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Моделирование термонапряжений в композитных  

оболочках на основе асимптотической теории. 

Часть 1.  Общая теория оболочек 

© Ю.И. Димитриенко, Е.А. Губарева, А.Е. Пичугина 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

Предложена асимптотическая теория термоупругости многослойных композит-

ных оболочек, вывод основных уравнений которой основан на асимптотическом 

разложении по малому геометрическому параметру трехмерных уравнений термо-

упругости. Данный метод был ранее разработан авторами для тонких композит-

ных пластин, и в настоящей статье применен для тонкостенных оболочек произ-

вольной формы. Согласно разработанному методу исходная трехмерная задача 

термоупругости распадается на рекуррентную последователь одномерных локаль-

ных задач термоупругости и осредненную двумерную задачу тонких оболочек. Для 

локальных задач термоупругости получены аналитические решения, которые поз-

воляют замкнуть осредненную постановку задачу теории оболочек относительно 

5 неизвестных функций: продольных перемещений, прогиба и двух перерезывающих 

сил. Показано, что осредненная задача для многослойных оболочек совпадает с 

классической системой уравнений оболочек Кирхгофа-Лява, однако она является 

более обоснованной, так как в основе асимптотической теории не содержится ни-

каких допущений относительно характера распределения перемещений и напряже-

ний по толщине. Кроме того, асимптотическая теория позволяет вычислить все 

напряжения в оболочке, без решения каких-либо дополнительных задач, а только 

лишь дифференцируя осредненные перемещения.  

 

Ключевые слова: асимптотическая теория, уравнения термоупругости, много-

слойные оболочки, композиты, тензор напряжений, оболочки типа Кирхгофа-Лява 

 

Введение. Расчеты тонкостенных конструкций на прочность в 

настоящее время чаще всего выполняются на основе двумерных тео-

рий пластин и оболочек, или одномерных теорий стержней [1–8]. Это 

обусловлено значительной вычислительной эффективностью, которая 

достигается при использовании теорий этого типа по сравнению с               

использованием общих 3-мерных уравнений механики деформируе-

мого твердого тела. Однако классические проблемы, которые харак-

терны для двумерных и одномерных уравнений механики тонкостен-

ных конструкций: обоснованность гипотез [9], лежащих в основе этих 

теорий; точность расчета всех компонент напряжений являются при-

чинами постоянного появления новых теорий пластин и оболочек. 

В настоящее время большое внимание уделяется асимптотическим 

теориям тонких конструкций, в которых содержится минимальное 

число допущений, и отсутствуют допущения относительно характера 

распределения перемещений и напряжений по толщине пластин и  

оболочек [10–13]. В работах [13–20] был разработан оригинальный  
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вариант асимптотических теорий пластин, в которых формулируются 

специальные последовательности локальных задач механики, с помо-

щью решения которых замыкается общая рекуррентная последова-

тельность асимптотических разложений осредненных задач механики 

тонкостенных конструкций. В результате обоснованность всех основ-

ных уравнений теории тонкостенных конструкций получается суще-

ственно боле высокой. В [13] показано, что точность расчета напряже-

ний с помощью предложенного асимптотического метода также очень 

высокая. В работах [16–18] этот метод применен для построения тео-

рии тонких упругих оболочек. Целью настоящей работы является по-

строение асимптотической теории термоупругости многослойных 

оболочек.  

Следует отметить, что для ряда задач, к которым относятся задачи 

термоупругости многослойных композитных конструкций при неста-

ционарном неравномерном нагреве, важную роль играют межслойные 

и поперечные напряжения, которые могут приводить к расслоению 

оболочек. С этой точки зрения необходимость достижения высокой 

точности при анализе термонапряжений в слоях оболочек является 

важной задачей и с практической точки зрения. 

Геометрическая модель тонкой оболочки. Следуя [21], рассмот-

рим оболочку, как трехмерное тело, представляющее собой окрест-

ность 
hV  срединной поверхности 

0 , параметрическое уравнение ко-

торой имеет вид 

 ( ), 1,2, 1,2,3,i i Ix x X I i     (1) 

где ix  — декартовы координаты точек в ортонормированном (декар-

тов) базисе ie , а IX  — параметрические координаты срединной по-

верхности. Здесь и далее индексы, обозначенные заглавными буквами 

, , , ,I J K L M , принимают значения 1, 2, а индексы , , ,i j k l  — 

значения 1, 2, 3. Все координаты ix  и IX  будем полагать безразмер-

ными, отнесенными к характерной длине L  — диаметру                            

поверхности 
0 . 

Радиус-вектор точки M , принадлежащей срединной поверхности   

оболочки, обозначим как: 

 ( ) ( ) .I i I

iX x Xρ e   (2) 

Векторы локального базиса для срединной поверхности, метриче-

скую матрицу срединной поверхности 
IJg  и вектор нормали к  

0  вво-

дим стандартным образом [21]: 
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 1 2

1
, , ,I IJ I JI

g
X g


    


ρ
ρ ρ ρ n ρ ρ   (3) 

где   det IJg g . Радиус-вектор точек M  , принадлежащих оболочке 

hV  , представим следующим образом [21]: 

 3( ) ( ) ( ),i I IX X X X x ρ n   (4) 

 3

0{ | , },
2 2

i I

hV X X X    
æ æ

  (5) 

где обозначен малый параметр 

 1,
h

L
æ   (6) 

здесь h  — толщина оболочки, а 3X  — нормальная безразмерная ко-

ордината, по которой отсчитывается толщина оболочки. Оболочку, 

для которой введено допущение (6), называют тонкой [21]. 

Вводим локальные базисы и метрическую матрицу оболочки 

 , .i ij i ji
g

X


  


x
r r r   (7) 

Криволинейные координаты iX  оболочки полагаем ортогональ-

ными, так что метрические матрицы 
IJg  и 

ijg  являются диагональ-

ными и можно ввести 

 , 1,2; , 1,2,3A g H g          (8) 

— коэффициенты первой квадратичной формы срединной поверхно-

сти и коэффициенты Ламе оболочки — все являются безразмерными. 

Введем ортонормированный базис [21] 

 , 1, 2,3,
H






 
r

e   (9) 

а также введем локальную    координату по толщине оболочки: 

 3 / ,X  æ   (10) 

которая, согласно (5) изменяется для оболочки в промежутке 

0,5 0,5   . 

Все функции, являющиеся решением задачи термоупругости, бу-

дем рассматривать как зависящие от двумерных координат 
IX  и ло-

кальной координаты  : 
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 ( , ).IX    (11) 

Согласно общей концепции асимптотических методов, основан-

ных на введении двух масштабов изменения решений дифференциаль-

ных уравнений в частных производных [12, 19], будем полагать вы-

полненным следующее правило дифференцирования функций вида 

(11), которое вытекает из (10): 

 
3

1
.i iu u

X 

 


 æ
  (12) 

Для тонких оболочек примем следующие допущения [22]: 

 

3

3
3 3

, , ,

1,2,

1,

, (1 ) ,

0, , ,

( )

2,

,

H H A k A

H H
A A k

H
A A k A

X

   


   


      



 


   

 
  







 



æ

æA

+æ

  (13) 

здесь k  — безразмерные кривизны срединной поверхности 
0  обо-

лочки. 

Введем обозначения 

 /3 , 1 2

1 1
, , 1,2, .,O

X H A
O O O 

 




 
      

 
  (14) 

Система 3-х мерных уравнений термоупругости для много-

слойной оболочки. Рассмотрим для оболочки 
hV  квазистатическую 

задачу 3-х мерной линейной теории термоупругости, состоящую из 

системы уравнений термоупругости при малых деформациях [22] и 

уравнений нестационарной теплопроводности [21]. В компонентной 

форме в криволинейных координатах 
IX ,   с учетом допущений (13) 

о тонкостенности оболочки и правил дифференцирования (12), эта си-

стема может быть записана в следующем виде: 

 

   

   

1 2 3/3 ,, ,

, 3 3 1 2

1 2 33/3 2 13 1 23,1 ,2

2 13 11 1 23 22 1 2 3

1

0, 1, ,

1

0

2

A A A A A

A A A A A f

A A A A

A A A A A A f

        

      

   

  

  





 

   

   

  

  





æ

æ

  (15) 
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— уравнения равновесия; 

 
   

 

, 1 2 , 3 3

33 3/3

12 1 2 1 1 2 1 2 2,2 ,1

3 /3 3, 3

,

1
,

2 ,

1
2

O u O O A u O A u

u

AO u O A O u O

u O u A u

        

     









  



 

  

æ

æ

  (16) 

— соотношения Коши; 

 1 2
1 2 2 1,1 1 2,2 3/32

0Fo

vс A A
OO A q Aq q

t

   
    

  æ æ
  (17) 

— уравнение теплопроводности; 

 

33 33 33

3 3 3 3

33 33 3333 33 33

( ) ( ),

2 ,

( ) ( )

T T

IJ IJKL KL KL IJ

I I K K

T T

KL KL KL

C C

C

C C

    

 

    

   



   

  (18) 

— соотношения термоупругости; 

 
3 33 3,I IJ Jq g q g       (19) 

— закон Фурье; 

 ,

1
, 1,2,g O g   


 




  

æ
  (20) 

— выражения для градиента температуры; 

 
3 3 3 3: , ,i i ep q q          (21) 

 : , : , 0,Tu i ei T iJ J nei I Iu u n t q n        (22) 

    3 3: 0, 0, [ ] 0, [ ] 0,S i iu q        (23) 

 0: 1t     (24) 

— граничные на внешней и внутренней поверхностях 
3 { 0,5},     

на торцевых поверхностях 0{ 0,5 0,5, }I

T X      , и на поверх-

ностях раздела слоев { }S s    , 1,..., 1s N  , где N  — число 

слоев в оболочке, а также начальное условие. 

В (13)–(21) обозначены безразмерные компоненты векторов и       

тензоров в базисе 
ie : ij  — тензор напряжений (отнесен к                           
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характерному значению модуля упругости 
0E ), 

ij  — тензор малых 

деформаций, 0( )T

ij ij      — тензор тепловых деформаций, 
ij  — 

тензор теплового расширения, 
ijklC  — тензор модулей упругости (от-

несен к 
0E ), 

iu  — вектор перемещений (отнесен к L ), 
ij  — тензор 

теплопроводности (отнесен к характерному значению  теплопровод-

ности 
0 ), 

iq  — вектор теплового потока (отнесен к 
0 0 L  ), 

ig  — 

градиент температуры (отнесен к 
0 L ), 

if  — вектор плотности мас-

совых сил (отнесен к  0 0E L ), 
ieu  — заданный вектор перемещений, 

neit  — вектор напряжений, заданный на торцевой части 
T  поверхно-

сти (отнесенный к 
0E ), 

in  — вектор нормали. Введены также обозна-

чения для:   — плотности (отнесена к характерному значению 
0 ),  

vc  — удельной теплоемкости (отнесена к характерному значению 
0c ), 

t  — времени (отнесено к характерному времени 
0t ),    — темпера-

туры (отнесена к начальному значению температуры 
0 ), 

eq 
 — задан-

ного теплового потока на поверхностях 
  оболочки, p

 — давления, 

заданного на внешней и внутренней поверхностях 
  оболочки,                   

 iu  — скачка функций. 

Введен также безразмерный параметр Фурье 

  2

0 0 0 0Fo .t c L    (25) 

Основные допущения модели. Кроме допущения (8) о тонко-

стенности оболочки, введем также допущения об условиях нагрева  

 2 ( 1)

0

1
, ,eFo Fo q q 

  æ
æ

  (26) 

где 
0Fo  и ( 1)q 


 — величины, порядка 1. Это допущение означает, что 

нагрев рассматривается на относительно коротких временах, когда 

распределение температурного поля по толщине оболочки является 

существенно неравномерным. 

Введем также допущение [10,12], которое заключается в том, что 

давление p
 на внутренней и внешней поверхностях имеет порядок 

малости 3( )O æ  т.е. 

 3 .p p æ   (27) 
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Слои оболочки далее полагаем моноклинными материалами [21], 

с главным базисом осей анизотропии, совпадающим с e , тогда опре-

деляющие соотношения для тонкой оболочки имеют вид (18), (19). 

Асимптотические разложения решения задачи для тонкой 

оболочки. Уравнения (15)–(24) содержат малый параметр æ , будем 

искать их решение в виде асимптотических разложений по параметру 

æ  в виде функций (11), зависящих от глобальных и локальной коор-

динат: 

 

(0) (1) 2 (2)

(0) (1) 2 (2)

( ) ( , ) ( , ) ,

( , , ) ( , , ) ( , , )

k k k ku u X u X u X

X t X t X t

  

  

 

      

   

   

æ æ

æ æ
  (28) 

Подставим разложения (28) в соотношения Коши (16) и определя-

ющие соотношения (18), (19), тогда  получим асимптотические разло-

жения для деформаций, напряжений, градиента температуры и век-

тора теплового потока 

 
(0) (1) 2 (2) ,ij ij ij ij      æ æ   (29) 

 
(0) (1) 2 (2) ...,ij ij ij ij      æ æ   (30) 

 ( 1) (0) (1) 2 (2)1
...,i i i i ig g g g g    æ æ

æ
  (31) 

 ( 1) (0) (1) 2 (2)1
...i i i i iq q q q q    æ æ

æ
  (32) 

Формулировка локальных задач для тонких оболочек. Под-

ставляя разложения (28)–(32) в уравнения (15)–(17) и граничные усло-

вия (21), (24), после приравнивания в уравнениях равновесия (15) и в 

уравнении теплопроводности (17) членов при отрицательных степенях 

æ   к нулю, а при остальных степенях æ  — к некоторым величинам  
     0 1 2

, , ,i i ih h h … и  
     0 1 2

0 0 0, , ,h h h … не зависящим от  , получим ре-

куррентную последовательность локальных задач термоупругости. 

Локальная задача термоупругости нулевого приближения при 

0n   имеет вид: 

 
(0)

( 1)

3/3

0

,
Fo

vс
q

t

  
 


  (33) 

 ( 1) ( 1) ( 1) (0)

3 33 3 3 /3, ,q g g        (34) 

 

(0)

3/3

(0) (0) (0) (0)

33 33

0,

,

i

T

IJ IJKL KL IJ IJkl klC C C



   



  
  (35) 



Моделирование термонапряжений в композитных оболочках… 

91 

 

(0) (0)

3 3 3 3

(0) (0) (0) (0)

33 33 3333 33 33

2 ,

,

I I K K

T

KL KL kl kl

C

C C C

 

   



  
  (36) 

 

(0) (0) (0) (0)

, , 1 2 3 3

(0) (0) (0)

12 1 2 1 1 ,2 2 1 2 2 ,1

(0) (1)

33 3/3

(0) (1) (0) (0)

3 /3 3, 3

,

2 ( ) ( ) ,

,

2 ,

O u A O O u A O u

AO u O A O u O

u

u O u A O u

        

      









  

 



  

  (37) 

 (0)

3 3: 0,i    (38) 

 (0) (1) ( 1) (0)

3 3:[ ] 0, 0, [ ] 0, 0,S i iu q              (39) 

 (1) 0,iu    (40) 

 ( 1)

3 3: .eq q

      (41) 

Для высших приближений при 1,2,...n   получаем следующие ло-

кальные задачи 

  
( )

( 2) ( 2) ( 1) ( 2)

1 2 2 1,1 1 2,2 3/3 0

0

+ =   ,
Fo

n
n n n nvс

O O A q A q q h
t

     
 


  (42) 

 

( 2) ( 2) ( 1) ( 1)

3 33 3

( 2) ( 2) ( 1) ( )

, 3 /3

, ,

, ,

n n n n

I IJ J

n n n n

J J

q g q g

g g

 

 

   

  

   

 
  (43) 

 
   ( ) ( 1) ( 1) ( 1) ( 1)

1 2 3/3 , ,, ,

( 1) ( 1) ( 1)

3 3 1 2 ,

n n n n n

n n n

A A A A A A

A A A A f h

           

    

    



   

  

    

  
  (44) 

 
   ( ) ( 1) ( 1) ( 1) ( 1)

1 2 33/3 2 13 1 23 2 13 11 1 23 22,1 ,2

( 1) ( 1)

1 2 3 3 ,

n n n n n

n n

A A A A A A A A

A A f h

       

 

    

 
  (45) 

 

( ) ( ) ( ) ( )

33

( ) ( )

3 3 3 3

( ) ( ) ( ) ( )

33 33 3333 33 33

,

2 ,

,

n n n T n

IJ IJKL KL IJKL IJkl kl

n n

I I K K

n n n T n

KL KL kl kl

C C C

C

C C C

   

 

   

  



  

  (46) 

 

( ) ( ) ( ) ( )

, , 1 2 3 3

( ) ( ) ( ) ( ) ( )

12 2 1,2 1 2,1 1 2 1,2 1 2,1 2

( ) ( 1)

33 3/3

( ) ( 1) ( ) ( )

3 /3 3, 3

,

2 ( ),

,

2 ,

n n n n

n n n n n

n n

n n n n

O u A O O u A O u

O u O u O O A u A u

u

u O u A O u

        

      













  

   



  

  (47) 

 ( ) ( )

3 3: ,n n

i iS     (48) 

 ( ) ( 1) ( 1) ( )

3 3:[ ] 0, 0, [ ] 0, 0,n n n n

S i iu q               (49) 
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 ( 1) ( )0,   0, n n

iu       (50) 

 ( 1)

3 3: 0,nq 

    (51) 

 ( 2): 0.n

T I Iq n    (52) 

Здесь обозначена операция осреднения по толщине оболочки 

 

0,5

(n) (n)

0,5

,i iu u d


     (53) 

а также обозначены функции граничных условий и массовых сил 

 

( )

( )

3

( )

( )

0, если 1,2,4,5,...,

, если 3,

0, если 1,2,3,4,5,...,

, если 0.

n

i

n

i i

n

i

n

i i

S n

S p n

f n

f f n







 

 

  

 

 

  (54) 

Уравнения равновесия (15) после введения функций 
     0 1 2

, , ,i i ih h h  принимают вид: 

 ( ) (0) (1) 2 (2)

0

... 0.n n

i i i i

n

h h h h




    æ æ æ   (55) 

Решением локальной задачи термоупругости в нулевом прибли-

жении (33)–(41) являются функции 
(0) (1) (0) (0), , , ,j kl iju    они зависят от 

локальной координаты   и входных данных этой задачи — перемеще-

ний 
(0) ( )ju X 

. Решением задачи термоупругости n го приближения 

(42)–(52) являются функции 
( ) ( 1) ( ) ( ), , , ,n n n n

j kl iju  
 а 

( 1) ( ) ( 1) ( 1), , ,n n n n

j kl iju    
 в этой задаче — входные данные. 

Решение локальной задачи нулевого приближения. Решение 

уравнений равновесия (35) с граничными условиями (38) в локальной 

задаче нулевого приближения имеет вид 

 (0)

3 0, : 0,5 0,5.i         (56) 

Подставив (56) во вторую и третью группу определяющих соотно-

шений в системе (36), получаем, что в нулевом приближении дефор-

мации межслойного сдвига во всех слоях являются нулевыми, а попе-

речная деформация — ненулевая 

 
  (0) (0) (0)

33 3

0

3 30, ,T

K kl kl KL KLZ Z       (57) 
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где обозначено 

 1 1

3 3333 33 3 3333 33, .KL KL kl klZ C C Z C C     (58) 

Подставив в (57) выражения для деформаций 
(0) (0)

3 33,K  , из (37), с 

учетом (40),  находим перемещения (1)

iu : 

 

(1) (0) (0)

3, 3

(1) (1) (0) (1)

3 3 3

( ),

,T

KL KL

u O u A u

u U U

    



  

 
  (59) 

где обозначено 

 
(1) (1) (0)

3 3 3 3, .T T

KL KL kl klU Z U Z         (60) 

В (60) введено обозначение для следующей операции: 

 
0,5 0,5

( ) ( ) .f f d f d

 

    
 

         (61) 

Подставив выражения (57) в первую группу определяющих соот-

ношений системы (36), находим напряжения (0)

IJ : 

 (0) (0) (0) (0) (0) ,T

IJ IJKL KL IJkl klC C      (62) 

где обозначено 

 (0)

33 3 .IJkl IJkl IJ klC C C Z    (63) 

Решение локальных задач 
nL  высших приближений.  Решим 

уравнения равновесия (44), (45) относительно ( )

3/3

n

  и ( )

33/3

n .   

 
   

 

( ) ( 1) ( 1) ( 1)

3/3 1 2 ,, ,

( 1) ( 1) ( 1) ( 1)

, 3 3 1 2

(

) ,

n n n n

n n n n

O O A A A

A A A O O h A f

        

        

   

 

  

   

    

   
  (64) 

 
   

 

( ) ( 1) ( 1) ( 1)

33/3 1 2 2 13 1 23 2 13 11,1 ,2

( 1) ( 1) ( 1)

1 23 22 1 2 3 1 2 3

(

) .

n n n n

n n n

O O A A A A

A A O O h A A f

   



  

  

    

  
  (65) 

Проинтегрируем обе части этих уравнений по  , принимая во вни-

мание, что 
   1 1

, , ,
n n

i iA O h f 

 
 не зависят от  . Подставим получен-

ные выражения в граничные условия (48) на поверхностях 
3  и 

3 , 

находим функции 
 1n

h


 и  
 1

3

n
h


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   ( 1) ( 1) ( 1) ( 1)

1 2 , ,

( 1) ( 1) ( 1)

, , 3 3 ,

n n n n

n n n

h A A f A A

A A A A

      

        

 

  

   

  

    

   
  (66) 

 
 

 

( 1) ( ) ( 1) ( 1)

3 1 2 3 3 2 13 ,1

( 1) ( 1) ( 1)

1 23 2 13 11 1 23 22,2

( )

,

n n n n

n n n

h A A S f A

A A A A A



  

  

  

     

   
  (67) 

где обозначено ( ) ( ) ( )

3 3 3 .n n nS S S      

Введем оператор 

 
0,5

{ ( , )} ( ( , ) ) .f X f X f d



 

  


      (68) 

Тогда, подставляя выражения (66) и (67) в (64) и (65), получим 

 
   ( ) ( 1) ( 1) ( 1)

3 1 2 ,, ,

( 1) ( 1)

, 3 3

{

} ,

n n n n

n n

O O A A A

A A A

        

      

   

 

  

 

    

 
  (69) 

 

   

 

( ) ( ) ( ) ( 1)

33 3 3 1 2 2 13 ,1

( 1) ( 1) ( 1)

1 23 2 13 11 1 23 22,2

0.5 {

} ,

1,2,...

n n n n

n n n

S S O O A

A A A A

n

A 

  

  





  

     

 



   (70) 

причем   

 ( ) ( ) ( )

3 3 3 3 3, .n n n

i nS S S p p p p              (71) 

Из определяющих соотношений системы (46) выразим  деформа-

ции и ( )

3

n

K  и ( )

33

n  подставим эти выражения в кинематические соотно-

шения системы (47) 

 ( 1) 1 ( ) ( ) ( )

3/3 3333 33 3 3 ,n n n T n

KL KL kl klu С Z Z        (72) 

 
( 1) 1 ( ) ( ) ( )

/3 3 3 3 3, 3 .n n n n

I Iu C O u A O u            (73) 

Проинтегрируем обе части этих соотношений и используем усло-

вие нормировки: ( 1) 0n

iu   , тогда получим 

 
( 1) 1 ( ) ( ) ( )

3 3333 33 3 3 ,n n n T n

KL KL kl klu С Z Z               (74) 

 

( 1) 1 ( ) ( ) ( )

3 3 3 3, 3

1,2,

2 ,

...

n n n n

I I au C O u A O

n

u               



 
  (75) 

Выражение решения первого приближения через нулевое при-

ближение.  Выразим деформации (1)

KL   первого приближения через           
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деформации и перемещения нулевого приближения. Для этого запи-

шем выражения для ( )n

KL  из системы (47)  при 1n  : 

 
(1) (1) (1) (1)

, 1 2 , 3 3 ,O u O O A u u A O              (76) 

 
(1) (1) (1)

12 1 2 1 1 ,2 2 1 2 2 ,12 ( ) ( )AO u O A O u O     (77) 

Подставим в эти формулы выражения (65) для (1)u  и (1)

3u , тогда по-

лучим 

 (1) (0) (1) ,T

IJ IJ IJKL KL IJ       (78) 

где обозначены деформации искривлений срединной поверхности 

оболочки 

 

(0) (0) (0) (0)

3, 3 , 1 2 , 3, 3

2 (0) (0) 2 (0) (0)

12 1 2 1 3,1 13 1 ,2 2 1 2 3,2 23 2 ,1

( ( )) ( ),

2 ( ( )) ( ( )) ,

O O u A u O O O A u A u

AO O u A u A O O u A u

            



    

    
  (79) 

а также введены обозначения 

 

(1)

3 3 12

(1) (1) (1)

3 3 12

, 0,

, 0.

KL KL KL

T T T

A O U

U A O

  

  

   

   
  (80) 

Выразим напряжения первого приближения (1)

3i   через деформа-

ции нулевого приближения (0)

KL , используя формулы (69) и (70) при 

1n   имеем: 

 
   (1) (0) (0) (0) (0)

3 , ,, ,

(1) (0) (0)

33 2 13 11 1 23 22

,

.

{ }

{ }

O A A A A

O А A A A

            



    

  

    

 

  (81) 

Здесь учтено, что (0)

3 0i  . Подставляя формулы (62) в (81), полу-

чаем 

 

   

   

(1) (0) (0) (0) (0)

3 , ,

(0) (0) (0) (0)

, ,

(0) (0) (0) (0)

, ,

(0) (0) (0) (0)

, ,

33

({ } { }

{ } { } )

( { } { }

{ } { } ),

KL KL KL KL

KL KL KL KL

T T

kl kl kl kl

T T

kl kl kl kl

O C A C A

C A C A

O A C A C

A C A C

       

       

     
 

       

  

 

 

 



   

 

  

 



(1) (0) (0) (0)

1 13 11 2 23 22

(0) (0) (0) (0)

1 13 11 2 23 22

( { } { } )

( { } { } ).
KL KL KL

T T

kl kl kl kl

O A C O A C

O A C O A C

 

 



 

  

 

  (82) 
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Введем обозначения 

  

(1) (0) (0) (0)

3 , ,

(1) (0) (0)

(1) (0) (0)

33 1 13 11 2 23 22

2

,

,

({ } { } ),

{ } { }

{ } { }

KL KL KL KL

KLJ KL J KL J

KL KL KL

C O C C A C A

R O C A C A

C O A C O A C

         

        

 

 

  

 

 

  (83) 

а также обозначим тепловые напряжения первого приближения 

 

   (1) (0) (0) (0) (0)

3
, ,

(0) (0) (0) (0)

, ,

(1) (0) (0) (0) (0)

33 1 13 11 2 23 22

( { } { }

{ } { } ),

( { } { } ).

T T T

kl kl kl kl

T T

kl kl kl kl

T T T

kl kl kl kl

O A C A C

A C A C

O A C O A C

      
 

       

 

  

 

  

   

 

 

  (84) 

Тогда формулы (82) можно записать так 

 

(1) (1) (0) (1) (0) (1)

3 3 , 3

(1) (1) (0) (1)

33 33 33

,

.

T

KL KL KLJ KL J

T

KL KL

C R

C

      

  

   

 
  (85) 

Выразим напряжения (1)

IJ  первого приближения через деформа-

ции (0)

KL  нулевого приближения. Для этого запишем определяющие 

соотношения из системы (46) при 1n  : 

 (1) (1) (1) (1)

33 .T

IJ IJKL KL IJKL IJkl klC C C        (86) 

Подставим в это выражение для деформаций (1)

33  из формул (46) 

для 1n  . Тогда с учетом обозначений (63) и формул (85), получаем   

 (1) (0) (1) (1) (0) (1) ,T

IJ IJKL KL IJKL KL IJC G        (87) 

где обозначено 

 (1) (1) (1) (0) (1) (1)

3 33 3 33, .T T T

IJKL IJ KL IJ IJkl kl IJG Z C C Z       (88) 

Подставим теперь соотношение (83) в (87), тогда получим итого-

вое выражение для напряжений (1)

IJ  первого приближения через де-

формации (0)

KL  нулевого приближения: 

 (1) (0) (1) (0) (1) ,T

IJ IJKL KL IJKL KL IJC С        (89) 

где введены обозначения 

 (1) (0) (1) (1) (1) (0) (1), .T T T

IJKL IJMN MNKL IJKL IJ IJ IJKL KLС C G C         (90) 
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Найдем перемещения второго приближения (2)

iu . Для этого запи-

шем формулы (74), (75) при 1n  : 

 

(2) 1 (1) (1) (1)

3 3333 33 3 3

(2) 1 (1) (1) (1)

3 3 3 3 3,

,

.

T

KL KL kl kl

K K a a

u С Z Z

u C A O u O u

  

       

  







       

       
  (91) 

Подставим в эти выражения формулы (85), (78) и (59), тогда             

получим 

 

(2) (2) (0) (2)

3 3 3 3

(2) 2 (0) (0)

3 3, 3

(2) (0) (0) (2)

,

,

( )

,

T

KL KL KL KL

T

KL KL KLJ KL J

u J U U

u A O u A u

U K U

      

  

 



 

   

     

  

  (92) 

где введены обозначения: 

 

3 3

(2) 1 (1) (2) 1 (1)

3 3333 33 3 3 3 3

1 (1) (1)

3 3 3

(2) 1 (1) (1) (1)

3 3333 33 3 3

(2) 1 (1

3 3 3

,

, ,

,

,

KL KL

KL KL IJ IJKL KL I I KL

KLJ I IKLJ KL J

T T T T

KL IJ kl kl

T T

K K

J Z

U С C Z U C C

K C R O U

U С Z Z

U C



    

     

  

 





 



 







 

       

    

          

   ) (1)

3, .T

aO U     

  (93) 

Выражение решения второго приближения через нулевое при-

ближение. Выразим напряжения второго приближения (2)

3   и (2)

33     

через деформации (0)

KL  и искривления 
IJ  нулевого приближения. Для 

этого запишем формулы (69) и (70) при 2n  : 

 

   

   

(2) (1) (1) (1)

3 ,, ,

(1) (1)

, 3 3

(2) (1) (1) (1) (1)

33 2 13 1 23 2 13 11 1 23 22,1 ,2

,

.

{

}

{ }

O A A A

A A A

O A A A A A A

        

      



   

 

    

    

 

    

  (94) 

Подставим выражения (85) и (89) для напряжений первого при-

ближения (1)

IJ  и (1)

3 , (1)

33  в формулы (94), и приведем подобные в по-

лучившихся выражениях, тогда получим 

 

(2) (2) (0) (2) (0) (2)

3 3 3 , 3 3 , 3

(2) (2) (0) (2) (0) (2) (0) (2) (2)

33 33 33 , 33 , 33 33

,

.

T

KL KL KLJ KL J KL KL KLJ KL J

T

KL KL KLJ KL J KLJM KL JM KL KL

C R N V

C R E N

          

     

     

    
  (95) 

Здесь введены обозначения 
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 

(2) (1) (1) (1)

3 , ,

(1)

3 3

(2) (1) (1)

3

(1)

3

(0) (0) (0)

3 , ,

3

2

( ) 2 ,

({ } { }

{ } ),

({ } { }

{ } ),

{ } { }

{

KL KL KL KL

KL

KLJ KL J KL J

KLJ

KL KL KL KL

KLJ

C O С С A С A

C A A

R O С A С A

R A A

N O C C A C A

V O C

         

   

        

   

         



 

 

   



  



  

  (0) (0) ,} { }KL J KL JA C A          

  

 (2) (1) (1)

33 13 2,1 23 1,2({ } { }KL KL KLC O C A C A      (96) 

 

 

(1) (1)

11 2 13 22 1 23

(2) (1) (1)

33 13 2 1 23 1 2

(1) (1)

1 21 2 12

(2) (1) (1)

33 1 2 1 2 1 2

(2) (0) (0)

33 11 2 13 22

,

{ } { } ),

({ } { }

{ } { } ),

{ } { }

{ } { }

KL KL

KLJ KL J KL J

KLJ KLJ

KLJM KLJ M KLJ M

KL KL KL

С A A С A A

R O C A C A

R A R A

E O R A R A

N O C A A C

 

 

 

 

 

 

 

 

 

  

 

 

  1 23 ,A A

  

а также обозначения для тепловых напряжений 2-го приближения 

 

   

(2) (1) (1) (1)

3 , , ,

(1) (1)

, 3 3

(2) (1) (1) (1) (1)

33 2 13 1 23 2 13 11 1 23 22,1 ,2

) ( )

,

.

{(

}

{ }

T T T T

T T

T T T T T

O A A A

A A A

O A A A A A A

         

      



   

 

    

    

 

    

  (97) 

Выразим из системы (91) при 2n  : деформации (2)

KL  второго при-

ближения через деформации и перемещения нулевого приближения 

 

(2) (2) (2) (2)

, , 1 2 3 3

(2) (2) (2)

12 1 2 1 1 ,2 2 1 2 2 ,1

,

2 ( ) ( ) .

O u A O O u A O u

AO u O A O u O

        



  

 
  (98) 

Подставим сюда выражения (92) для (2)u  и  (2)

3u  и приведем подоб-

ные, тогда получим 

 

(2) (2) (2) (2) (0) (2) (0)

,

(2) (0) (2)

, ,

SP SP SPKL KL SPKL KL SPKLJ KL J

T

SPKLJM KL JM SP

L B

K Ф

     



     

 
  (99) 

где обозначены кривизны второго приближения оболочки: 
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 

 

 

(2) 2 (0) (0)

3 3, 3 ,

2 (0) (0)

1 2 , 3 3, 3

(2) 3 (0) (0)

12 1 2 13 1 3,1 13 1 ,2

3 (0) (0)

2 1 23 2 3,2 23 2 ,1

( )

( ),

2 ( )

( ) ,

O A O u A u

O O A A O u A u

AO A O u A u

A O A O u A u

       

      





   

 

   

 

  (100) 

а также введены обозначения: 

 

(2) (2)

3 3 12

(2) (2) (2) (2)

, 1 2 , 3 3

(2) (2)

, 1 2 ,

(2)

(2) (2) (2)

12 1 2 1 1 ,2 2 1 2 2 ,1

12

, 0,

,

,

,

2 ( ) ( ) ,

2

KL KL KL

KL KL KL KL

KLJ KL J KLJ KLJ

KLJM KLJ M

KL KL KL

K

L A O J L

O U O O A U A O U

B O U O K O O A K

K O K

AO U O A O U O

B

  

        

         

   





 

   

  



  

(2) (2)

2 1 2 1 2 12 1 2 1 ,2

(2)

1 2 1 2 1 21 2 1 2 ,1

(2)

12 2 1 2 1 2 1

(2) (2) (2) (2)

, , 1 2 3 3

(2) (2) (2)

12 1 2 1 1 ,2 2 1 2 2 ,1

,

2 ,

,

2 ( ) ( ) .

LJ KL J KLJ KLJ

KL J KLJ KLJ

KLJM KLJ M KLJ M

T T T T

T

O U AO O K O K

OU A O O K O K

K O K O K

Ф O U A O O U A O U

Ф AO U O A O U O

        





 

   

  

 

  

 

  (101) 

Выразим напряжения (2)

IJ  второго приближения через деформа-

ции (0)

KL  нулевого приближения. Из определяющих соотношений си-

стемы (46) при 2n   получим 

 
   2 21

3 3 3 32 ,K I K IC    (102) 

 (2) 1 (2) (2) (2)

33 3333 33 3 3 ,T

KL KL kl klС Z Z        (103) 

 (2) (2) (2) (2)

33 33 .T

IJ IJKL KL IJ IJkl klC C C        (104) 

Подставляя (103) в (104), получаем: 

 (2) (0) (2) (2) (0) (2)

3 33 .T

IJ IJKL KL IJ IJkl klC Z C        (105) 

С учетом формул (99) для (2)

SP  и (95) для (2)

33  формула (105) может 

быть записана следующим образом: 

 

(2) (0) (2) (2) (0)

(2) (0) (0) (2)

, , ,

IJ IJKL KL IJKL KL

T

IJKLM KL M IJKLMN KL MN IJKL KL IJ

C C

R E N

   

   

    

   
  (106) 
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где введены обозначения: 

 

(2) (0) (2) (2)

3 33

(2) (0) (2) (2)

3 33

(0) (2) (2)

3 33

(0) (2) (2)

3 33

(2) (0) (2) (2)

3 33

,

,

,

,

IJKL IJSP SPKL IJ KL

IJKLM IJSP SPKLM IJ KLM

IJKLMN IJSP SPKLMN IJ KLMN

IJKL IJSP SPKL IJ KL

T T T

IJ IJKL KL IJ IJk

C C Z C

R C B Z R

E C K Z E

N C L Z N

C Ф Z C 

  

 

 

 

    (0) (2).T

l kl

  (107) 

Выражение решения третьего приближения через нулевое 

приближение.  Выразим напряжение третьего приближения (3)

33  че-

рез деформации (0)

KL  и искривления 
IJ  нулевого приближения. 

Из выражения (70) при 3n   получим: 

 
 

   

(3)

33

(2) (2) (2) (2)

2 13 1 23 2 13 11 1 23 22,1 ,2

0,5

.{ }

p p

O A A A A A A 

 

   

    

   
  (108) 

Подставляя в (108) выражения (106) для (2)

IJ  и выражения (95) для 

(2)

3 , получим: 

 

  (3) (3) (0) (3) (0)

33 33 33 ,

(3) (0) (3) (3)

33 , 33 33 ,

(3) (3) (2) (3)

33 , 33

0,5

,

KL KL KLJ KL J

KLJM KL JM KL KL KLM KL M

T

KLMN KL MN KL KL

p p C R

E N V

U W

   

  

  

       

   

  

  (109) 

где введены обозначения 

 

(3) (2) (2)

33 2,1 13 2 13 ,1

(2) (2) (2) (2)

1,2 23 1 23 ,2 2 13 11 1 23 22

( { } { }

{ } { } { } { } ),
KL KL KL

KL KL KL KL

C O А C A C

A C A C A A C A A C

 

   

  

   
  

 

(3) (2) (2) (2)

33 2,1 13 2 13 1 2 13 ,1

(2) (2) (2)

12 23 1 23 2 1 23 ,2

(2) (2)

2 13 11 1 23 22

( { } { } { }

{ } { } { }

{ } { } ),

KLJ KLJ KL J KLJ

KLJ KL J KLJ

KLJ KLJ

R O R A C A R

A R A C A R

A A

A

R A A R

  

  

 





   

   

 

  

 

(3) (2) (2)

33 2 13 1 1 23 2

2 13 11 1 23 22

( { } { }

{ } { } ),
KLJM KLJ M KLJ M

KLJM KLJM

E O R A R

A A E A A E

A  

 

   

 
  

 

(3)

33 2,1 13 2 13 ,1 1,2 23

1 23 ,2 2 13 11 1 23 22

( { } { } { }

{ } { } { } )
KL KL KL KL

KL KL KL

N O N A N A N

A N A A N A

A

A N

  

  

   

  
  (110) 
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(3)

33 2,1 13 2 13 1

2 13 ,1 1,2 23 1 23 2 1 23 ,2

( { } { }

{ } { } { } { } ),
KLM KLM KL M

KLM KLM KL M KLM

V O V A N

A V A V

A

A N A V

 

   





  

   
  

 (3)

33 2 13 1 1 23 2( { } { } ),KLMN KLM N KLM NU O V VA A      

 (3) (0) (0)

2 13 11 1 23 22( { } { } ),KL KL KLW O A C A AA C            

    (3) (2) (2) (2) (2)

33 2 13 1 23 2 13 11 1 23 22,1 ,2
.{ }T T T T TO A A A A A A            

Выражение для компонент полного тензора напряжений.          

В работах [12, 13, 17] было установлено, что для достижения прием-

лемой инженерной точности вычислений напряжений 
IJ  в много-

слойных пластинах достаточно ограничиться только нулевым и пер-

вым приближением, для сдвиговых напряжений 
3  — нулевым, пер-

вым и вторым приближением, а для компонент 
33  — третьим при-

ближением. Применим этот же подход для вычисления компонент 

полного тензора напряжений с точки зрения сохранения минимально 

необходимого числа членов в асимптотических разложениях. Тогда 

для компонент 
IJ  получим, сохраняя члены ряда (28) до первого при-

ближения, включительно, получим: 

 (0) (1).IJ IJ IJ   æ   (111) 

Выражения для (0)

IJ  и (1)

IJ  были получены в формулах (62) и (89).  

Подставим их в выражение для 
IJ , тогда получим искомое выраже-

ние для компонент 
IJ  тензора напряжений: 

 
(1) (0) (0)ˆ ˆ ,T

IJ IJKL KL IJKL KL IJС C        (112) 

где обозначены: 

 

(1) (0) (1) (0) (0)

(0) (0) (1)

ˆ ˆ, ,

.

IJKL IJKL IJKL IJKL IJKL

T T T

IJ IJkl kl IJ

С C С C C

C  

  

 

æ æ

æ
  (113) 

Для сдвиговых компонент 
3  сохраним члены ряда (28) до вто-

рого приближения: 

 (0) (1) 2 (2)

3 3 3 3 .        æ æ   (114) 

Выражения для (0)

3 , (1)

3   и (2)

3  были получены в формулах (56), 

(85) и (95). Подставим их в выражение (114), тогда получим искомое 

выражение для компонент 
3  тензора напряжений: 
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 (2) (0) (2) (0)

3 3 3 , 3 3 , 3
ˆ ˆ ˆ ˆ ,T

KL KL KLJ KL J KL KL KLJ KL JC R N V                  (115) 

где введены обозначения: 

 

(2) (1) 2 (2) (2) (1) 2 (2)

3 3 3 3 3

2 2

3 3 3 3

(1) 2 (2)

3 3 3

ˆ ˆ, ,

ˆ ˆ, ,

.

KL KL KL KLJ KLJ KLJ

KL KL KLJ KLJ

T T T

C C C R R R

N N V V

     

   

    

  



 

= æ æ æ æ

= æ æ

æ æ

  (116) 

Для компонент 
33  сохраним члены асимптотического ряда до 

третьего приближения: 

 (0) (1) 2 (2) 3 (3)

33 33 33 33 33 .       æ æ æ   (117) 

Выражения для (0)

33 , (1)

33 , (2)

33  и (3)

33  были получены в формулах 

(56), (85), (95), (109). Подставим их в выражение (117), тогда получим 

явное выражение для компонент 
33  тензора напряжений: 

 

  3 (3) (0) (3) (0)

33 33 33 ,

(3) (0) (3)

33 , 33

(3) (3) (3) (2)

33 , 33 , 33

ˆ ˆ0,5

ˆ ˆ

ˆ ˆ ˆ ,

KL KL KLJ KL J

KLJM KL JM KL KL

T

KLM KL M KLMN KL MN KL KL

p p C R

E N

V U W

   

 

   

       

  

   

æ

  (118) 

где введены обозначения: 

 

(3) (1) 2 (2) 3 (3)

33 33 33 33

(3) 2 (2) 3 (3)

33 33 33

(3) 2 (2) 3 (3)

33 33 33

(3) 2 (2) 3 (3)

33 33 33

(3) 3 (3)

33 33

(3) 3 (3) (

33 33

ˆ ,

ˆ ,

ˆ ,

ˆ ,

ˆ ,

ˆ ˆ,

KL KL KL KL

KLJ KLJ KLJ

KLJM KLJM KLJM

KL KL KL

KLM KLM

KLMN KLMN KL

C C C C

R R R

E E E

N N N

V V

U U W

 

 



 





= æ æ æ

æ æ

= æ æ

æ æ

æ

æ 3) 3 (3)

(1) 2 (2) 3 (3)

33 33 33 33

,

.

KL

T T T T

W

   



 

æ

æ æ +æ

  (119) 

В итоге получены выражения для полного тензора напряжений че-

рез деформации и кривизны, которые, в свою очередь, выражаются че-

рез перемещения нулевого приближения. 

Осредненные уравнения равновесия многослойных оболочек. 

Из результатов построения асимптотического решения уравнений рав-

новесия тонкой оболочки следует, что эти уравнения принимают вид 

(55). Подставим в эти уравнения выражения (66) и (67) для функций 
(0) (1) (2), ,i i ih h h , тогда получим   
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( ) ( )

0 0, ,

( ) ( )

, ,

0 0

( )

3 3 1 2

0

0,

n n n n

n n

n n n n

n n

n n

n

A A

A A

A A A A f

   

 

     

   

 

 

 

 

 

 

 





   
        

   

      

     

 

 



æ æ

æ æ

æ

  (120) 

 

( ) ( )

2 13 1 23

0 0,1 ,2

( ) ( )

2 13 11 1 23 22

0 0

2

1 2 3( ) 0.

n n n n

n n

n n n n

n n

A A

A A A A

A A f p

 

 



 

 

 

 

   
        

   

      

    

 

 

æ æ

æ æ

-æ

  (121) 

Введем обозначения для усилий 
IJT , моментов 

IJM   и перерезы-

вающих сил 
IQ  в оболочке: 

 

( )

0

1 ( )

0

( )

3 3

0

,

,

n n

IJ IJ IJ

n

n n

IJ IJ IJ

n

n n

I I I

n

T

M

Q

 

 

 














   

    

   







æ

æ æ

æ

  (122) 

и осредненных массовых сил, действующих на оболочку 

 , 1,2,3.i iF f i     (123) 

Тогда уравнения (120) и (121) можно записать в следующем виде 

 

   

   

,, ,

, 3 1 2

2 1 1 2 2 13 11,1 ,2

1 23 22 1 2 3

0,

( ) 0,

A T A T A T

A T A A Q A A F

A Q AQ A A T

A A T A A F p

       

      

  

   

  

   

  (124) 

где обозначено 2p p  æ . 

Для вывода уравнения моментов оболочки рассмотрим исходные 

уравнения равновесия (13) при 1,2  . Домножим  эти уравнения на 

æ , проинтегрируем по толщине, применим граничные условия 

3 0,5( ) 0   , тогда получим следующие уравнения  
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   1 2 , ,

, , 1 2 0.

A A Q A A

A A A f

     

      

 

  

       

        

æ æ

æA æ æ
  (125) 

Используя определение (122) моментов, получаем окончательно 

уравнение моментов оболочки 

 
, , , ,

1 2

( ) ( )

( ) 0.

A M A M A M A M

A A Q m

           

 

   

  
  (126) 

Здесь обозначены моменты внешних массовых сил 

 .m f     (127) 

Эти уравнения (124) и (126) формально совпадают с классиче-

скими осредненными уравнениями теории оболочек Кирхгофа–Лява 

[1] и Тимошенко [3], однако они выведены с помощью асимптотиче-

ской теории.   

Осредненные определяющие соотношения теории оболочек.  

Подставляя выражения (112) для напряжений 
IJ   в формулы  (122), 

получим следующие выражения для усилий и моментов 

 

(0)

(0)

,

,

T

IJ IJKL KL IJKL KL IJ

T

IJ IJKL KL IJKL KL IJ

T C B T

M B D M

 

 

  

  
  (128) 

где обозначены средние функции — тензоры мембранных жесткостей, 

изгибных жесткостей и смешанных жесткостей оболочки 

 

(0) (1) (0)

(0) 2 (1) 2 2 (0)

, ,

,   ,

IJKL IJKL IJKL IJKL IJKL

IJKL IJKL IJKL IJKL IJKL

C C С B C

B C C D C



  

       

        

æ æ

æ æ æ
  (129) 

а также тепловые усилия и моменты в оболочке 

 , .T T T T

IJ IJ IJ IJT M     æ   (130) 

Осредненная система уравнений термоупругости для много-

слойных оболочек. Соберем вместе кинематические соотношения, 

описывающие деформации срединной поверхности оболочки (шестая 

и седьмая группы соотношений в (47) при 0n  ): 

 

(0) (0) (0) (0)

, , 1 2 3 3

(0) (0) (0) (0) (0)

12 2 1,2 1 2,1 1 2 1,2 1 2,1 2

,

2 ( ),

O u A O O u A O u

O u O u O O A u A u

        



  

   
  (131) 

и соотношения (79) для деформаций искривления 
IJ  срединной по-

верхности оболочки 
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(0) (0) (0) (0)

3, 3 , 1 2 , 3, 3

2 (0) (0) 2 (0) (0)

12 1 2 1 3,1 13 1 ,2 2 1 2 3,2 23 2 ,1

( ( )) ( ),

2 ( ( )) ( ( )) .

O O u A u O O O A u A u

AO O u A u A O O u A u

            



    

    
  (132) 

Тогда, после подстановки (131) и (132) в (128), и далее — в си-

стему (124), (126), получаем итоговую систему 5 уравнений теории 

оболочек относительно 5 неизвестных функций: (0)

Iu , (0)

3u  и 
IQ . Эта 

система имеет 4-й порядок производных относительно прогиба  
 0

3u . 

Уравнения равновесия (124), (126) и кинематические соотношения 

(131), (132) с точностью до обозначений совпадают с соответствую-

щими уравнениями теории тонких оболочек Кирхгофа–Лява [1].                

Определяющие соотношения термоупругости (128) также соответ-

свуют известным соотношениям теории анизотропных многослойных 

оболочек. Однако предложенный метод построения этой теории мно-

гослойных оболочек является внутренне непротиворечивым, в отли-

чие от классических теорий, в которых вначале делаются допущения 

о малости поперечных напряжений и линейном характере распределе-

ния продольных перемещений по толщине, что приводит к линейному 

распределению касательных напряжений по толщине, а затем напря-

жения вычисляются интегрированием уравнений равновесия по тол-

щине, в результате распределения касательных напряжений по тол-

щине оказываются параболического типа. 

В разработанной асимптотической теории термоупругости оболо-

чек, никаких допущений о характере распределения перемещений и 

напряжений не делается. После решения осредненной системы урав-

нений с соответствующими граничными условиями, все 6 компонент 

тензора напряжений могут быть вычислены по формулам (112), (115) 

и (118) без решения дополнительных задач, а только по аналитическим 

соотношениям. 

Для определения температуры 
 0

  необходимо решить задачу 

теплопроводности (33), (34), (41) в нулевом приближении 
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
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  (133) 

Для вычисления температуры 
 n

  в более высоких приближениях 

(в формулах участвует температура до 3 приближения) необходимо 

решить задачи теплопроводности  (42), (43), (49), (51) 
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  (134) 

Выводы. С использованием метода асимптотических разложений 

по малому геометрическому параметру из общей трехмерной системы 

уравнений термоупругости выведены замкнутые уравнения тонких 

многослойных оболочек общего вида. Построенная теория тонких 

многослойных анизотропных оболочек не содержит никаких допуще-

ний относительно характера распределения напряжений, деформаций 

или перемещений по толщине оболочки.  Как и для построенных ранее 

асимптотических теорий пластин с помощью метода асимптотических 

разложений сформулированы и решены локальные задачи теории 

упругости нулевого, первого, второго и третьего приближений. На ос-

нове решений этих задач выведены аналитические выражения для вы-

числения всех шести компонент напряжений как функций поперечной 

и продольных координат. 
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Thermal stress modeling in composite shells 

based on asymptotic theory. 

Part 1. General shell theory  

 Yu.I. Dimitrienko, Е.А.Gubareva, A.E. Pichugina 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

An asymptotic theory of thermoelasticity of multilayer composite shells is proposed, the 

derivation of the basic equations of which is based on the asymptotic expansion in terms 

of a small geometric parameter of three-dimensional thermoelasticity equations. This 

method was previously developed by the authors for thin composite plates, and in this ar-

ticle it is applied to thin-walled shells of an arbitrary frame. According to the developed 

method, the original three-dimensional problem of thermoelasticity decomposes into a re-

current successor of one-dimensional local problems of thermoelasticity and an averaged 

two-dimensional problem of thin shells. For local problems of thermoelasticity, analytical 

solutions are obtained, which make it possible to close the averaged formulation of the 

problem of the theory of shells with respect to 5 unknown functions: longitudinal displace-

ments, deflection, and two shear forces. It is shown that the averaged problem for multi-

layer shells coincides with the classical system of equations for Kirchhoff–Love shells, 

however, it is more substantiated, since the asymptotic theory does not contain any as-

sumptions regarding the pattern of the distribution of permutations and stresses over thick-

ness. In addition, the asymptotic theory makes it possible to calculate all the stresses in the 

shell, without solving any additional problems, but only by differentiating the averaged 

displacements. 

 

Keywords: asymptotic theory, thermoelasticity equations, multilayer shells, composites, 

stress tensor, Kirchhoff – Love shells 
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