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Разработаны методы численного решения задачи для уравнения смешанного типа 

в неограниченной области в случае, когда решение удовлетворяет уравнению                   

теплопроводности в ограниченной области и уравнению Лапласа в оставшейся ча-

сти пространства. Предложен способ задания искусственных граничных условий,                 

позволяющий проводить расчёты в ограниченной области. Построен итерацион-

ный алгоритм нахождения численного решения в ограниченной области, такой что 

численное решение сходится к проекции точного решения на ограниченную                

область. Исследована скорость сходимости итерационного алгоритма. Задача         

решена в одномерном плоском, в цилиндрически и сферически симметричных                            

случаях. Приведены примеры решений. 

 

Ключевые слова: уравнения смешанного типа, неограниченная область, итера-                   

ционный алгоритм 

  

Введение. Часто при решении реальных задач математическую 

модель необходимо строить в неограниченной области, например, при 

моделировании квазистационарного электромагнитного поля в             

электродинамическом ускорителе рельсового типа. Такие задачи        

характеризуются тем, что внутри некоторой области процесс описы-

вается параболическим уравнением, а вне — эллиптическим. 

Для численного решения задач в неограниченной области разра-

ботано множество методов, например, метод замены переменных,           

метод граничных интегральных уравнений, метод разностных потен-

циалов [1–3], метод введения бесконечных элементов совместно  

с конечными элементами [4–5], использование квазиравномерных           

сеток [6], однако данные методы не всегда позволяют эффективный 

вычислительный алгоритм.  

Рассмотрим начально-краевую задачу для уравнения смешанного 

типа во всем пространстве. А именно, искомое решение в некоторой 

ограниченной области D  является решением нестационарного уравне-

ния теплопроводности, а вне области D  решение удовлетворяет урав-

нению Лапласа. На границе области D  имеют место условия                   

непрерывности решения и потоков. Чтобы обеспечить единствен-

ность, наложим на искомую функцию u  условие регулярности на                                   

бесконечности [7–8]. В итоге решаемая задача имеет вид: 
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Требуется построить метод нахождения численного решения          

задачи в ограниченной области, точное решение которой совпадает с 

проекцией решения исходной задачи в бесконечном пространстве на 

эту область.  

Необходимо рассмотреть задачу в декартовой, цилиндрической и 

сферической системах координат в одномерном случае. 

Граничное условие. Рассмотрим двумерный случай Пусть                     

область 2 2:D D D  (рис.1). Для нахождения решения задачи вида (1)  

в этой области необходимо поставить граничное условие  

на границе 2D  [3, 9, 10]. Форма области D  может быть сложной, что 

не позволяет задать функции Грина решаемых уравнений. Поэтому в 

[11] рассмотрена дополнительная граница 1D  в области 
2D D , пред-

ставляющая собой окружность радиуса 1r . Решение внешней краевой 

задачи для уравнения Лапласа вне круга известно и задается интегра-

лом Пуассона [7–8, 12]. В двумерном случае он имеет вид: 
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Если решение на 1D  известно, то вычислением интеграла Пуассона 

можно получить значения искомой функции, например, на границе     

области 2D . 

 

 

Рис. 1. Структура расчётной области 
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Тогда исходная задача в части уравнения Лапласа примет вид: 
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Здесь точка 2 2( , ) .r D    

Одномерный плоский случай. В одномерном случае в декарто-

вых координатах задача (1) имеет вид (3). Во всех рассмотренных да-

лее одномерных плоских задачах считаем ( ) ,t const  
0(0)u const . 
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  (3) 

Решение будем искать на отрезке 2[0, ]L , 
1 2L L L  . Условие на гра-

нице 2L  в одномерном случае представляет собой равенство значений 

искомой функции в 1L  и в 2L : 

 
2 1

| | .x L x Lu u    

Оно является следствием постоянства регулярного решения урав-

нения Лапласа в данном случае. 

Точное решение задачи разыскивается обычным способом в виде 

разложения по собственным функциям, соответствующим собствен-

ным числам 

 , .
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n
n
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Для численного решения введем сетку в области 

2{0 , 0 }T x L t T   по переменным x  и t : 
1 1{ ,h ix ih    

1 110, 1, , 1, / ( 1)}h hi N h L N     — равномерная сетка с шагом 1h  на 

отрезке 0 x L , 
1h

N  — количество узлов сетки, 

2 2 22 2 2{ , 0, 1, , 1, ( ) / ( 1)}h j h hx jh L j N h L L N          — равно-

мерная сетка с шагом 2h  на отрезке 
2L x L , в итоге сетка по                
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пространству содержит 
1 2

( 1)h hN N   точек, 

{ , 0, 1,..., , / }kt k k N T N        — равномерная сетка с шагом                

   на отрезке 0 t T . 

Запишем неявную разностную схему для уравнения теплопровод-

ности [13]: 
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  (5) 

Здесь и далее используем обозначение y   для численного аналога 

точного решения u . 

Далее запишем разностную схему для уравнения Лапласа: 
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Аппроксимируем условия сопряжения интегро-интерполяцион-

ным способом. Для этого проинтегрируем уравнение теплопроводно-

сти (3) на отрезке 
1[ / 2, ]L h L , проинтегрируем уравнение Лапласа на 

отрезке 2[ , / 2]L L h  и приравняем потоки слева и справа от границы. 

Далее заменим производные разностными, а интеграл — квадратурой 

и получим уравнение [13–14]: 
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имеет порядок аппроксимации 2 2

1 2( )O h h    . 

Полученную систему линейных алгебраических уравнений можно 

решить, например, методом Гаусса с частичным выбором главного 

элемента [13]. Более рационально использовать специально создан-

ный вариант метода прогонки [13], поскольку матрица решаемой           

системы уравнений отличается от трехдиагональной лишь одной                

последней строкой. Те же алгоритмы можно будет применять при              

решении других систем алгебраических уравнений, которые возник-

нут далее в данной работе. 

Пример 1. Задача (3) с 0 ( ) 1u x x  . Ее точным решением является 

функция: 
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Здесь и далее для случаев плоской и цилиндрической геометрий 

( , ) ( , )u x t u L t  при x L . В случае плоской геометрии для нахожде-

ния ошибки в качестве точного решения взята частичная сумма ряда 

до 3  члена. Ошибка вычислена в равномерной норме. 

Расчеты произведены при значениях 1L  , 
2 2L  , 1T  .                             

В таблице 1 приведены результаты вычислений.  

Таблица 1 

Сравнение численного решения с точным при различных соотношениях 

шагов сетки в плоском случае при 1, 75=1L  для примера 1 

Количество узлов Ошибка Отношение ошибок 

1 2
21, 21h hN N N     21,00271 10  — 

1 2
41, 84h hN N N     32,51836 10  3,982 

1 2
81, 336h hN N N     46,30219 10  3,996 

1 2
161, 1344h hN N N     41,57592 10  3,999 

 

Отметим, что при различных положениях дополнительной             

границы 2L  ошибки остаются одинаковыми. 

На рис. 2 показано решение в различные моменты времени. 

 

 

 
 

Рис. 2. Эволюция во времени решения из примера 1 

 

Пример 2. Задача (3) с 0 ( ) cosu x x . Ее точным решением при 

0 x L   является функция: 
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В табл. 2 приведены результаты вычислений.  
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Таблица 2 

Сравнение численного решения с точным при различных соотношениях 

шагов сетки в плоском случае при 1,5=
1

L   для примера 1 

Количество узлов Ошибка Отношение ошибок 

1 2
21, 21h hN N N     33,47402 10  — 

1 2
41, 84h hN N N     48,72007 10  3,984 

1 2
81, 336h hN N N     42,18188 10  3,997 

1 2
161, 1344h hN N N     55,45582 10  3,999 

 

На рис. 3 показано решение в различные моменты времени. 

 

 

 
 

Рис. 3. Эволюция во времени решения из примера 2 

 

Одномерный цилиндрический случай. Исходная задача в         

цилиндрических координатах имеет следующий вид: 

 

0 0

0 0

0 0

1
, 0 , 0,

| ( ), 0 ,

1
0, ,

| | ,

| | ,

| | .

 

t

t

R R

R R

u
u R t

u u R

u
R

u

u u

u u

 

   

 
  

 

 
  



   

   

   
     

  
   


  
   

  
  



 

  (7) 

Решение будем искать на отрезке 2[0, ]R . Условие на внешней              

границе 2R  такое же, как и в плоском случае: 
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Обоснование аналогично таковому для плоского случая. 

Точным решением задачи в области 0 R  , является функция 
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Здесь собственные числа n  являются корнями уравнения: 

 
1( ) 0,n nJ R      

следующего из граничного условия при R , 0J , 1 J  — функции    

Бесселя. 

Воспользуемся введенной ранее сеткой на 
T . Оператор Лапласа 

аппроксимируем интегро–интерполяционным методом [14]. Для этого 

проинтегрируем Au u   по ячейке размером h  с весом  . Получим 

для разностного ператора hA : 

 1 1
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2
( )h i i iV       — объем ячейки. 

В итоге имеем разностную схему для уравнения теплопроводности: 
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  (9) 

Для аппроксимации условия в нуле проинтегрируем уравнение по 

ячейке 
1[0, / 2]h  с весом  , заменим производные разностными, а                  

интеграл — квадратурой, получим: 
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Далее запишем разностную схему для уравнения Лапласа: 

 1 1
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Аппроксимируем условие сопряжения аналогично плоскому слу-

чаю. Для этого проинтегрируем уравнение теплопроводности  (7) на 
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отрезке 1[ / 2, ]R h R  и уравнение Лапласа на отрезке 
2[ , / 2]R R h   с 

весом  . Учтем равенство потоков, заменим производные разност-

ными, интеграл — квадратурой и получим: 

 
1 1

1 1

1 1 1 2
2 1 1

1 1 2

12 1 1
1

2

2 2 2
(4 )

2 8 2 2

2 (4 )
.

2 8

h h

h h

k k

N N

k k

N N

R h h R h R h
y R h y

h h h

R h h R h
y y

h





 





   
     
 

 
  

  (10) 

Описанная схема имеет порядок аппроксимации 
2 2

1 2( )O h h   . 

Пример 3. Задача (7) с 
2

0 ( )u   . Для нахождения ошибки в                  

качестве точного решения взята частичная сумма ряда до 20 члена. 

Ошибка вычислена в равномерной норме. 

Расчеты произведены при значениях 5R  , 1 7,5R  , 2 10R  ,

10T  . В таблице 3 приведены результаты. 

Таблица 3 

Сравнение численного решения с точным при различных соотношениях 

шагов сетки в цилиндрическом случае для примера 3 

Количество узлов Ошибка Отношение ошибок 

1 2
21, 21h hN N N     23,5508 10  — 

1 2
41, 84h hN N N     38,17853 10  4,342 

1 2
81, 336h hN N N     32,00052 10  4,088 

1 2
161, 1344h hN N N     44,97371 10  4,022 

 

На рис. 4 изображено изменение решения с течением времени. 

 

 

 
 

Рис. 4. Эволюция во времени решения из примера 3 
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Пример 4. Задача (7) с 
3/2

0 ( ) 1u    . 

В таблице 4 приведены результаты. 

Таблица 4 

Сравнение численного решения с точным при различных соотношениях 

шагов сетки в цилиндрическом случае для примера 4 

Количество узлов Ошибка Отношение ошибок 

1 2
21, 21h hN N N     21,65663 10  — 

1 2
41, 84h hN N N     33,4009 10  4,871 

1 2
81, 336h hN N N     48,03357 10  4,233 

1 2
161, 1344h hN N N     41,97908 10  4,059 

 

На рис. 5 изображено изменение решения с течением времени. 

 

 

 

Рис. 5. Эволюция во времени решения из примера 4 

 

Одномерный сферический случай. Исходная задача имеет вид: 
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  (11) 

Решение будем искать на отрезке 2[0, ]R . Условие на границе 2R  в 

данном случае отличается от плоского и цилиндрического: 
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2 1

1

2

| | .x R x R

R
u u

R
    

Оно следует из (2) для данного случая. 

Точным решением задачи при 0 r R   является функция: 

 
2

0

0 0

2
( , ) sin( ) ( )sin( ) .n

R

t

n n

n

u r t r e ru r r dr
Rr

 






     

Собственные значения n  аналогичны таковым для плоского             

случая. 

 Решением уравнения Лапласа является функция 1cu
r

  , где 

1 1( )c c t . Функцию 1( )c t  определим из условия сопряжения 

1|r R

c
u

R
   . 

Аппроксимируем оператор Лапласа так же, как и в (8), с соответ-

ствующими изменениями: 

 2 21 1
, , 1/2 1/2 ,i i i i

h i h i i i

y y y y
V A y r r

h h

 
 

 
    (12) 

где 3 3

, 1/2 1/2

1

3
( )h i i iV r r     — объем ячейки. 

В случае уравнения теплопроводности разностная схема для                

введенной ранее сетки примет вид: 

 

1

2 2 2 21 1
1 13 2

1 11

3
1/ 2 1/ 2 .

3 1/ 4
( ) ( )

( )

k k

i i

k k k k

i i i i

y y

y y y y
i h i h

h hh i





 




  
    

  

   

Для уравнения Лапласа получим схему: 

 2 2 2 21 1
1 13 2

1 11

3
1/ 2 1/ 2 0.

3 1/ 4
( ) ( )
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k k k k

i i i iy y y y
i h i h

h hh i

 
  

    
  

  

Чтобы аппроксимировать условие в нуле, проинтегрируем урав-

нение по ячейке 
1[0, / 2]h  с весом 

2r , заменим производные разност-

ными, интеграл — квадратурой. Получим: 

 
1

0 0 1 0

1 1

6
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k k k ky y y y
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 Аппроксимируем условие сопряжения 
0 0| |r r R r r Ru u    , проинте-

грировав уравнения на соответствующих отрезках с весом 2r  и учтя 

в результатах равенство потоков. Заменим производные разностными, 

интеграл — квадратурой, получим: 

1

1 1 1

2 2
2 21 1 1

2 1 1

1 1

2 22 2
11 1 12 2

1 1

2 2

(2 ) (2 )
12 6

4 24 4

12 6(2 ) (2 )
.

4 4 24

( )

( )

h

h h h

k

N

k k k

N N N

R h h R h
y R Rh h

h h

h R Rh hR h R h
y y y

h h









 

 
    


  
   



  (14) 

Пример 5. Задача (11) с 
2

0 3

16 ( 2)
( ) sin

2

R r
u r

r R




 


.  

Для нахождения ошибки в качестве точного решения взята ча-

стичная сумма ряда до 3 члена. Ошибка вычислена в равномерной 

норме. 

Расчеты произведены при значениях 1R  , 
1 1,5R  , 2 2R  , 2.T   

В таблице 5 приведены результаты. 

Таблица 5 

Сравнение численного решения с точным при различных соотношениях 

шагов сетки в сферическом случае для примера 5 

Количество узлов Ошибка Отношение ошибок 

1 2
21, 21h hN N N     34,32566 10  — 

1 2
41, 84h hN N N     49,93134 10  4,358 

1 2
81, 336h hN N N     42,42449 10  4,097 

1 2
161, 1344h hN N N     56,02426 10  4,025 

 

На рис. 6 изображено изменение решения с течением времени. 

 

 
 

Рис. 6. Эволюция во времени решения из примера 5 
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Пример 6. Задача (11) с 
2

0 ( )u r r . 

В таблице 6 приведены результаты. 

Таблица 6 

Сравнение численного решения с точным при различных соотношениях 

шагов сетки в сферическом случае для примера 6 

Количество узлов Ошибка Отношение ошибок 

1 2
21, 21h hN N N     33,38884 10  — 

1 2
41, 84h hN N N     47,77695 10  4,356 

1 2
81, 336h hN N N     41,89834 10  4,096 

1 2
161, 1344h hN N N     54,71678 10  4,024 

 

На рис. 7 приведено решение в различные моменты времени. 

 

 

 
 

Рис. 7. Эволюция во времени решения из примера 6 
 

Итерационный метод. Для численного решения задачи можно 
построить итерационный алгоритм [11, 15], в котором на каждой но-
вой итерации решается задача с известным граничным условием. При 
этом происходит пересчет условия на внешней границе. На каждой но-

вой s  ой итерации граничное условие будет вычисляться через зна-

чения на предыдущей  1s   ой, все остальные величины — неиз-

вестные. В двумерном случае вместо (2) получим следующую задачу 
во внешней области: 
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Данный процесс будем применять для нахождения решения на 
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разностных схем. При таком способе система алгебраических уравне-
ний принимает трехдиагональный вид, ее можно решить методом про-
гонки [13, 14]. Целью разработки метода является создание алгоритма 
для решения многомерных задач. 

Рассмотрим сходимость [11] итерационного процесса. Ограни-

чимся одномерным случаем. В нём Pu u  для плоской и цилиндриче-

ской геометрий, 1

2

R
Pu u

R
  для сферического случая. 

Утверждение 1. В одномерном случае итерационный процесс 

сходится со скоростью геометрической прогрессии с показателем 

1
0

2L
q

L

L L



  — в плоском случае, 1

0

2

R R
q

R R





 — в сферическом случае, 

1
0

2

ln ln

ln ln

R R
q

R R





 — в цилиндрическом случае. 

Плоский случай. Изменения разностной схемы для расчета реше-

ния на новом -омk временном слое являются очевидными. При этом у 

искомого решения добавляется индекс s  — номер текущей итерации. 

Приведем условие на границе 2L . Оно примет вид: 

 
1 2

, , 1

2 ,
h h

k s k s

N N my y 

     

где m   — номер узла, попадающего на 1L  . 

На рис. 2 приведено решение в различные моменты времени                  

задачи (3) с 0 ( ) 1u x x  . 

 

 
 

Рис. 8. Зависимость числа итераций от положения границы 1L :  

─ — результат проведения серии вычислительных экспериментов; 
 ─ — теоретическая оценка 
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Рассмотрим влияние параметров задачи на сходимость итераци-

онного процесса. Исследуем влияние положения дополнительной гра-

ницы. Для этого зафиксируем границы L , 2L , будем менять положе-

ние дополнительной границы 1L . Пусть 1L  , 
2 2L  , 0,05T  .  

На рис. 8 приведены результаты расчетов. 

Чем ближе дополнительная граница к границе исходной обла-

сти D , тем быстрее сходится итерационный процесс. 

Согласно утверждению 1 должна наблюдаться сходимость со ско-

ростью геометрической прогрессии с коэффициентом 1

2

.
L L

q
L L





            

Тогда число итераций можно оценить по формуле 

 
ln

,
ln

n
q


   (15) 

где   — относительная ошибка. На рис. 8 приведены два графика. 

Красным цветом построен график зависимости априорной оценки             

необходимого числа итераций до сходимости по формуле (15), а                   

синим — результат вычислительных экспериментов. Видим, что              

качественно и количественно графики близки. 

Цилиндрический случай. Изменения разностной схемы для расчета 

решения на новом омk  временном слое являются очевидными. Они 

вполне аналогичны плоскому случаю. 

На рис. 9 показано решение в различные моменты времени              

задачи (7) с 
2

0 ( )u   . 

 

 
 

Рис. 9. Зависимость числа итераций от положения границы 
1

R   

в цилиндрическом случае: 
 ─ — результат проведения серии вычислительных экспериментов, 

 ─ — теоретическая оценка 
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Проведем такое же исследование, как и в плоском случае. Зафик-

сируем границы R , 
2R , будем менять положение дополнительной    

границы 1R . Пусть 1R  , 2 2R  , 0,05T  . На рис. 9 приведены                   

результаты расчетов. 

Так же, как и в плоском случае, итерационный процесс сходится 

быстрее, если дополнительная граница ближе к границе                                 

области D . 

По формуле из утверждения 1 получена оценка скорости                   

убывания ошибки. График зависимости оценки числа итераций от          

положения границы изображён на рис. 9 красным цветом. Видно, что 

результаты априорной оценки хорошо совпадают с результатами                    

расчётов. 

Сферический случай. Отличие итерационного процесса данного 

случая от двух рассмотренных состоит в уравнении, аппроксимирую-

щем условие на границе 2L . Оно примет вид: 

 
1 2

, , 11
2

2

,
h h

k s k s

N N m

R
y y

R



     

где m  — номер узла, попадающего на 1R  . 

Решение задачи (11) с 2

0 ( )u r r   приведено на рис. 7. 

Зафиксируем границы R , 
2R  , будем менять положение дополни-

тельной границы 1R . Пусть 1R  , 2 2R  , 0,05T  . На рис. 10                  

приведены результаты расчетов. 
 

 

 
 

Рис. 10. Зависимость числа итераций от положения границы 
1

R   

в сферическом случае: 
─ — результат проведения серии вычислительных экспериментов; 

 ─ — теоретическая оценка 
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По результатам расчётов (рис. 10) можно сделать вывод о                 

хорошем совпадении ожидаемой и наблюдаемой в экспериментах     

скорости сходимости разработанного алгоритма.  

Заключение. В работе построены и реализованы численные                 

алгоритмы решения уравнения смешанного типа в неограниченной           

области. Рассмотрен одномерный случай в декартовой, в цилиндриче-

ской и в сферической системах координат. Алгоритм построен                 

методом конечных разностей. Приведены примеры решения. Пока-

зано, что численное решение сходится к проекции точного решения на 

ограниченную область. 

Исследована зависимость решения от положения дополнительной 

границы. Результаты расчетов показали, что такой зависимости нет.  

Построен итерационный алгоритм численного решения задачи  

в неограниченной области. Проведено исследование зависимости                          

скорости сходимости итерационного процесса от положения                     

дополнительной границы. Получено, что чем ближе эта граница к                

границе исходной области D , тем меньше итераций требуется для              

получения решения с заданной точностью. Предложенный итерацион-

ный процесс может быть легко обобщён для решения многомерных 

задач. 
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Methods are developed for the numerical solution of the problem for a mixed–type                         

equation in an unbounded domain in the case when the solution satisfies the heat equation 

in a bounded domain and the Laplace equation in the rest of the space. A method for                         

set-ting artificial boundary conditions is proposed, which makes it possible to carry out 

calculations in a limited area. An iterative algorithm for finding a numerical solution in a 

bounded domain is constructed, such that the numerical solution converges to a projection 

of the exact solution onto a bounded domain. The rate of convergence of the iterative                       

algorithm is investigated. The problem is solved in one-dimensional plane, in cylindrically 

and spherically symmetric cases. Examples of solutions are given.   
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