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Проведен сравнительный анализ двух подходов к вычислению значений многочленов 

Чебышева с помощью рекуррентных процедур. Первый подход основан на рекурсии 

вверх по индексу, начиная с наименьшего значения индекса. Второй подход основан 

на рекурсии вниз, исходя из очевидных асимптотических выражений функций с вы-

сокими значениями индекса. 

 

Ключевые слова: специальные функции, многочлены Чебышева, рекуррентные           

процедуры, асимптотическое приближение, численный расчет  

  

Введение. Хорошо известно, что специальные функции математи-

ческой физики  nQ x , являясь решениями обыкновенных дифферен-

циальных уравнений с переменными коэффициентами, удовлетво-

ряют трехчленным рекуррентным соотношениям для трех таких функ-

ций  с тремя соседними индексами 1, , 1n n n   [1–4]. Это дает воз-

можность, зная значения двух из таких функций при определенном 

значении аргумента x , вычислить значение третьей при том же значе-

нии аргумента, а затем, повторяя процедуру, вычислять значения 

функций с последующими значениями индексов. Возможна также             

рекурсия «вниз», отправляясь от значений специальной функции при 

двух больших значений соседних индексов, полученных тем или иным 

способом, последовательно вычислять их значения при меньших зна-

чениях индекса. 

В случае семейства ортогональных многочленов (Лежандра,        

Эрмитта, Лагерра, Чебышева, и т.д.) два значения этих функций сосед-

них индексов легко вычисляются по явным их представлениям в виде                

полиномов, как для малых, так и для больших значений индексов. Тем 

не менее, представляет интерес исследование численных процедур            

рекурсий «вверх» и «вниз» с точки зрения их точности и быстродей-

ствия. 

Для цилиндрических функций (Бесселя, Неймана, Ханкеля)             

ситуация сложнее. Значения этих функций для индексов 0 и 1 могут 

быть вычислены для широкого диапазона значений аргумента с по-       

мощью специализированных стандартных программ, которыми              

снабжены большинство языков программирования. Это позволяет 

осуществить рекурсию «вверх». Однако, вычислительная практика  

показывает, что эта процедура приводит к быстрой потере точности 
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вычислений и недостоверным результатам по мере роста значений           

индексов, и требует специальных мер для обеспечения приемлемой 

точности. Например, значительного увеличения длины мантисс в ма-

шинном представлении чисел. С другой стороны, реализация рекур-

сии «вниз» требует знания значений двух функций соседних индексов 

при больших, по сравнению с аргументом, значениях индексов. Но их 

можно брать только из асимптотических приближений этих функций, 

точность которых не представляется возможным оценить. Поэтому, 

представляет интерес численного эксперимента по вычислению этих 

функций двумя описанными способами и сравнение полученных           

значений. 

В данной работе мы рассмотрим результаты таких сравнений для 

многочленов Чебышева. 

Теории многочленов Чебышева посвящены разделы многих моно-

графий по математической физике и численному анализу и публика-

ции в соответствующих периодических изданиях, как отечественных 

[1–7], так и зарубежных [8–13]. Многочисленность этих публикаций 

свидетельствует о растущем интересе к этим многочленам как к базис-

ным элементам в альтернативе более традиционным численным мето-

дам при моделировании физических процессов в сложных неоднород-

ных средах [14]. Остановимся более подробно на работе [7]. 

Многочлены Чебышева являются частным случаем так называе-

мых многочленов Якоби 
   ,

nP x
 

, удовлетворяющих гипергеометри-

ческому уравнению 

      21 2 1 0.x y x y n n y                     (1) 

Они ортогональны на интервале  1,1  с весом  

        1 1 , 1; 1 .h x x x
 

          

При 
1

2
     из уравнения (1) следует уравнение 

        2 21 0n n nx T x xT x n T x       

для традиционных полиномов Чебышева, являющихся многочленам 

наилучшего равномерного приближения непрерывных функций. 

Наряду с обычными полиномами Чебышева используются также при-

соединенные полиномы Чебышева m

nT , схожие с присоединенными 

полиномами Лежандра и связанные с ними соотношением  

      cos 1 cos sin .
mm m m m

n n n mT C P      
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Эти полиномы успешно используются вместо присоединенных поли-

номов Лежандра  cosm

nP   при построении решений уравнения 

Лапласа в сферических координатах:  

 
2

2

2 2

1 1
sin 0.

sin sin

Y Y Y
r

r r


    

       
     

       
  

Обычная схема разделения переменных приводит к частным реше-

ниям вида 

  
cos

cos .
sin

n m

n

m
r P

m










  

При разложении заданной функции  ,f     на сфере в ряд Фурье 

по присоединенным полиномам Лежандра и тригонометрическим 

функциям вычисление коэффициентов разложения требует объема 

вычислений порядка  3O N . Кроме того, такое разложение не                 

обеспечивает равномерной сходимости рядов на замкнутом интервале 

 0;  .  

В отличие от этого, использование в качестве решений по углу             

места   при соединенных полиномов Чебышева  cosm

nT   снижает 

объем вычислений до  2 lnO N N , и обеспечивает более быструю рав-

номерную сходимость рядов Фурье на всем замкнутом интервале 

 0;  , в том числе и в полюсах сферы. 

Численная реализация вычислений значений полиномов             

Чебышева. Многочлены Чебышёва первого рода  nT x  могут быть 

определены с помощью рекуррентного соотношения:  

 
 

 

0

1

1T x

T x x




   

      1 12 .n n nT x xT x T x     (2) 

Соотношение (2), позволяет производить рекурсивный пересчет 

по мере возрастания величины индекса от  nT x  и  1nT x  к  1nT x  

Оно же позволяет от значений  nT x ,  1nT x  осуществить пересчет 

значений многочлена с индексом 1n : 

      1 12 .n n nT x xT x T x     
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При этом, исходные значения для двух полиномов с большими             

соседними индексами удобно взять из их явного представления 

    cos arccos .nT x x   

Кроме того, есть явное представление в виде многочлена [1] 

    
2

2 2 2

0

1 .

n

k
k n k

n n

k

T x C x x

  




    (3) 

Представлением (3) можно воспользоваться для контроля точно-

сти вычислений другими методами.  

Приведем результаты численных расчетов. Рис. 1 демонстрирует 

графики трех полиномов разных порядков. Чтобы оценить расхожде-

ние между значениями, посчитанными через рекурсию, и по формуле 

суммы, бралась разность этих значений, и возводилась в квадрат 

(чтобы затем вычислить среднеквадратичную погрешность).  

 

 

Рис. 1. Графики трех многочленов Чебышева разных порядков: 

—  1T x ;  —  5T x ;  —  82T x  

 

Имеющиеся данные квадратов погрешностей в каждой точке для 

n от 0 до 100 были проанализированы с помощью встроенных инстру-

ментов MS Excel и представлены на рис. 2 и рис. 3. Красным обозна-

чены числовые значение равные 0, от белого к салатовому цвету           

показана степень отличия от 0 (более насыщенный цвет — большее 

отклонение). 
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На данных рисунках по вертикали отсчитываются номера полино-

мов (от 0 до 100 сверху вниз), по горизонтали — точки в которых                

берутся значения (от –1 до 1 слева направо соответственно). Напри-

мер, начиная с верхнего левого угла, спускаясь вниз на треть, и вправо 

на две трети, мы получим значение 33-го полинома, в точке 0,33. 

 

Рис. 2. Анализ квадратов погрешностей методом рекурсии «вверх» 

 

 
 

Рис. 3. Анализ квадратов погрешностей методом рекурсии «вниз» 
 

Далее посчитаем сумму всех квадратов отклонений для каждого n   и 

составим по ним графики зависимости общей квадратичной погреш-

ности от n  (рис. 4, рис.5).  
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Рис. 4. Общая квадратичная погрешность для метода рекурсии «вверх» 
 

 

 
 

Рис. 5. Общая квадратичная погрешность для метода рекурсии «вниз» 
 

Как видно из цветовой диаграммы таблиц, при возрастании               

степени полинома погрешность увеличивается с увеличением модуля 

переменной x  (т.к. значения в центре таблицы соответствуют значе-

ниям полинома в точке 0, а по левому и правому краю  –1 и 1 соответ-

ственно), причём в точках –1 и 1 погрешности не наблюдается, т.к. 

операции выполняются с целыми числами. 

На графиках также можно видеть рост погрешности вычислений 

при росте степени полинома, при этом независимо от выбора метода 

вычислений. Перегиб графика на рис. 5 связан с тем, что начальные 

значения полиномов с номерами 99 и 100 были посчитаны по формуле, 
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и погрешность таких вычислений меньше, чем вычислений через           

рекурсию (поэтому на рис. 4 график идёт вверх после 98, а график на 

рис. 5 идёт вниз). 

Окончательно можно сделать вывод, что погрешность вычисле-

ний остаётся предельно малой при любом из вышеперечисленных            

методов, и существенно меняется только в зависимости от степени           

полинома. Кроме того, из рис. 5 следует, что метод рекурсии вниз по 

мере убывания величины индекса дает результаты с нарастанием           

точности. 

Выводы. Проведенный численный анализ позволяет утверждать, 

что в случае ортогональных полиномов вычисление их значений по 

рекуррентным формулам дает достаточно точные результаты как при 

рекурсии по индексу вверх, так и вниз. 

Что касается других специальных функций, например, цилиндри-

ческих, то ситуация становится сложнее и требует для достижения 

приемлемой точности вычислений дополнительных исследований. 
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Comparison of two approaches to calculate values of Chebishev polynomials via recurrent 

procedures is realized. At that, first approach is based upon recursion upwards with re-

spect to the index starting from the least index value. Second approach is based upon re-
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