени 

переменная  mQ t  принимает неотрицательное целочисленное 

значение. 
При налагаемых ограничениях система (10) примет вид: 

 ,

.

ex

cr am s

MdM M K P
W

dt c c c c

dP M
k W

dt c


    


  


  (11) 

Это автономная неоднородная нелинейная система обыкновенных 

дифференциальных уравнений. Заметим также, что все параметры, 

входящие в систему, положительные. 

Исследование устойчивости положений равновесия неавто-

номной системы. При исследовании устойчивости положений равно-

весия необходимо ответить на следующие вопросы: а) существуют ли 

в системе положения равновесия и сколько их; б) какова устойчивость 

положений равновесия и как она зависит от параметров системы;               

в) как ведет себя система вблизи положений равновесия, возможны ли 

между ними переходы. 

Практические методы исследования устойчивости неавтономных 

систем рассмотрены, например, в работах [10, 11, 12, 13]. 

Пусть задана автономная система (11). Обозначим её положения 

равновесия  * *, .M P  Приравняв правую часть системы нулю, и под-

ставив второе уравнение в первое уравнение, получим: 
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* .

1

ex am s s cr cr am

cr am s

M c c Kc c Pc cc
M

k c c c

 
 


  (12) 

Поскольку k  — отношение рыночной цены продукта к его внут-

ренней цене, то 1 0.k    Все параметры, входящие в систему, поло-

жительны, следовательно, при * 0P   имеем * 0.M    

Подставляя выражение (12) в систему (11) при 0
dM dP

dt dt
  , со-

ставим уравнение для нахождения *P : 

 

*2 *

0 1 2

2

1 1 0 2*

1,2

0

0,

4
,

2

b P b P b

b b b b
P

b

  

  


  (13) 

где 

 

0

1 min

2 min

,

,

( ) .

cr am

m cr s am am cr m cr s am

ex s am s cr

cr am ex s

b kc c

b Q c c c k P c c k Q c c c

M c c k Kc c k

b c K c M c kP

 

 

   

 

  

  (14) 

Поскольку переменная *P  может принимать только положитель-

ные вещественные значения, то положение равновесия имеет смысл, 

если: 

 
2

1 0 24 0,b b b    (15) 

 
*

1,2 0.P    (16) 

При 
2

1 0 24 0b b b   существуют два различных положения равнове-

сия  * *

1 1,M P  и  * *

2 2,M P , а при 
2

1 0 24 0b b b   — одно положение                    

равновесия  * *

0 0,M P . 

Исследуем, какова устойчивость положений равновесия (неустой-

чивое, устойчивое, не достижимое на практике) и как устойчивость за-

висит от параметров системы. 

Условие (15) означает 

 
1 0 2

1 0 2

2 ,

2 .

b b b

b b b

 


 

  (17) 

Поскольку 0 0b  , 2 0b  , из (13) легко заметить, что 
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 2

1 1 0 24 .b b b b    (18) 

Рассмотрим случаи, когда условия (15), (16) выполняются. 

Случай I: 

 
2

1 1 0 2

1

4 ,

0.

b b b b

b

  




  

Поскольку обе части первого неравенства положительные, то 
2 2

1 1 0 24b b b b   или 0 2 0b b  , что справедливо при любых допустимых 

значениях параметров системы (11), т.е. выполняется условие (17). 

Случай II: 

 
2

1 1 0 2

1

4 ,

0.

b b b b

b

   




  

Решением системы является неравенство 1 0b  . Таким образом, 

этот случай также приводит к условию (17). 

Случай III: 

 
2

1 1 0 2

1

4 ,

0.

b b b b

b

   




  

Преобразуя первое неравенство системы, получаем неравенство с 

положительными обеими частями 

 2

1 0 2 14 .b b b b     

При возведении его в квадрат и последующем упрощении                   

получим: 

 0 2 0,b b    

что невозможно при положительных параметрах системы (11). 

Таким образом, условия (15), (16) сводятся к выполнению                

условия (17). 

Исследуем устойчивость всех положений равновесия системы 

(11). Для этого рассмотрим линеаризованную систему уравнений                

первого приближения.  

Матрица Якоби 

 

1 1

2 2

,

u u

M PJ
u u

M P

  
    
   
  

  (19) 
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где 

 

 

 

1 2

1 min

2
*

min

2 min

2
*

min

1
, ,

1
,

,

m

cs

m

u u k

M c M c

u P
Q

P cP P

u P
Q

P P P





 
  

 


 

 


 

 

  

т.е. 

 

1 1

,cs

q
c c

J
k

q
c

 
   
 
 
 
 

  (20) 

где 

 

 
min

2
*

min

.m

P
q Q

P P
 


  (21) 

 Характеристическое уравнение для матрицы J  имеет вид: 

  2 1 1
1 0.

cs

k
q q k

c c c
 

  
       

   
  (22) 

Рассмотрим неравенство  

  
1

1 0.
cs

k
q k

c c

 
   

 
  

Приведем его к виду 

 
 

.
1 cs

k
q

k c



  

После подстановки (21), имеем: 

 

   2
*

min
min

1
.

1 cs m

k

k c Q PP P 



  

Учитывая, что 

 
2

*

min

1

P P
 убывает при 

*

min 0P P  , получим 

условие 
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  min*

min

1
.cs mk c Q P

P P
k


    (23) 

Любое положение равновесия  * *,M P  системы (11) будет асимп-

тотически устойчиво при выполнении условия (23) [14].  

Учитывая то, что в системе (10) функция  1t t   играет роль       

импульсного воздействия на значение  M t , положения равновесия 

системы (11) являются положениями равновесия системы (10), что 

очевидно без доказательства. 

Для определения зависимости устойчивости от различных                   

значений mQ , воспользуемся данными из таблицы 1. Эта таблица               

составлена на основе данных реального производства, содержащихся, 

например, в ERP предприятия, преобразованных в параметры модели 

(10) с помощью дискретной модели производства, рассмотрение                  

которой не является предметом данной статьи. С помощью этой                   

модели определяются и начальные условия 
0 10612,5M  , 0 800P  , 

соответствующие параметрам таблицы 1. 

Таблица 1 

Данные реального производства, преобразованные                                                  

в параметры модели (10) 

Параметр Практический смысл Размерность Значение 

c   
цикл производства (время оборота            

финансовых средств) 
месяц 3 

exM   
объем внешних заимствований в           

момент времени 
1t   

тыс. руб. 4000 

1t   момент времени день 30 

K   
капитальные вложения собственных 

средств предприятия 
тыс. руб. 10612,25 

1 crc   кредитная ставка – 0,0183 

1 amc   норма амортизации – 0,0167 

1 sc   
доля оборотных средств, затрачивае-

мая на хранение единицы готовой                                 

продукции в единицу времени 

– 0,110 

k   коэффициент добавленной стоимости – 1,210 

minP   
минимальное количество товара на 

складе 
тыс. руб. 2000 

   рыночная цена единицы готовой                               

продукции 
тыс. руб. 32 

 

В соответствии с (14) имеем: 
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 

1 min 106,9.
1

s cr ex s am am cr
m

am cr s

b Kc c k M c c k P c c k
Q

c c c k

  
 


  

Таким образом, для приведённых в таблице 1 параметров системы 

условие (15) выполняется, если  107,mQ   , т.е. при таких значе-

ниях mQ  система (11) имеет два положения равновесия, достижимые 

на практике. 

Условие (23) для одного из положения равновесия верно, если 

 107,mQ   , а для другого всегда неверно. Это означает, что одно 

из положений равновесия асимптотически устойчиво, а второе – не-

устойчиво. 

Примеры численного решения задачи. Проведём вычислитель-

ный эксперимент для разных значений  107,1500,100mQ  при соответ-

ствующих параметрах 54,64; 9,091; 60,0; 1,21;cr s amc c c k                                    

1061,25K   и различных начальных условиях. Сводный анализ ре-

зультатов численных экспериментов приведён в таблице 2. 

Таблица 2 

Результаты численных экспериментов 

№ 

При-

мера 
mQ  Положение равновесия 

Характери-

стика  

равновесия 

Поведе-

ние  

системы 

1 107 
   * *

1 1, 3447,243;1367,361M P   Устойчивое Стре-

мится к 

 * *

1 1,M P      * *

2 2, 3197,806;1208,630M P   Неустойчивое 

2 1500 
   * *

1 1, 115832,130;72884,300M P   Устойчивое Стре-

мится к 

 * *

1 1,M P     * *

2 2, 1334,144;22,670M P   Неустойчивое 

3 100 

 * *

1 1

3044,826 1015,596 ;
,

1111,280 646,282

i
M P

i

 
  

 
 

Не достижимое 

на практике 

Стре-

мится к 

отрица-

тельному 

значе-

нию 

 * *

2 2

3044,826 1015,596 ;
,

1111,280 646,282

i
M P

i

 
  

 
 

Не достижимое 

на практике 

 

Для примера №1 фазовые портреты и графики решения системы 

(11) при  107mQ   и различных начальных условиях в окрестностях 

положений равновесия  * *

1 1,M P  и  * *

2 2,M P  представлены на                  

рис.1 и 2. 
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Рис. 1. Фазовые портреты системы (11) при 107mQ   и различных начальных 

условиях в окрестности положения равновесия  * *

1 1,M P и  * *

2 2,M P   

соответственно: 

a — ─ — 0 03400, 1400;M P   ─ — 0 03500, 1300;M P  ─ — 0 03410, 1350;M P   

б — ─ — 0 03100, 1200;M P   ─ — 0 03200, 1200;M P  ─ — 0 03150, 1210M P   
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Рис. 2. Графики решения системы (11) при 107mQ  : 

а — 0 010612,5, 800;M P   б — 0 03190, 970M P    

 

На первых шагах решения системы (11) происходит резкое увели-
чение объема готовых продуктов на складе. Это объясняется тем, что 
максимальное количество продуктов, которое может быть реализо-
вано на рынке, значительно меньше объёмов производимой продук-
ции. В связи с этим растет доля оборотных средств, затрачиваемых на 
хранение готовой продукции на складе, что ведет к уменьшению де-
нежных средств предприятия. Когда объем произведенной продукции 
становится примерно равным максимальному количеству продукта, 
которое может быть реализовано на рынке, что определяется значе-

нием mQ , устанавливается стабильный режим производства продукта. 

Поскольку начальные условия 
0 10612,5M   и 0 800P   не располо-

жены в окрестности неустойчивого положения равновесия  * *

2 2,M P , 

решение системы стремится к положению равновесия  * *

1 1,M P . Когда 

начальные условия системы (11) располагаются в непосредственной 
близости от неустойчивого положения равновесия, можно наблюдать 
явление скрытого банкротства, заключающееся в том, что динамиче-
ские переменные, прежде чем перейти в отрицательную область,                    
конечное время «задерживаются» около некоторых положительных 
значений. 

Рассмотрим решение системы (10). При 10t   имеем:

 30 4924,74M  ,  30 2907,54P  . Значение  30M  увеличивается 

на величину 4000exM   и становится  30 8924,74M  . Дальнейшее 

решение системы (10) выполняется, начиная с точки  30 8924,74M   
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и  30 2906,54P  . Несмотря на изменение значения  M t  на вели-

чину exM , решение системы стремится к положению равновесия 

 * *

1 1,M P  как это показано на рис. 3. 

 

 

 
 
 
 
 

 

 
 

а б 

Рис. 3. Трехмерный фазовый портрет (a) и графики решения (б)                        

системы (10) 107mQ  : 0 010612,5; 800M P    

 

На рис. 3 по вертикальной оси отложено время. По горизонталь-

ным осям — объём оборотных средств предприятия и объём готовых 

продуктов на складе в денежном выражении. Решение системы (10) 

начинается в точке 1 с координатами    , , 10612,5;800;0M P t  . Си-

ним цветом выделена фазовая траектория системы (10) при 0...30t  . 

В точке 2 с координатами    , , 4924,74;2906,54;30M P t  происходит 

скачкообразное изменение величины  30M  на величину exM                     

(выделено пунктирной зеленой линией). Решение системы (10) пере-

ходит в точку 3 с координатами    , , 8924,74;2906,54;30M P t  . 

Дальнейшее решение системы (10), выделенное зеленым цветом, стре-

мится к устойчивому положению равновесия.  

Для примера №2 фазовые портреты и графики решения системы 

(11) при 1500mQ   и различных начальных условиях в окрестности 

положения равновесия  * *

1 1,M P  и  * *

2 2,M P  представлены на                         

рис. 4 и 5. 
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Рис. 4. Фазовые портреты системы (11) при 1500mQ   и различных  

начальных условиях в окрестности положения равновесия 

  * *

1 1,M P и  * *

2 2,M P  соответственно: 

a — ─ — 0 0115000, 72600;M P   ─ — 0 0116000, 1300;M P   

─ — 0 0118000, 75000;M P   

б — ─ — 0 01100, 10;M P   ─ — 0 01270, 20;M P  ─ — 0 0500, 0M P   

 
 
 

 

 

Рис. 5. Графики решения системы (11) при 1500mQ  ; 
0 010612,5; 800M P    

 

На первых шагах решения системы (11) происходит увеличение 
денежных средств предприятия. Это связано с тем, что количество 
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продуктов, которые могут быть реализованы на рынке, значительно 
больше количества производимой продукции. По этой же причине 
объем готовой продукции на складе растет медленно. При увеличении 
количества денежных средств предприятия происходит увеличение 
объёмов производства, насыщение рынка и, как следствие, резкое уве-
личение количества готовой продукции на складе. Далее устанавлива-
ется баланс между максимальными объемами производства и количе-
ством готовой продукции на складе. Поскольку начальные условия не 
расположены в окрестности неустойчивого положения равновесия, ре-

шение системы стремится к положению равновесия  * *

1 1,M P . 

Аналогично примеру №1, несмотря на изменение значения   M t   

на величину exM , решение системы (10) стремится к положению рав-

новесия  * *

1 1,M P  как это показано на рис. 6. 
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Рис. 6. Трехмерный фазовый портрет (a) и графики решения (б)                        

системы (10) 107mQ  : 0 010612,5; 800M P    

 

Решение системы (10) начинается в точке 1 с координатами  

   10612,5; 00;0, , 8M P t  . Синим цветом выделена фазовая траекто-

рия системы (10) при 0...30t  . В точке 2 с координатами 

   70780,22;2838, 0;30, , 4M P t   происходит скачкообразное изме-

нение величины  30M  на величину exM . Решение системы (10)                     

переходит в точку 3 с координатами    74780,22;2838,4 3 .; 0, , 0M P t   
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Дальнейшее решение системы (10), выделенное зеленым цветом,        
стремится к устойчивому положению равновесию.  

Для примера №3 при  100mQ   система (11) имеет два положения 

равновесия, которые характеризуются комплексными числами, следо-

вательно, они не имеют практического значения. Графики решения   

системы (11) и системы (10) при 100mQ   изображены на рис. 7. 
\ 

 

 
 

 

 

а б 

Рис. 7. Графики решения систем (11) (а) и (10) (б) при 100mQ  : 
0 010612,5; 800M P    

 

На начальных этапах происходит небольшое увеличение объема 

готовой продукции на складе в связи с тем, что максимальное количе-

ство продукта, которое может быть реализовано на рынке, меньше ко-

личества готовой продукции. Далее происходит насыщение рынка и 

некоторое время решение системы находится в положительной обла-

сти, однако одновременно с этим постепенно уменьшаются оборотные 

средства предприятия. В конечном итоге происходит его банкротство. 

Даже при наличии импульсного воздействия при 30t   решение            

системы (10) остаётся в отрицательной области, поскольку в ней                 

отсутствует устойчивое положение равновесия, как это показано на 

рис. 7. 

Обсуждение полученных результатов. Рассмотрим полученные 
результаты с позиции достижения цели работы — исследование неав-
тономной системы как модели экономического состояния процесса 
производства технической инновации и реализация на этой основе                
алгоритма (метода) определения количества и положений точек                   
равновесия, анализа их устойчивости, в том числе определение точек 
бифуркаций. 
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Принятые допущения позволили преобразовать неавтономную 

систему (10) в автономную систему (11) и применить качественный 

анализ устойчивости на основе первого метода Ляпунова [15]. 

Сравнительные вычислительные эксперименты показали, что 

устойчивость решений неавтономной системы (10) и автономной            

системы (11) одинаково зависит от заданных параметров реального 

производства, соответствующих им начальных условий, от характери-

стики рынка mQ . 

Бифуркационная диаграмма зависимости состояния равновесия 

системы от параметра mQ , отражающая бифуркацию типа «складка», 

изображена на рис. 8. 

 

 
 

Рис. 8. Бифуркационная диаграмма зависимости значений P  от mQ   

При 106,9mQ  (пример №1) возникает одно состояние равновесия. 

Полученная точка называется критической или особой точкой и                               

является параметрической границей, разделяющей два, абсолютно 

разных режима.  
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При значениях 106,9mQ   (пример №2) существуют два положе-

ния равновесия. Устойчивое положение равновесия изображено на 
графике синим цветом, а неустойчивое — зеленым цветом.  

При 106,9mQ   (пример №3) положительные корни уравнения 

(13) отсутствуют. Поэтому, вместо стремления к некоторому устойчи-
вому положению, решение системы (11) и, соответственно, системы 
(10), некоторое время находятся в положительной области, однако за-
тем следует резкий переход в отрицательную область. 

Таким образом, зная параметры и начальные условия для системы 
дифференциальных уравнений (10), можно определить, перейдет ли 
предприятие в состояние благополучия (положение равновесия 

 * *

1 1,M P ) или в состояние банкротства.  

Из полученных результатов следуют два сценария банкротства 
предприятия. Первый сценарий — коэффициенты системы дифферен-
циального уравнения меняются так, что окрестность асимптотически 
неустойчивого положения равновесия системы захватывает текущие 
значения динамических переменных. 

Второй сценарий — при фиксированных коэффициентах системы 
дифференциальных уравнений изменяются динамические перемен-

ные M , P  и система переходит в окрестность неустойчивого положе-
ния равновесия. 

Если параметры характеризующие состояние предприятия на мо-
мент запуска инновационного продукта в производство таковы, что 
вычисленные на их основе начальные условия попадают в окрестность 

положения равновесия  * *

2 2,M P , банкротство неизбежно. Разработан-

ный алгоритм позволяет заранее определить, при каких начальных 
условиях система перейдет в состояние благополучия или состояние 
банкротства и тем самым скорректировать подготовку производства, 
используя его дискретную модель. 

Если в процессе моделирования в момент времени t  происходит 

изменение коэффициентов системы дифференциальных уравнений, 

то, соответственно, происходит изменение положений равновесия. 

При этом начальными условиями для системы с новыми коэффициен-

тами становятся значения, полученные в момент времени t , т.е. 

 0M M t ,  0P P t . Сравнив начальные условия с измененными 

положениями равновесия можно сделать прогноз, в какое положение 

перейдет система при дальнейшем моделировании. 
Выводы и рекомендации.  Проведённые в работе исследования 

и полученные результаты доказывают возможность единообразного 
представления математической модели движения денежных средств 
на этапах ОКР и производства. Полученное обобщение математиче-
ской модели, как неавтономной системы, отражающее во взаимосвязи 



В.Ф. Белов, С.С. Гаврюшин, Ю.Н. Маркова 

128 

основные экономические состояния исследуемых технических                  
инноваций, создаёт условия для разработки программного приложе-
ния с интуитивно понятным интерфейсом и информативной системой 
визуализации выходных данных. 

Теоретически и экспериментально обосновано применение                       

первого метода Ляпунова для анализа устойчивости и бифуркаций                    

системы дифференциальных уравнений баланса со смещённой                      

единичной импульсной функцией в правой части.  

Для отражения в коэффициентах системы дифференциальных 

уравнений изменяющейся во времени внешней среды, поставлены                 

задачи разработки дискретной модели подготовки производства для 

корректного определения начальных условий решения неавтономной 

системы, а так же дискретной модели рынка для вычисления mQ . 
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Non-autonomous system as a model of the production                  

process of technical innovation 
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Development of an analytical method for economic characteristics variation in an innova-
tion process is a challenging task, starting from invention or entrepreneur idea and finish-
ing with market implementation. The practical purpose here is both to minimize the risks 
and shorten design and implementation time. Theoretical and experimental results pre-
sented in the paper show the possibility to solve the mentioned task via applying a non-
autonomous differential equation system along with the Lyapunov's First Method for sta-
bility analysis. A mathematical model of flow of funds related to the manufacturing and 
market implementation of the engineering innovation has been studied. It is presented in 
the form of the system of differential balance equations with unit impulse function in the 
right-hand side. An algorithm has been developed to analyze the stability of the equilibrium 
states of the manufacturing process, considering the influence of the external environment 
“from the right” (preparation of manufacturing) as well as “from the left” (market state). 
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The requirements are determined regarding both the discrete model of manufacturing 
preparation to formulate initial conditions for the non-autonomous system and the discrete 
model of the market to calculate the market state dependent coefficients for the system of 
differential equations. The results of analysis of the economic characteristics variation in 
the stage of product manufacturing have been presented as 3D phase images. 

 
Keywords: innovation process, balance equations, impulse function, non-autonomous sys-
tem, mathematical model, stability, Lyapunov's First Method, phase image 
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