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Рассмотрено появление хаотических аттракторов в системе трех обыкновенных 
дифференциальных уравнений, возникающих в теории моделей «реакция — диф-
фузия». Исследованы динамика соответствующих одномерных и двумерных отоб-
ражений и ляпуновские показатели возникающих аттракторов. Показано, что пе-
реход к хаосу происходит по нетрадиционному сценарию, связанному с много-
кратным рождением и исчезновением хаотических режимов, который изучен для 
одномерных отображений с острой вершиной и квадратичным минимумом. С по-
мощью численного анализа исследованы характерные особенности системы: 
наличие областей бистабильности и гиперболичности, кризис хаотических ат-
тракторов. 
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Введение. В настоящее время одними из наиболее популярных 

классов нелинейных математических моделей являются системы «ре-
акция–диффузия» (см., например, [1–3]): 
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где ( , )X tr  и ( , )Y tr  — концентрации реагирующих веществ; 

1( , , )f X Y   и 2 ( , , )f X Y   — нелинейные функции, определяющие 
кинетику их взаимодействия; 1D  и 2D  — соответствующие коэффи-
циенты диффузии;   — оператор Лапласа; r  и t  — пространствен-
ная и временная координаты. Впервые модель подобного вида была 
редложена в работе А. Тьюринга [4]; на сегодняшний день этим си-
стемам и их многочисленным приложениям посвящено большое чис-
ло работ. 

В соответствии с исследовательской программой А. Пуанкаре 
одним из наиболее интересных направлений изучения нелинейных 
систем является анализ бифуркаций и универсальных описаний изу-
чаемых объектов в окрестностях точек бифуркации. Этот подход был 
применен к системам вида (1), для которых типичными являются би-
фуркация Андронова — Хопфа (бифуркация рождения предельного 
цикла) и бифуркация Тьюринга (диффузионная неустойчивость). 
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Универсальное описание связано с наличием малого параметра 

0      и возможностью перехода к медленным переменным 

 R r  и 2 .T t   В простейшем одномерном (и наиболее типичном) 
случае это приводит к следующей краевой задаче: 
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где ( , ) ( , ).W u r t iv r t   
Вывод этого уравнения на физическом уровне строгости и анализ 

области его применимости был дан И. Курамото и Т. Цузуки [5]. Более 
строгое обоснование было предложено С.А. Кащенко в построенной им 
теории квазинормальных форм, в рамках которой можно рассматривать 
уравнения с малой диффузией, пропорциональной   [6]. Нетривиаль-
ные аттракторы уравнение имеет, когда выбран знак плюс. От коэффи-
циента 0c  можно избавиться заменой переменных. Краевая задача (2) 

подробно исследована в случае небольших областей l    (см., напри-
мер, [7]). 

Полагая, что в решении при небольших l    существенны толь-
ко две первые гармоники 

     0 0 1 1 cos , / ,W u iv x iy x iy kr k l         

и, пренебрегая остальными, получаем так называемую двухмодо-
вую систему. Ее можно существенно упростить, если положить 
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Это приводит к системе уравнений 
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(3) 

Система (3) и будет объектом нашего исследования. Поскольку 
  имеет смысл разности фаз, будем для удобства считать, что   
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приведено по модулю 2 .  Заметим, что возможность перейти от си-
стемы четырех дифференциальных уравнений к трем связана с сим-
метрией исходной задачи , const,iW We     которую сохраняют 
галеркинские системы. 

В работе [7] подробно изучен один хаотический аттрактор, опреде-
ляющий асимптотику этой системы при t   со значениями парамет-
ров 1 7,c   2 6,c    1k   (рис. 1). Оказалось, что это решение обладает 
многими интересными геометрическими и эргодическими свойствами.  

Рис. 1. Хаотический аттрактор системы (3). Траектория получена для начальных 

данных  0,5; 0,5;   при значениях параметров 1 7;c   2 6; 1c k    
 
В данной работе на основе результатов численного анализа ис-

следуется, как возникает и исчезает этот хаотический аттрактор при 
изменении параметров в пространстве 1 2( , , ).c c k  Будем проводить 
однопараметрический анализ, фиксируя два параметра и варьируя 
третий. Для численного решения (3) использован стандартный метод 
Рунге — Кутта 4-го порядка; шаг интегрирования выбран таким об-
разом, чтобы исключить появление «вычислительных артефактов». 

Инструменты анализа и общая картина. Замечательным свой-
ством динамического хаоса является чувствительность по отноше-
нию к начальным данным. Это свойство отражает экспоненциальное 
разбегание бесконечно близких траекторий. Из этого следует, что 
прогноз состояния системы при типичных начальных данных в сред-
нем может быть дан на время, не превышающее некоторого значения 

,T  называемого горизонтом прогноза. Одним из наиболее удобных 
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методов количественного исследования динамики близких траекто-
рий является аппарат показателей Ляпунова [7]. Для их вычисления в 
настоящей работе использован метод Бенеттина [8]. 

Сумма показателей Ляпунова в соответствии с мультипликатив-
ной эргодической теоремой Оселедца [7] равна среднему по времени 
показателю сжатия или растяжения элемента фазового объема. В 
частности, изменение бесконечно малого р-мерного фазового объема 
в динамической системе, заданной в р-мерном фазовом пространстве, 
определяется уравнением 
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Здесь ( )tx  — траектория, вдоль которой рассматривается изме-
нение фазового объема. 

Проведенные расчеты показывают, что за характерное время воз-
врата точки, определяющей состояние системы, на плоскость Пуан-
каре фазовый объем 3V  для хаотических аттракторов системы (3) 
убывает более чем в 800 раз. За это время прямоугольник на плоско-
сти Пуанкаре, в пределах которого находятся точки, принадлежащие 
аттрактору, с высокой точностью стягивается в отрезок. 

Странный аттрактор системы (3) порождает в сечении Пуанкаре 
плоскостью 2 , 0, 1, 2, ...,k k       отображение 
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 У этого отображения есть направление, обеспечивающее силь-
ное сжатие, и направление, вдоль которого происходит растяжение, 
расположенное под достаточно большим углом к сжимающему 
направлению во всей области, которой принадлежит этот странный 
аттрактор (см. схематичное изображение на рис. 2). Это позволило 
проверить обобщенные условия гиперболичности, гарантирующие 
ряд характеристик хаоса, связанных с порождаемым им двумерным 
отображением [7]. 

В некоторых случаях хаотический аттрактор одномерного отобра-
жения занимает весь отрезок, который отображение переводит в  
себя, — плотность инвариантной меры [7], таким образом, отлична от 
нуля на всем этом отрезке. Аттракторы такого типа называют шумя-
щими циклами (обозначим их 1 ). Иногда инвариантная мера оказы-
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вается сосредоточена на р-островах, которые траектория дискретной 

динамической системы последовательно обходит — обозначим их p . 
Как будет показано ниже, для одномерных отображений, соответ-
ствующих системе (3), характерно наличие таких шумящих циклов. 

 

 
Рис. 2. Сжимающее и растягивающее направления двумерного отображения 

исходной  области     0,4; 0,6 0, 1;0,4 ,  переводящего  ее  в  себя  при значениях 

параметров 1 27; 6; 1c c k     

 
 Одномерные отображения и сценарии возникновения хаоса. 

Для дальнейшего анализа весьма важна картина бифуркаций для од-
номерного отображения с острой степенной вершиной 

 1 2

1
, 1.

1
n

x
x

x




  

  
  

 (4) 

Для логистического отображения после каждой бифуркации 
удвоения периода ближайший к вершине ( 0,5)x   элемент цикла 

2nS  перескакивает с одной ветви ( 0,5)x   на другую ( 0,5)x   строго 
поочередно: влево — вправо — влево — … Каждый раз, когда эле-
мент цикла попадает на вершину 0,5,x   возникает сверхустойчи-
вый цикл. Эти переходы через вершину не приводят к усложнению 
устойчивых циклов и появлению устойчивых режимов. В отображе-
нии (4)  x f x    при ,x    поэтому «гладкий» переход элемента 

устойчивого цикла через вершину невозможен. В связи с изменением 
топологии циклов (числа элементов соответственно на левой и пра-
вой частях отображения) появляется сложная структура, представля-
ющая собой бесконечное количество каскадов бифуркаций удвоения 
периода. Такая структура, подробно изученной в работе [9], получила 
название «каскад каскадов». Бифуркационная диаграмма отображе-
ния представлена на рис. 3. 
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Рис. 3. Бифуркационная диаграмма для отображения с острой степенной 
вершиной при 0,25   

 
Качественные особенности бифуркационных диаграмм. При-

веденные расчеты для трех бифуркационных диаграмм, возникаю-
щих соответственно при изменении параметров 1c , 2c , k  и фиксиро-
ванной паре других параметров системы, показывает их 
удивительное сходство. 

Хаотические режимы возникают и исчезают при изменении бифур-
кационного параметра неоднократно, при этом возникновение зон хао-
тического поведения является результатом последовательности бифур-
каций удвоения периода. Каждый раз появляются области, в которых 
нет «оконной структуры». Исчезновения аттракторов похожи одно на 
другое. По этим причинам далее подробно остановимся на исследова-
нии перехода к хаосу при изменении параметра 1c  (рис. 4), считая, что 

сценарии перехода при вариации параметров 2c  и k  идентичны. 

Рис. 4. Бифуркационная диаграмма для системы (3) при вариации пара- 
                          метра 1c  и значениях параметров 2 6, 1c k    

 Самоподобие фрагментов бифуркационной диаграммы и на-
личие «вложенных структур». Для бифуркационной диаграммы, 
соответствующей логистическому отображению, характерно «двух-
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уровневое самоподобие». С одной стороны, существует бесконечное 

количество каскадов бифуркаций удвоения периода 
12 2 ,

n np pS S
   

1, 2, ... .n   С другой — в пределах каждого каскада фрагменты меж-

ду последовательными бифуркациями 
12 2n np pS S
   оказываются 

подобными друг другу с тем большей точностью, чем больше ,n  а 
значения, при которых происходят бифуркации, быстро стремятся к 
геометрической прогрессии. Это явление стало основой для теории 
универсальности, построенной М. Фейгенбаумом [10]. 

Исследование отображений с острой вершиной и квадратичным 
минимумом показало, что для них характерен еще один уровень са-
моподобия. В них, как отмечено ранее, оказывается бесконечно мно-
го каскадов бифуркаций удвоения периода. В дополнение к этому 
самих таких каскадов, подобных тем, которые наблюдаются в логи-
стическом отображении, по-видимому, также бесконечно много. Рас-
четы показывают, что такая вложенная «матрешечная» структура 
имеет место не только для модельного одномерного отображения, но 
и для исходной двухмодовой системы. 

В самом деле, при взгляде на бифуркационную диаграмму, ха-
рактеризующую изменение аттракторов при увеличении параметра 

1,c  становится ясно, что хаос в этой системе возникает и исчезает 
примерно одинаковым образом многократно на разных по 1c  мас-
штабах (рис. 5–7). Увеличение соответствующих фрагментов пока-
зывает, что бифуркационная диаграмма изучаемого объекта действи-
тельно носит фрактальный, самоподобный характер с 
коэффициентом подобия около 10.  

Рис. 5. «Матрешечная» структура в системе (3): 14,5 9,3;c   2 6;c    

                                   1.k   Выделенная область: 15 5,3c   

 
Как и во всех реальных, а не модельных или специально скон-

струированных фрактальных структурах, можно проследить сравни-
тельно небольшое количество уровней, на которых наблюдается са-
моподобие. В данном случае это ограничено точностью численного 
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решения изучаемой системы дифференциальных уравнений. Однако 
прослеженные уровни масштабов, на которых фрагменты бифурка-
ционной диаграммы оказываются подобными себе, показывают от-
личное качественное соответствие с модельным одномерным отоб-
ражением, и это дает все основания полагать, что в рассматриваемой 
двухмодовой системе имеет место «каскад каскадов». 

Семейство хаотических аттракторов, порождающих растяги-
вающие одномерные отображения. После обнаружения хаотического 
аттрактора в двухмодовой системе встал ряд вопросов: насколько ти-
пичным он является для исследуемого объекта; в какой мере обладает 
чувствительностью к параметрам задачи; является ли структура множе-
ства параметров, при которой имеет место хаос, сложной, подобной той, 

Рис. 6. «Матрешечная» структура в системе (3): 15 5,3;c  2 6; 1.c k  
                                    Выделенная область: 15,08 5,11c   

 

Рис. 7. «Матрешечная» структура в системе (3): 15,08 5,11;c   2 6;c    
1k   
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которая наблюдается для логистического отображения, или простой, 
характерной для всюду растягивающего отображения.  

Приведенные расчеты убедительно показывают, что имеет место 
второй вариант. Зависимость ляпуновских показателей от параметра 
такова, что старший ляпуновский показатель   в большом интервале 
параметров превышает 0,1 (рис. 8). Заметим, что это значение весьма 
велико по сравнению с системой Лоренца и рядом других исследован-
ных ранее странных аттракторов систем трех обыкновенных диффе-
ренциальных уравнений. Из теории ляпуновских показателей следует, 
что для странных аттракторов, существующих в ограниченной области 
фазового пространства в динамических системах с непрерывным вре-
менем, один из ляпуновских показателей равен нулю [11]. Точность  , 
с которой это выполняется при численно найденных показателях, поз-
воляет судить о точности используемого вычислительного алгоритма. 
В данном случае нулевой показатель приближает 2  с 310 .   

 
Рис. 8. Зависимость ляпуновских показателей от параметра 1c  

 
Из расчетов следует, что в этой области параметров странные ат-

тракторы порождают семейство растягивающих отображений (см. далее 
«Возникновение хаоса и эволюция одномерных отображений») с  

1, 1, 2.n k

n

d
z k

d


  


 

Иными словами, качественные свойства исследуемого объекта 
близки к характеристикам простейшего всюду растягивающего од-
номерного отображения. Поэтому можно ожидать, что и в этом слу-
чае количественные характеристики хаоса (моменты распределения 

n  и ,n  автокорреляционные функции, спектр мощности, инвари-
антные меры [7]) непрерывно зависят от параметров задачи в тех 
пределах, в которых можно пренебречь фрактальной структурой 
странного аттрактора вдоль сжимающего направления. 
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 Возникновение хаоса и эволюция одномерных отображений. 
Наглядно представить сценарий возникновения хаоса позволяет упо-
мянутое выше семейство одномерных отображений  1 1, ,n nf c    

порождаемое решениями исходной двухмодовой системы при разных 
значениях 1c . Видно, что вначале имеет место традиционная после-
довательностью бифуркаций удвоения периода. Соответствующие 

точки, порождаемые циклами 2,S  4S  и 8,S  прекрасно ложатся на 
квадратичную параболу. Затем возникают хаотический аттрактор и 
шумящие циклы. 

При увеличении 1c  отображение f  «отращивает острую верши-
ну». В этом представлении получаемое отображение, в отличие от 
модельного, имеет гладкую вершину и острый минимум. Однако за-

мена вида n nc    , где c  — подходящая константа, показывает, 
что они переходят друг в друга. 

Появляется вторая ветвь, которая определяет и циклы, и различ-
ные типы хаоса. Наличие гладкой вершины, как обсуждалось ранее, 
приводит к возникновению сложной «оконной структуры», а наличие 
острого минимума порождает «каскад каскадов». 

Наконец при дальнейшем увеличении параметра возникает растя-
гивающее отображение, при этом 

1 1n

n

d

d




 

на всем переходящем в себя интервале (рис. 9). Таким отображениям 
соответствуют бифуркационная диаграмма, лишенная «оконной» или 
«фрактальной» структуры, «стабильные» ляпуновские показатели и 
«грубый» хаотический аттрактор. Более подробно эволюция одно-
мерных отображений описана в [12]. 

Рис. 9. Одномерное отображение, соответствующее «грубому» хаосу, 

1 6,5c   
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 Исчезновение хаотических аттракторов и бистабильность. 
Анализ двумерного отображения, называемого подковой Смейла, си-
стемы Лоренца, логистического отображения, а также многих других 
объектов нелинейной динамики показал, что хаотические аттракторы 
могут и появляться, и исчезать скачком. Как отмечалось ранее, в ряде 
работ это явление называется кризисом аттрактора [7]. 

Расчеты показывают, что с кризисом аттракторов мы имеем дело 
при увеличении параметров 1,c 2c  или k  при исчезновении хаотиче-
ского аттрактора системы (3). Соответствующие одномерные отоб-
ражения  1n nf    перестают переводить отрезок в себя. 

Поскольку все траектории двухмодовой системы ограничены [7], 
то после кризиса хаотического аттрактора они стремятся к другому 
предельному множеству. Таковым при увеличении 1 9,25c   является 

устойчивая особая точка  , , ,      лежащая на инвариантной пря-

мой 0, 0.     
Результаты вычислительного эксперимента говорят о том, что эта 

устойчивая точка сосуществует с хаотическим аттрактором в интер-
вале параметров 19,11 9,25c   (рис. 10). Для расчетов был исполь-

зован упрощенный вариант метода продолжения по параметру: со 
значений 1 9,26,c   при которых устойчива только одна точка, рас-
считывается траектория при 1 1c c   с начальными данными, лежа-
щими в окрестности точки 1 1,c c   что дает точку или другой нехао-
тический аттрактор, затем описанная процедура повторяется при 

1 1 12c c c    и т. д. При 1 9,109c   особая точка претерпевает бифур-
кацию Хопфа (бифуркацию рождения предельного цикла). В интер-
вале 19,107 9,109c   вместе с хаотическим аттрактором сосуще-

Рис. 10. Бистабильность в системе (3) при 1 9,11c   
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ствует предельный цикл. Таким образом, в отличие от логистическо-
го отображения, других S-унимодальных отображений и системы 
Лоренца для двухмодовой системы (3) характерна бистабильность — 
существование двух аттракторов — странного и нехаотического — 
со своими областями притяжения. 

Это явление характерно для рассматриваемого объекта и при 
других значениях 1.c  Были обнаружены зоны бистабильности при 

15,224 5,226,c   в которой хаотический аттрактор сосуществует с 

устойчивым циклом 2S  (рис. 11), а также в диапазоне значений па-
раметра 15,870 5,872,c   при этом устойчив цикл 4.S  

Рис. 11. Бистабильность в системе (4) при 1 5,225c   
 
 Заключение. Приведенный численный анализ позволил устано-

вить несколько замечательных особенностей аттракторов двухмодовой 
системы, которая отражает свойства большого класса систем «реакция–
диффузия». Была обнаружена большая область параметров, где аттрак-
тор обладает растягивающим и сжимающим направлениями, располо-
женными под большим углом, и с высокой точностью может быть при-
ближен растягивающим одномерным отображением. Это делает его 
идеальным объектом для эргодической и гиперболической теорий. 

Показано качественное соответствие между бифуркационными 
диаграммами, описывающими рождение и уничтожение странных 
аттракторов при вариации параметров 1,c  2c  и k  в различных диапа-
зонах. В частности, исчезновение хаоса во множестве случаев связа-
но с кризисом странного аттрактора и бистабильностью (когда наря-
ду со странным аттрактором существует особая точка или 
предельный цикл). 

Интересные свойства изучаемой модели связаны с самоподобием 
на нескольких уровнях (структура бифуркационной диаграммы типа 
«каскад каскадов»). Соответствующие одномерные отображения 



Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки 

123 

имеют гладкую вершину и острый минимум, что приводит к ряду не-
обычных неустойчивостей. 

Работа выполнена при поддержке Российского фонда фундаменталь-
ных исследований, проекты № 11-01-00887 и № 13-01-00617. 
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Analysis of bifurcations in double-mode approximation 
for Kuramoto — Tsuzuki system 

© G.G. Malinetsky, D.S. Faller 
 

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 
Moscow, 125047, Russia  
 
The article discusses emergence of chaotic attractors in the system of three ordinary dif-
ferential equations arising in the theory of reaction–diffusion models. We studied the dy-
namics of the corresponding one- and two-dimensional maps and Lyapunov exponents of 
such attractors.  We have shown that chaos is emerging in an unconventional pattern 
with chaotic regimes emerging and disappearing repeatedly. We had already studied this 
unconventional pattern for one-dimensional maps with a sharp apex and a quadratic 
minimum. We applied numerical analysis to study characteristic properties of the system, 
such as bistability and hyperbolicity zones, crisis of chaotic attractors.  
 
Keywords: nonlinear dynamics, double-mode system, reaction–diffusion models, bifurca-
tions, self-similarity, “cascade of cascades”, crisis of attractor, ergodicity, bistability. 
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