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Рассмотрена задача о расчете напряженно деформированного состояния компо-

зитной слоистой панели при цилиндрическом изгибе в условиях конечных деформа-

ций. Для решения задачи применен метод асимптотического осреднения периоди-

ческих нелинейно упругих структур с конечными деформациями, подробно разрабо-

танный ранее в предшествующих работах авторов.  Особенностью данной задачи 

является использование универсальных моделей определяющих соотношений для 

изотропных компонентов композита, а также для композита в целом, который 

является трансверсально изотропной нелинейно упругой средой. Универсальные  

модели позволяют получать решение задач в рамках единого алгоритма решения 

одновременно для нескольких классов моделей нелинейно упругих сред, соответ-

ствующих различным сопряженным парам тензоров напряжений - деформаций. 

Для задачи о цилиндрическом изгибе композитной панели получено аналитическое 

решение. Проведен численный анализ решения на примере композита, ячейка              

периодичности которого состоит из 2-х слоев: полиуретана и резины. Показано, 

что для тонких панелей напряжения, как осредненные, так и истинные,                      

практически не зависят от класса модели определяющих соотношений. В тоже 

время для более толстых панелей напряжения существенно различаются для                  

разных классов моделей слоев композита. 

 

Ключевые слова: конечные деформации, композиты, цилиндрический изгиб, компо-

зитная панель, несжимаемые среды, трансверсально-изотропная среда, асимпто-

тическое осреднение, универсальные модели упругих сред, тензор напряжений Коши 

 

Введение. Композиционные материалы, способные деформиро-

ваться без разрушения при конечных (больших) деформациях, пред-

ставляют собой важный для различных прикладных задач класс              

материалов. Эти материалы применяют, например, для создания про-

текторов автомобильных шин, для различных амортизаторов,                        

звукоизоляторов и других элементов конструкций. Замечательное 

свойство композиционных материалов — возможность регулирования 

их характеристик путем изменения сочетания составляющих компо-

нентов — позволяет создавать новые композиты, индивидуальные для 

каждого элемента конструкции, достигая при этом максимальных                   

эксплуатационных свойств проектируемой конструкции в целом. При 

этом важную роль играют методы расчета свойств композитов, позво-

ляющие подбирать сочетания компонентов, обеспечивающие требуе-

мые характеристики (эффективные, т.е. осредненные в некотором 

смысле свойства композитов). 
Для композитов с малыми деформациями существует большое 
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число различных методов прогнозирования эффективных свойств по 
свойствам составляющих композитов, отметим лишь некоторые             
работы [1–5]. Отдельно выделим метод асимптотического осреднения 
(МАО) [6–10], называемый также методом гомогенизации, который в 
настоящее время является наиболее математически обоснованным и 
эффективным, с точки зрения возможностей и широты применения 
для прогнозирования самых различных свойств композитов с произ-
вольными структурами армирования. Этот метод МАО применяют 
также и для прогнозирования эффективных свойств композитов при 
конечных деформациях [11–16]. Ввиду нелинейности задачи меха-
ники при конечных деформациям [17–20], метод МАО встречает опре-
деленные сложности в реализации, в том силе он существенно зависит 
от используемой модели определяющих соотношений. В работах               
[13–16] был развит этот метод для так называемых универсальных           
моделей [21] сред с конечными деформациями. В работах [14–16] был 
предложен алгоритм построения эффективных нелинейных определя-
ющих соотношений для слоистых композитов с помощью построения 
упругого потенциала для эффективной трансверсально-изотропной 
среды и аппроксимации численных решений локальных задач на 
ячейке периодичности с помощью этого потенциала. 

Целью настоящей работы применение предложенного в метода 
для решения задачи для о цилиндрическом изгибе панели из                     
нелинейно упругого композита. Для изотропных сред для одного 
класса моделей определяющих соотношений эта задача была решена 
в работах [13–16]. В данной работе рассматривается цилиндрический 
изгиб слоистой панели с периодической структурой, которая обладает 
эффективными трансверсально-изотропными свойствами, при этом 
используются универсальные модели определяющих соотношений. 

Универсальная модель нелинейно упругих изотропных                   
компонентов композита. Рассмотрим неоднородную упругую                  
твердую среду (композит) V  с конечными деформациями, которая в 

отсчетной конфигурации K  обладает периодической структурой и для 
нее можно выделить повторяющийся элемент — ячейку периодично-

сти (ЯП) V  , которая состоит из N  — компонент V  , 1,..., N  . 

Эйлеровы координаты каждой материальной точки в отсчетной и                

актуальной конфигурациях обозначаются как 
kx  и kx  , им соответ-

ствует декартов базис  ie  соответственно, а лагранжевы координаты 

обозначим как 
iX . Последние полагаются совпадающими с декарто-

выми в отсчетной конфигурации, т.е. i iX x . Каждый компонент 
композита будем полагать несжимаемым, подчиняющимся                            

универсальной модели класса nB  , по классификации, предложенной 

в [21], для него имеют место следующие определяющие соотношения 
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где 
 n

T  — энергетический тензор напряжений [22], 
 n

G  — энергетиче-

ская мера деформации [22], которая выражается через градиент дефор-

мации F  
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где 
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n


G  — обратный тензор, 

 

1( )
n

I G  — первый главный инвариант 

(след) тензора 
 n

G , E  — метрический тензор, p —гидростатическое 

давление,   и    — упругие константы компонента, n  — номер   

энергетической пары, принимающий следующие значения:  

, , ,n I II IV V . 

Тензор напряжений Коши T  с помощью соотношений (1) вычис-

ляется следующим образом 
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где 
 

4

n

E  — тензор энергетической эквивалентности [22], зависящий 

только от градиента деформации F .   

Универсальная модель нелинейно упругого трансверсально-

изотропного композита. Используя результаты работ [13–16], для 

композита с периодической структурой можно применить метод 

асимптотического осреднения. Для этого вводим малый параметр 

/( 1)L   , как отношение характерного размера  ЯП к характер-

ному размеру L  всего композита (размеры определены в K ), а также 

вводим локальные 
i  лагранжевы координаты в K , которые связаны 

с iX  следующими соотношениями: 

 , .
i i

i iX X
X

L



    (4) 

Тогда все функции ( , )i iX , описывающие движение компонентов 

композита, в том числе определяющие соотношения (1), являются               
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периодическими функциями от 
i  и зависящими от глобальных                        

лагранжевых координат iX . Строятся асимптотические разложения 

функций ( , )i iX  по малому параметру  

  (0) (0)( , ) ( , ) ( , ) ,i i i iX X X o            (5) 

где  o   — величины, имеющие более высокий  порядок малости по 

сравнению с (0) ( , )iX  . Вводятся осреднение таких функций по ЯП 

 ( ) ( , ) .
о

о
i i i

V

X X dV



     (6) 

Согласно методу МАО для композита в целом формулируются 

осредненные определяющие соотношения, связывающие осреднен-

ные энергетические тензоры напряжений 
 n

T   и  осредненные энерге-

тические меры деформаций 
 n

G  [14] 

 
(n)(n) 4

1

1

,
p

n III



 



   


 GT G I   (7) 

где 
(n) (n)

( ) /I   
G
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ций 
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G . В [13, 14] показано, что слоистый нелинейно-упругий компо-

зит является трансверсально изотропной средой, и для него тензоры 

производных 
GI     имеют следующий вид 
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где c , 1,2,3   — базис главных осей анизотропии в отсчетной         

конфигурации, 2

   c c c , а 
2 3 1 1 3   O c c c c  и т.д, Δ  — единич-

ный тензор 4-го ранга [22], E  — единичный тензор 2-го ранга, 
 n

G  — 
осредненная энергетическая мера деформации, выражающаяся через 

осредненный градиент деформации  F  композита по формуле, анало-
гичной (2) 

 
 

2
1

( ) , , , , .
n n III

T n I II IV V
n III



  


G F F   (9) 



Моделирование напряжений в композитной нелинейно упругой панели… 

7 

Коэффициенты    в (7) представляют собой производные от упругого 

потенциала / I       и имеют вид [14] 
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а 11 12 22 44 1 2 4, , , , , ,l l l l n n n  — константы модели трансверсально–   

изотропной среды (композита), методика их определения предложена 

в [14]. 

Если   c e , то соотношения (7) в компонентной форме можно 

за-писать следующим образом, в матричной форме: 
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где 
   (n) ( )
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Постановка осредненной задачи теории упругости для                           

универсальных моделей анизотропных сред с конечными                           

деформациями.   Для осредненного композита в методе МАО форму-

лируется задача нелинейной теории упругости в Эйлеровом описании, 

для этого переходим от координат iX  к глобальным декартовым              

координатам /k kx x L , в которых  осредненный композит занимает 

область V  с поверхностью  , тогда имеем 

 0, ,kx V  T   (13) 
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 1 , ,T kx V    F E u   (15) 

 det 1, ,kx V  F   (16) 

 
1 2, , , .k k

e ex x    n T t u u   (17) 

Здесь (13) — уравнение равновесия, (14) — соотношение между 

осредненным тензором напряжений Коши T  и энергетическими                  

тензорами 
 n

T , (15) — кинематическое соотношение, (16) — условие 
несжимаемости, (17) — граничные условия для эффективной среды, 

u  — осредненный вектор перемещений, n  — вектор нормали к      

внешней поверхности композита, 
i ix

 



e  — осредненный  набла–

оператор, et  и eu  — заданные вектор усилий и перемещений.  К этой 

системе (13)–(17) необходимо также присоединить эффективное 
(осредненное) определяющие соотношения нелинейно–упругой среды 
(7), (8) и соотношение (9).  

В методе МАО также формулируется локальная задача 0L  [13]                

нелинейной упругости на ЯП, в результате решения которой находим 
тензорные соотношения между градиентом деформации F  в каждом 

компоненте композита и осредненным градиентом деформации F   

 ( , ),iXF K F   (18) 

где ( , )iXK F  — тензор концентрации деформаций в компонентах     

композита. Подставляя (18) в (1)–(3), получим выражения для напря-
жений T  в компонентах композита через осредненный градиент              

деформации F . 
В работе [13] найдены аналитические выражения для тензорных 

соотношений (18) для слоистого композита. 

Формулировка задачи цилиндрического изгиба слоистой ком-
позитной пластины. Рассмотрим частный случай задачи (13)–(17) — 
расчет напряжений в слоистом композитной пластине при конечных 
деформациях цилиндрического изгиба.  Аналогичная задача, но для 
однородных изотропных сред с большими деформациями ранее была 
рассмотрена в работах [23, 24]. 

Положим, что область V , соответствующая слоистой композит-

ной пластине в K , в декартовых координатах , 1,2,3ix i  ,                                  

описывается следующим соотношением: 

 
3 3 33 3 2 2 1 1
0 0 0 2 1: , , ,

2 2 2 2 2 2

i h h h h h h
K V x x x x x x

 
 

           
  

  (19) 
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где 
ih   —  длины ребер пластины в  K . 

 

        
 

Рис. 1. Цилиндрический изгиб слоистой пластины 

 

Радиус-векторы материальных точек M V  в K  и K  обозначим 

 , .i i

i ix x x e x e   (20) 

Имеется соотношение (закон движения) между ix  и 
ix  для 0t    

 ( , ).i i ix x x t   (21) 

 Введем кроме декартовых координат ix  цилиндрические координаты 

, ,r z  материальной точки M  в физическом базисе цилиндрической 

системы координат 
r zO e e e  

 

1

2

3

1 0 0

0 cos sin ,

0 sin cos

z

r

  

 

    
    

    
        

e e

e e

e e

  

тогда радиус-вектор x  (20)  можно записать в виде 

 ,r zr z x e e   (22) 

причем имеют место соотношения, аналогичные (21) 

0
3x

0
0
3 3
0

2

h
x 

0
3
0x

0
0
3 3
0

2

h
x 

M

0

x

3e

2e1e
0
1x

0
2x

0
0
1 1
0

2

h
x 

F

3x

r

0r

r

re

e
M



1x

2x

x

3e

2e1e
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 ( , ), ( , ), ( , ).i i ir r x t x t z z x t      (23) 

Рассмотрим закон движения (23), соответствующий цилиндриче-

скому изгибу пластины в цилиндрическую панель [23, 24] 

 1 2 3, , 2 ,z x B x r Ax     (24) 

где ,A B  — константы. 

В этом преобразовании (24) боковые поверхности пластины, имеющие 

в K  координаты 3 3

0 3 / 2x x h  , при переходе в K , описываются урав-

нениями постоянного радиуса r , т.е.  

 3

0 32 / 2 .r A x h

 
  

 
  (25) 

Поскольку координата 3x  в K  и радиус r  в K , согласно (20) и 

(22), отсчитываются от одной и той же неподвижной точки O  (рис. 1), 

то значения 
1x  и 0r   должны быть согласованы. Это условие выпол-

няется в (24).  

Боковые поверхности пластины 2

3 / 2x h   преобразуются в K  в 

плоские грани с координатами 

 
2, / 2.Bh        (26) 

Площади внешней и внутренней поверхности r r  цилиндриче-

ской пластины в K  равны  

 
1 2 12S r h Br h h       (27) 

Обозначим *r  такой радиус цилиндрической панели в K , при       

котором площадь соответствующей поверхности *r r  не изменяется 

при переходе из K  в K , т.е. 

 
2 1 * 2 1, , ,S S S h h S Br h h     (28) 

очевидно, что  

 *
1 .r

B
   (29) 
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Такая поверхность *r r  называется «нейтральной» [23]. Со-

гласно (24)  длина пластины по 1x  при переходе из K  в K  не изменя-

ется.  

Решение осредненной задачи о цилиндрическом изгибе транс-

версально-изотропной пластины.  Вычислим локальные векторы  

базиса ir  [22]  в K , используя (22) и (24)  

 

1 1 2
2 2 2

3
3 3

,  ,

.

r r

r r

r r rB

x x x

r A

r
x x







  
    




 
  

e ex
r e r e

x
r e e

  (30) 

Вычислим метрическую матрицу 
ij i jg  r r  и обратную метриче-

скую матрицу 
ijg  в K   

    2 2 2 2

2 2 2 2

1 0 0 1 0 0

0 0 , 0 0 .

0 0 0 0

ij

ijg A r g A r

r B r B

 

 

   
   

    
   
   

  (31) 

Детерминант метрической матрицы:   2 2det ijg g A B  .                   

Поскольку среда (композит) является несжимаемой, то 1B A  и 

0A  . 

Вычислим векторы взаимного базиса i ij

jgr r  в K   

 1 2 1, .z r A 

 r e r e   (32) 

Принимая во внимание, что в K : , i i

i i r e r e , вычислим                   

градиент деформаций 

 
1 1

3 2 1 1.
i

i rr A rA 

        F r r e e e e e e   (33) 

Вычислим тензор 2
U   

 2 2 2 2 2

3 3 2 2 1 1.
T A r r A        U F F e e e e e e   (34) 

Поскольку тензор 2
U  диагональный, легко находим собственные 

значения  

 
3 2 1, , 1.

A r

r A
       (35) 



Ю.И. Димитриенко, Е.А. Губарева, С.Б. Каримов, Д.Ю. Кольжанова 

12 

и собственные векторы тензора U : 
i ip e . С их помощью вычисляем 

энергетические меры деформации 

 

   

     

     

3
2

1

2

11 22 22

13 23 12

1
, , , , ,

1 1 1
, , ,

,

nn

n III

n III n IIIn n n

n n n

G n I II IV V
n III

r r
G G G

n III n III A n III A

G G G

 






 

  


   
     

     

 

G U e

  (36) 

где  2

i i i e e e  . Вычислим инварианты (8) этих тензоров 
 n

G  относи-

тельно группы трансверсальной изотропии. В базисе ie  эти                           

инварианты имеют вид: 

 
   

     

 

 

1

2

2 2

3 13 23

2

2 2 2

4 11 12 22 2

1
1 ,

1
,

0,

1
2 1 .

n III

G

n III

G

n n

G

n IIIn n n

G

r
I

n III A

A
I

n III r

I G G

r
I G G G

An III







  
       

 
  

  

  

  
          

  (37) 

Обратный энергетический тензор имеет вид 

 
 

 1 2 2 2

3 2 1 .

n III n IIIn
r A

n III
A r

 


    

            

G e e e   (38) 

Вычислим также тензор поворота  O  , сопровождающий дефор-
мацию [22] 

 1

1 1 2 3.r

       O F U e e e e e e   (39) 

Используя матричную запись определяющих соотношений (12) 
для трансверсально–изотропного несжимаемого композита находим 
осредненные энергетические тензоры напряжений 

 
   3

2

1

,
n n

T 


T e   (40) 

где 
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 

 

 

4
11 1

33 2

4
22 1

2
,   

,

2
.

n

n IIIn

n III n IIIn

T p
n III

r
T p

A

A r
T p

r n III A











 

   


 
   

 

   
      

   

  (41) 

Здесь   определяются по формулам (10) и (37). 

Найдем тензор истинных напряжений Коши T  , используя соот-

ношения (3) между T  и 
 n

T . Будем искать T  в диагональном виде в 

базисе 
r ze e e : 

 2 2 2

11 22 33 .z rT T T  T e e e   (42) 

Используя определение энергетических тензоров напряжений 
 n

T  

[22], c учетом (33), (39) и (40) , получим выражения для 
 n

T  через             

компоненты T  тензора T  

 

 

 

2 2 2 2 2 2 2

11 1 22 2 33 3

2 1 2 1 2

11 1 22 2 33 3

1 1 2 1 2 1 2

11 1 22 2 33 3

1 1 2 2 2 2 2 2 2

11 1 22 2 33 3

,

1
,

2

1
,

2

.

T

II
T T

IV
T T

V
T

T A r T A r T

T A rT A r T

T A r T A rT

T A r T A r T

 

 

   

   

     

        

        

     

I

T F T F e e e

T F T O O T F e e e

T F T O O T F e e e

T F T F e e e

  (43) 

Сравнивая представления (41) и (43) для энергетических тензоров 
 n

T , получаем следующие соотношения между 
 n

T  и  T  для любого  

, , ,n I II IV V   

 
     

11 11 22 22 33 33, , .

III n III nn n n
r A

T T T T T T
A r

 

   
     

   
  (44) 

Подставляя выражения (44) в (41), получаем формулы для компо-

нент тензора напряжений Коши при заданных n   

 , 1,2,3,T p        (45) 

где обозначены 
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 

4
1 1

2

4
2 1

3 2

2
,

2
,

, , , , .

III n III n

III n

n III

A A

r n III r

r
n I II IV V

A









 



  


   
     

   

 
   

 

  (46) 

Найдем теперь функцию p  . Рассмотрим осредненные уравнения 

равновесия (13) композитной пластины в K .  В цилиндрических коор-

динатах эти уравнения, с учетом диагонального вида (42) тензора 

напряжений сводится к одному тождественно ненулевому уравнению 

  33 22 0.
d

rT T
dr

    (47) 

Подставляя выражение (44) для 
33T  и  

22T  , получаем дифференци-

альное уравнение относительно   p r  

 3 3 2 .
ddp

dr dr r

  
    (48) 

Интегрируя это уравнение по r , получаем 

  3 2
0 3 3 .

r

r

p p dr r
r





 
      (49) 

Граничные условия на поверхностях r r  задаем в следующем 

виде 

  33: 0.r r T r     

Подставляем в эти уравнения выражение (45) для 
33T  с учетом 

(49), получаем 2 алгебраических уравнения 

   3 2
0 3 , 0.

r

r

p r dr
r







 
     (50) 

Поскольку функции 2 ,  3  (46) зависят от константы A , а            

значение r  согласно (25), зависит от A  и 3

0x , то первая формула (50) 

связывает   с 0p  с A ,  3

0x , а вторая формула (50) позволяет выразить   

через 3

0x . 
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Подставляя (50) в (48) и (45), находим 

 

3 2
3

2 3
11 1 3

2 3
22 2 3

2 3
33

,

,

,

.

r

r

r

r

r

r

r

r

p dr
r

T dr
r

T dr
r

T dr
r









 
  

 
   

 
   

 










  (51) 

Вычислим тангенциальное усилие в цилиндрической панели 

      2 22 33 33 33 0,

r r

r r

d
N T dr rT dr r T r r T r

dr

 

 

           (52) 

а также изгибающий момент, который определим следующим образом 

 
2 22 .

r

r

M rT dr




    (53) 

Подставляя третью формулу (51) в (53), находим 

  
 2

2 3

2 2 3

1
.

2 2

r r

r r

r
M r dr dr

r

 

 


 

       (54) 

Поскольку функции 2 , 3  зависят от A  и  3

0x , а 3

0x  можно вы-

разить через A  с помощью соотношения (50), то формула (54) пред-

ставляет собой соотношение между 2M  и  A . По заданному значению 

момента 2M  соотношение (54) позволяет найти A , т.е. фактически — 

радиус r  изгиба пластины (согласно (24)). 

Результаты численного решения осредненной задачи.  Для 

численного решения второго уравнения (50) введем радиус 0r  цилин-

дрического изгиба пластины в K , соответствующий срединной по-

верхности 3 3

0x x  в К . Согласно формуле (24) имеем: 
3

0 02r A x , 

следовательно 3

0x  и радиусы r , определенные по (25),  можно выра-

зить 3

0x  через 0r  и A : 
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2

3 20
0 0 3, .

2

r
x r r Ah

A
     (55) 

Тогда второе уравнение (50)  можно рассматривать как неявное 

заданное соотношение между параметрами 0r  и A . Функции 2 , 3 , 

входящие в это уравнение, также можно считать зависящими от 
0r  и 

A . Результаты численного решения второго уравнения (50) в виде                   

зависимости  0nA A r  для различных моделей nB  представлены                      

на рис. 2. 

 

 
 

Рис. 2. Решение второго уравнения (50) в виде зависимости  

константы A  от радиуса 0r  цилиндрического изгиба панели  

(цифры у кривых — номер n  модели  nB ) 

 

При расчетах были приняты следующие значения констант:

1 м,L   3 0,01 м,h  11 200 МПа,l  12 10 МПа,l 
44 20 МПа,l 

1 2 4 1s s s   . 

На рис. 3а  и 3б  показаны зависимости момента 2M , вычислен-

ного по формуле  (54), от кривизны 0 01/k r  цилиндрического изгиба 

панели (цифры у кривых — номер n  модели nB ), для 2-х различных 

толщин панели 3 0,01 м,h   и 3 0,05 мh  . С увеличением толщины 

панели в 5 раз, значение момента 2M , возрастает в 125 раз для всех 

моделей nB  (например, для 4B — c 0,32 до 40 МПа м ). Таким                            

образом, зависимость момента 2M  от начальной толщина пластины 

является  кубической, как и для изотропных материалов [23].   

9, 2

6,9

4,6

2,3

0,0

A

00         1,9         3,8         5,7         7,6         r

I

II

IV

V
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а 

 
б 

Рис. 3. Зависимость 
2M  вычисленного по формуле  (54)  от  

кривизны 
0k  цилиндрического изгиба панели 

(цифры у кривых — номер n  модели  nB ) 

а — 3 0,01 мh  ; б — 3 0,05 мh    

 

На рис. 4 и 5  показаны осредненные напряжения в трансвер-

сально–изотропной пластине при изгибе, при значении 
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0 10 мk  . Показаны распределения компонентов тензора напря-

жений  Коши 22 ( )T r  и 33( )T r  по радиальной координате в K . Расчеты 

проведены для 2-х значений толщины пластины: 
3 0,01 мh   и 

3 0,05 мh  . Для относительно тонкой пластины распределение               
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компоненты 
22 ( )T r  близко к линейному для всех моделей 

nB , что              

соответствует линейной теории. 
Для толстой пластины распределение компоненты напряжений 

22 ( )T r  является нелинейным. Для толстых пластин различие напряже-

ний 
33( )T r  для разных  моделей 

nB  — достаточно существенное. 

 

 
 

а 

 
 

б 

Рис. 4. Распределение компоненты 22 ( )T r  тензора напряжений Коши,   

вычисленной по формуле  (51), по радиусу r  панели при цилиндрическом  
изгибе (цифры у кривых — номер n  модели  nB )  

а — 3 0,01 мh  ; б — 3 0,05 мh    
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Рис. 5. Распределение компоненты 
33 ( )T r  тензора напряжений Коши,   

вычисленной по формуле  (51), по радиусу r  панели при цилиндрическом  

изгибе (цифры у кривых — номер n  модели  nB ) 

а — 3 0,05 мh  ; б — 3 0,01 мh    
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Для вычисления тензора  напряжений Коши T  в слоях композит-

ной пластины введем в актуальной конфигурации  K  эйлеровы            

локальные цилиндрические координаты , , ,z r    (рис.6), связанные 

c лагранжевыми локальными декартовыми координатами i  c                                  

помощью локального закона движения материальных точек  

 ( , ), ( , ), ( , ).i i i

z z r rt t t              (56) 

 

 

Рис. 6 Различные координаты, используемые в задаче о цилиндрическом  

изгибе композитной слоистой панели 

 

В силу особенностей рассматриваемой задачи о цилиндрическом 

изгибе, в соответствии с осредненным законом движения (21),                       

решение локальной задачи 0L  в актуальной конфигурации ищем                         

зависящим только от локальной радиальной координаты r , а  гради-

ент деформации F  в слоях пластины ищем совпадающим с осреднен-

ным градиентом F  (33). Тогда энергетические меры деформации 
 n

G  в 

слоях композита  также совпадают с осредненными мерами                                 

деформации 
 n

G  (36) 

 
   

, , , , , , .
nn

n I II IV V   F F U U G G   (57) 

Все эти тензоры в данной задаче являются диагональными. 

Cледует отметить, что в рамках МАО соотношения (57) имеют место 

только в нулевом приближении. 

Определяющие соотношения для изотропных слоев пластины,          

согласно модели
nB  , имеют вид (1), тогда с учетом (57) и диагональности 
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тензоров  
 n

G  получаем, что  энергетические тензоры  напряжений 
 n

T  в 

нулевом приближении также являются диагональными 

 
   3

2

1

,

nn

T 


T e   (58) 

где 

 

 

 

(n)
1

(n)(n)
2

1

G

1
( ) (1 ) (G) 1 G

n
p

T
n III

n III I
n III

 




  

  


  
       

  

  (59) 

здесь 
(n) (n)

ij ijG G  — компоненты тензора 
 n

G , а 
(n)

1(G)I  — след тензора 
 n

G   

 
(n)

1

1
(G) 1 .

n III n III
A r

I
n III r A

     
            

  (60) 

В силу соотношений (3) и (58) тензор напряжений Коши T  в ну-
левом приближении также имеет диагональный вид, но в базисе  

r ze e e , аналогично тензору T  (формула (48))  

 
2 2 2

11 22 33 ,z rT T T  T e e e   (61) 

где 

 

(0)

(0)

1

(0)

2

(0)

3

(n)
2

1

2

, 1, 2,3,

,

,

,

1
( ) (1 ) (G) ,

( ) (1 ).

n III n III

n III n III

T p

b
a

n III

b r r
a

n III A A

b A A
a

n III r r

a n III I
n III

b n III

  


 

 
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 

   
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

    
            

    
            

 
    

 

  

  (62) 

Функции (0)

  нулевого приближения в цилиндрической системе 

координат зависят только от глобальной радиальной координаты r ,          

а функция p  — от  локальной радиальной координаты r  и от r , как 
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от параметра. Тогда  единственное тождественно ненулевое уравнение 

равновесия в локальной задаче 0L  в K  принимает вид, аналогичный 

уравнению (47) 

  33 22 0.r

r

d
T T

d



    (63) 

Подставляя выражение (62) в (63), получаем дифференциальное 

уравнение относительно p   

 
(0) (0)

3 2 .
r r

dp

d 

 
   (64) 

Интегрируя это уравнение по r  на промежутке [ _, ]rr  , получаем 

 (0) (0)

0 3 2( ) ln rp p
r





      (65) 

Константу 
0p  находим из условия нормировки по ЯП 

 
2 2

2
.

r

r r

r

p d p
r r

 


 


    (66) 

  Подставляя (65) в (66), находим 

 
(0) (0)

3 2

2 2

2( )
ln .

r

r
r r

r

p p d
r r r


 



  

 
 

    (67) 

В итоге получаем выражения (62), (67) для вычисления компонент 

тензора напряжений Коши ( , )rT r   в слоях композита в нулевом   

приближении, которые являются функциями от радиуса пластины в 
актуальной конфигурации r  (глобальная координата) и от локальной 

радиальной координаты r . 

Результаты расчетов напряжений для композитной панели, ЯП     
которой состоит из 2-х слоев — полиуретана и резины с константами 

моделей 
nB  представлены на рис. 7…9. При численных расчетах 

число ЯП полагалось равным 5. Графики на рисунках соответствуют 

значениям 
0 0,4 мr    1

0 2,5 мk  . 

Напряжения 22T  в слоистой пластине имеют разрыв на границе 

раздела слоев (рис. 7 и 8), в одном из слоев (в полиуретане) значения 

22T  ниже значений осредненного напряжения 22T , а в другом                

(резине) — они выше. С увеличением толщины 
3h  пластины при         

одном и том же радиусе изгиба 
0 0,1 мr   напряжения 22T  в слоях           
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пластины возрастают (рис. 7 и 8). Модели 
IB  и IIB  приводят каче-

ственно к одинаковым результатам, но численное различие между 

этими моделями по значениям напряжений (0)

22T  составляет около 15%. 

 

 

а 
 

 

б 

Рис. 7. Распределение по радиусу r  средних напряжений 
22T  (кривая 1) и               

истинных напряжений  
22T  в слоях (кривая 2) композитной панели                                    

при цилиндрическом изгибе (модель 
IB ) 

а — 3 0,01 мh  ; б — 3 0,05 мh    
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Рис. 8. Распределение по радиусу r  средних напряжений 
22T  (кривая 1) и               

истинных напряжений  
22T  в слоях (кривая 2) композитной панели                                    

при цилиндрическом изгибе (модель 
IIB ) 

а — 3 0,01 мh  ; б — 3 0,05 мh    
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Рис. 8. Распределение по радиусу r  средних напряжений 
33T  (кривая 1) и               

истинных напряжений  
33T  в слоях (кривая 2) композитной панели                                    

при цилиндрическом изгибе (модель 
IB ) 

а — 3 0,01 мh  ; б — 3 0,05 мh    
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соответствующих различным энергетическим (сопряжённым) парам 

тензоров напряжений–деформаций. 
Решение задачи получено в аналитическом виде с помощью            

метода МАО.  Установлены некоторые эффекты нелинейного                     
деформирования композитной панели: при относительно малых 

начальных толщинах панели 3 / 0,01h L






 

 компоненты тензора 

напряжений Коши в панели, как осредненные, так и истинные                    
(в нулевом приближении) практически не зависят от класса модели 
определяющих соотношений. В тоже время уже для более толстых           

панелей 3 / 0,05h L






 

 напряжения существенно различаются для    

разных классов моделей слоев композита. 

ЛИТЕРАТУРА 

 Christensen R.M. Mechanics of composite materials. New York, John 
Wiley&Sons Publ., 1979, 324 p. 

 Малмейстер А.К., Тамуж В.П., Тетерс Г.А. Сопротивление полимерных и 
композитных материалов. Рига, Зинатне, 1980, 572 с. 

 Jones R.M. Mechanics of Composite Materials. USA, Taylor&Francis Publ., 
1999, 520 p. 

 Васильев В.В., Тарнопольский Ю.М. Композиционные материалы: 
справочник. Москва, Машиностроение, 1989, 510 с. 

 Ванин Г.А. Микромеханика композиционных материалов. Киев, Наукова 
думка, 1985, 300 с.  

 Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических сре-
дах. Математические задачи механики композиционных материалов. 
Москва, Наука, 1984, 352 с. 

 Bensoussan A., Lions J.L., Papanicolaou G. Asymptotic analysis for periodic 
structures. North-Holland, 1978, 721 p. 

 Победря Б.Е. Механика композиционных материалов. Москва, Изд-во МГУ, 
1984, 324 с. 

 Санчес-Паленсия Э. Неоднородные среды и теория колебаний. Москва, 
Мир, 1984, 472 с. 

 Димитриенко Ю.И., Кашкаров А.И. Конечно-элементный метод для 
вычисления эффективных характеристик пространственно-армированных 
композитов. Вестник МГТУ им. Баумана. Сер. Естественные науки, 2002, 
№ 2, с. 95–108. 

 Димитриенко Ю.И. Моделирование нелинейно-упругих характеристик 
композитов с конечными деформациями методом асимптотического 
осреднения. Известия ВУЗов. Машиностроение, 2015, № 11, с. 68–77. 

 Димитриенко Ю.И., Губарева Е.А., Кольжанова Д.Ю. Моделирование 
слоистых композитов с конечными деформациями методом 
асимптотической гомогенизации. Инженерный журнал: наука и инновации,  
2015, № 5 (41), с. 1–5. 

 Димитриенко Ю.И., Губарева Е.А., Кольжанова Д.Ю., Каримов С.Б. 
Моделирование несжимаемых слоистых композитов с конечными 
деформациями на основе метода асимптотического осреднения. 
Математическое моделирование и численные методы, 2017, № 1, c. 32–54. 



Моделирование напряжений в композитной нелинейно упругой панели… 

27 

 Димитриенко Ю.И., Губарева Е.А., Каримов С.Б., Кольжанова Д.Ю. 
Моделирование эффективных характеристик трансверсально–изотропных 
несжимаемых композитов с конечными деформациями. Математическое 
моделирование и численные методы, 2018, № 4, c. 72–92. 

 Dimitrienko Y.I., Karimov S.B., Kolzhanova D.Y. Modeling of the effective 
universal constitutive relations for elastic laminated composites with finite strains. 
IOP Conference Series: Material Science and Engineering, 2019, vol. 683, art no. 
012006. DOI: 10.1088/1757-899X/683/1/012006 

 Dimitrienko Y.I., Gubareva E.A., Karimov S.B., Kolzhanova D.Y. Universal 
models of the constitutive relations for transversely isotropic compressible 
composites with finite strains. IOP Conference Series: Material Science and 
Engineering, 2020, vol. 934, art no. 012012. DOI: 10.1088/1757-
899X/934/1/012012 

 Yang Q., Xu F. Numerical modeling of nonlinear deformation of polymer 
composites based on hyperelastic constitutive law. Frontiers of Mechanical 
Engineering in China, 2009, no. 4, pp. 284–288. 

 Aboudi J. Finite strain micromechanical modeling of multiphase composites. 
International Journal for Multiscale Computational Engineering, 2008, no. 6,             
pp. 411–434.  

 Zhang B., Yu X., Gu B. Micromechanical modeling of large deformation in 
sepiolite reinforced rubber sealing composites under transverse tension. Polymer 
Composites, 2017, vol. 38, iss. 2, pp. 381–388. 

 Ge Q., Luo X., Iversen C.B., Nejad H.B., Mather P.T., Dunn M.L., Jerry Qi H. A 
finite deformation thermomechanical constitutive model for triple shape 
polymeric composites based on dual thermal transitions. International Journal of 
Solids and Structures, 2014, vol. 51, iss. 15–16, pp. 2777–2790. 

 Димитриенко Ю.И. Механика сплошной среды. Т. 4. Основы механики 
твердых сред. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2013, 624 с. 

 Димитриенко Ю.И. Механика сплошной среды. Т. 2. Универсальные законы 
механики и электродинамики сплошной среды. Москва, Изд-во МГТУ им. 
Н.Э. Баумана, 2011, 560 с. 

 Черных К.Ф. Нелинейная теория упругости в машиностроительных 
расчетах. Ленинград, Машиностроение, 1986, 336 с. 

 Лурье А.И. Нелинейная теория упругости. Москва, Наука, 1980, 512 с. 

Статья поступила в редакцию 19.01.2021 

Ссылку на эту статью просим оформлять следующим образом:  

Димитриенко Ю.И., Губарева Е.А., Каримов С.Б., Кольжанова Д.Ю. Моделиро-

вание напряжений в композитной нелинейно упругой панели при цилиндрическом 

изгибе. Математическое моделирование и численные методы, 2021, № 1, с. 3–30. 

 

Димитриенко Юрий Иванович — д-р физ.-мат. наук, заведующий кафедрой «Вы-

числительная математика и математическая физика» МГТУ им. Н.Э. Баумана, ди-

ректор Научно-образовательного центра «Суперкомпьютерное инженерное модели-

рование и разработка программных комплексов» МГТУ им. Н.Э. Баумана.  

e-mail: dimit.bmstu@gmail.com 

 

Губарева Елена Александровна — канд. физ.-мат. наук, доцент, заместитель заве-

дующего кафедрой «Вычислительная математика и математическая физика» МГТУ 

им. Н.Э. Баумана. e-mail: elena.a.gubareva@yandex.ru 

 



Ю.И. Димитриенко, Е.А. Губарева, С.Б. Каримов, Д.Ю. Кольжанова 

28 

Каримов Суннат Бахтиярович — ассистент кафедры «Вычислительная матема-
тика и математическая физика» МГТУ им. Н.Э. Баумана, инженер Научно-образова-
тельного центра «Суперкомпьютерное инженерное моделирование и разработка 
программных комплексов» МГТУ им. Н.Э. Баумана. e-mail: sunnat49@yandex.ru 

 
Кольжанова Дарья Юрьевна — ассистент кафедры «Вычислительная математика и 
математическая физика» МГТУ им. Н.Э. Баумана. e-mail: darya.kolzhanova@yandex.ru 

 

Modeling of stresses in a composite nonlinear elastic panel 

under cylindrical bending  

 Yu.I. Dimitrienko, E.A. Gubareva, S.B. Karimov, D.Yu. Kolzhanova  

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The problem of calculating the stress–strain state of a composite laminated panel during 
cylindrical bending under conditions of finite deformations is considered. To solve the 
problem, the method of asymptotic averaging of periodic nonlinear elastic structures with 
finite deformations was applied, which was developed in detail earlier in the previous 
works of the authors. A feature of this problem is the use of universal models of constitutive 
relations for isotropic components of the composite, as well as for the composite as a 
whole, which is a transversely isotropic nonlinear elastic medium. Universal models make 
it possible to obtain solution of problems within the framework of a single solution algo-
rithm simultaneously for several classes of models of nonlinear elastic media correspond-
ing to different conjugate pairs of stress tensors–deformation. An analytical solution is 
obtained for the problem of cylindrical bending of a composite panel. A numerical analysis 
of the solution is carried out using the example of a composite, the periodicity cell of which 
consists of two layers: polyurethane and rubber. It is shown that for thin panels the 
stresses, both averaged and true, practically do not depend on the class of the model of the 
constitutive relations. At the same time, for thicker panels, the stresses differ significantly 
for different classes of models of composite layers. 
 
Keywords: finite deformations, composites, cylindrical bending, composite panel, incom-
pressible media, transversely isotropic medium, asymptotic averaging, universal models 
of elastic media, Cauchy stress tensor 
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