
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Достовалова А.М. Применение модели смеси вероятностных
распределений в обработке радиолокационных изображений.
Математическое моделирование и численные методы, 2020, №
3, с. 117–130.

Источник: https://mmcm.bmstu.ru/articles/232/

Параметры загрузки:

IP: 216.73.216.47

13.02.2026 04:41:19



117 

УДК 519.2                                     DOI: 10.18698/2309-3684-2020-3-117130 

 

Применение модели смеси вероятностных  

распределений в обработке  

радиолокационных изображений  

© А.М. Достовалова 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

Рассматривается задача обнаружения объектов на радиолокационном изображе-

нии (РЛИ). При ее решении предлагается использовать в качестве модели, описы-

вающей структуру обрабатываемого изображения, смесь из нескольких вероят-

ностных распределений. Предполагается, что каждой ее компоненте соответ-

ствует один из классов объектов, присутствующих на РЛИ, сходных по своим          

отражающим свойствам. Эта гипотеза позволяет осуществлять поиск объектов, 

решая задачу разделения смеси вероятностных распределений. Возможно примене-

ние для этого существующих методов разложения смесей — например, ЕМ–алго-

ритма. Однако сама структура изображения, на котором значимые классы отсче-

тов являются локальными неоднородностями, состоящими из малого числа пиксе-

лей в сравнении с объемом их общей совокупности, накладывает ограничения на                       

возможность использования этих алгоритмов в чистом виде и приводит к необхо-

димости создания их адаптаций, учитывающих эту особенность входных данных. 

В статье представлены результаты применения адаптированного EM–алгоритма 

на примере сгенерированной модели РЛИ с отсчетами, подчиняющимися нормаль-

ному закону. Проведена оценка эффективности созданного алгоритма для решения                

поставленной задачи в сравнении с результатами применения классической версии 

EM–алгоритма для этой модели. Полученные данные позволили выявить особенно-

сти метода, обусловленные как самой механикой обработки изображения, так и 

свойствами процедуры разделения смесей вероятностных распределений —                     

EM–алгоритма, которые необходимо учитывать при дальнейшем использовании 

этого метода обработки изображений.  

 

Ключевые слова: Смесь распределений, дискретная смесь, поиск объектов на РЛИ, 

идентифицируемость, ЕМ-алгоритм, нормальная модель, локальная оценка                            

параметров смеси, Байесовский информационный критерий  

  

Введение. Идея описания радиолокационного изображения (РЛИ) 

моделью смеси вероятностных распределений возникла достаточно 

давно — первые работы датированы 1992–1993 годами [1]. Выбор    

смесевой модели обусловлен самой структурой РЛИ. Благодаря спекл-

шуму [2] амплитуда отраженного от поверхности сигнала, фиксируе-

мая на РЛИ, является случайной величиной (СВ), а отсчеты (пиксели) 

РЛИ — выборкой значений этой СВ [3]. При этом тип подстилающей 

поверхности обуславливает свойства отраженного сигнала. Распреде-

ления СВ, описывающих отсчеты участков, к примеру, травянистого 

луга и водной поверхности не идентичны: даже если они принадлежат 

одному семейству, они отличны по значениям параметров [4].                       
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Произвольное РЛИ может содержать и ту, и другую область одновре-

менно, и его отсчеты в этом случае являются объединением выборок 

из двух различных СВ. Такой набор наблюдений как раз определяет 

смесь нескольких вероятностных распределений.  

В литературе смесевое представление РЛИ как правило не исполь-

зуется при решении задачи обнаружения: параметры смеси оценива-

ются по выборке, сформированной из отсчетов РЛИ, размера порядка

1000 1000  пикселей, а целевой объект (автомобиль, здание и т.п.) на 

нем представляет собой локальную неоднородность — например,              

размера 10 10 . Если класс, к которому причисляется объект, представ-

лен на РЛИ только этими 100 отсчетами, то его вклад в выборку, а зна-

чит, и вероятность принадлежности пикселя соответствующей компо-

ненте смеси очень малы. Поэтому отсчеты объекта, особенно если их 

распределение не отличается радикально от фонового, с большой долей 

вероятности будут отнесены к более наполненному классу фона. 

Несмотря на трудности, использование метода разделения смесей 

в задаче поиска объектов на РЛИ видится весьма привлекательным, 

т. к. он позволяет получить больше информации об их отражающих 

свойствах, нежели стандартные методы обнаружения, такие как 

CFAR–детектор [4]. Эта работа посвящена адаптации существующих 

методов разделения вероятностных смесей к задаче выделения на РЛИ 

классов объектов, присутствующих в виде локальных неоднородно-

стей. В качестве смешиваемого распределения будет рассматриваться 

нормальный закон, а в качестве адаптируемого алгоритма — класси-

ческий EM–алгоритм. Принимается также общее для задач обнаруже-

ния допущение о едином типе распределений отсчетов фона и располо-

женных на нем объектов, относительно которых и ведется поиск [4]. 

Определение смеси.  Рассмотрим специальную функцию распре-

деления 𝐹(𝑥, 𝒚) на ℝ× 𝕐, где 𝕐 — это подмножество m-мерного                  

евклидова пространства , 𝑚 ≥ 1, снабженное борелевской — алгеброй 

⅀. Если мы фиксируем 𝒚, то 𝐹(𝑥, 𝒚) будет функцией распределения 

(ФР) величины 𝑥, если же мы фиксируем 𝑥, наблюдается обратное — 

𝐹(𝑥, 𝒚) будет ФР величины 𝒚. Тогда смесь функции 𝐹(𝑥, 𝒚) представ-

ляется следующим образом (𝑄(𝑑𝒚) — вероятностная мера на про-

странстве (𝕐,⅀), Y —  m-мерная СВ в пространстве (𝕐,⅀, 𝑄))[5]: 

            ,  ,    .QH x F x Q d F x  Yy y E   (1) 

Распределение 𝐹(𝑥, 𝒚) называется смешиваемым, в то время как 

мера 𝑄 задает смешивающее распределение. 𝐻(𝑥) — смесь функции 

𝐹(𝑥, 𝒚) по 𝒚. В задаче расщепления смеси отсчетов РЛИ мы распола-

гаем некоторым конечным множеством встречающихся на нем типов 

подстилающих поверхностей, которое характеризуется конечным            
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множеством параметров распределений, т. е. СВ Y является дискрет-

ной. В этом случае (1) приобретает вид (и если F имеет плотность f ) [5]: 

 
1

1

( ) E ( , ) ( , ),

( ) E ( , ) ( , ),

k k

k

k k

k

H x F x p F x

h x f x p f x





 

 





Y y

Y y
  (2) 

где 𝐘 — дискретная случайная величина, значения 𝒚1, 𝒚2, … которой 

возникают с вероятностями, называемыми весами компонент,                            

𝑝1, 𝑝2, …; 𝐹(𝑥, 𝒚𝑘) — компоненты смеси.  

Идентифицируемость смесей распределений. Определение 

идентифицируемости смеси следующее: функция 𝐹(𝑥, 𝒚) задает смесь 

распределений, Q — семейство СВ,  принимающих значения в множе-

стве 𝕐 [5]. Семейство смесей { ( ) E ( , ), : }QH H x F x Q x Q   R Q  

называется идентифицируемым, если  
1 2

d

Q Q  следует из равенства[5]: 

 
1 2E ( , ) E ( , ).F x Q F x Q   (3) 

Для дискретных смесей определены два основных критерия иден-

тифицируемости. Первый был сформулирован Teicher в работе [6]:             

согласно ему дискретная сдвиг–масштабная смесь нормальных рас-

пределений является идентифицируемой [6,7]. Второй критерий был 

сформулирован Yakowitz и Spragins [7]: пусть { ( )}F F x семейство 

ФР, тогда семейство смесей, построенное на основе семейства F будет 

идентифицируемым, если F  —  линейно независимая система (ЛНЗ). 

Причем вместо самих ФР можно использовать соответствующие             

производящие функции моментов [7,8]. Дискретная смесь нормаль-

ных законов идентифицируема по данному критерию, что можно               

доказать по индукции. Рассмотрим сумму 
1

( )
k

i i

i

c t


 , где k — число 

компонент смеси, ic  — константы,   а 

2 2

2( )
i

i

t
a t

i t e





  — соответствую-

щая i-той компоненте смеси производящая функция моментов                 

нормального распределения [9]. Для k = 1 выражение 

2 2

2
1 0

t
at

с e




   

только если 1 0c  . Далее положим, что для 1k n   система ЛНЗ: вы-

ражение

2 2
1

2

1

0, 0, 1... 1
i

i

tn a t

i i

i

c e c i n
 



    . Рассмотрим 

сумму 

2 2 2 2
1

2 2

1
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i n

i n

t tn a t a t

i n

i

c e c e t
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

     . Положим в ней 
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0, 1...ic i n  . Разделим эту сумму  на выражение 

2 2

2

n
n

t
a t

nc e




 и продиф-

ференцируем результат по t: 

 

2 2 2( )1 ( )
2 2 2

1

(( ) ( ) ) 0, ( , ).
i n

i n

tn a a t
i

i n i n

i n

c
a a t e t

c

 

 
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

         (4) 

Отсюда следует, что выражение 
1

2 2

1

(( ) ( ) ) 0, ( , )
n

i
i n i n

i n

c
a a t t

c
 





       . Поскольку, определяя 

смесь, мы полагаем, что нет ни одной пары компонент с равными век-

торами параметров,  мы получаем, что 0, 1... 1ic i n   . Это приводит  

к противоречию — 0, 1...ic i n  . Значит, система функций ЛНЗ, и                

соответственно сдвиг-масштабная смесь нормальных законов                     

является идентифицируемой. 

EM-алгоритм. Для идентифицируемой смеси задача оценки ее 

параметров является корректной. Как правило, эта оценка ищется               

путем максимизации функции правдоподобия (ФП). Наиболее эффек-

тивным методом поиска ее максимума является EM-алгоритм (англ. 

Expectation-Maximization algorithm) и множество его модификаций[5]. 

Предположим для классической версии ЕМ-алгоритма, что задана 

k-компонентная смесь с плотностью (2), и выборка                   

1( ... ),nX x x n k   — ее реализация. Согласно [10], вместо логарифма 

правдоподобия можно максимизировать функцию следующего вида: 

 

1 11
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1 1 1 1
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i j j i
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ij j i ij ij

j i j i

L X h x p f x

L g p

g f X g g
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 

   

  

   

 

 



 

  (5) 

Здесь k — число компонент смеси; 𝑔𝑖𝑗 — это апостериорная                   

вероятность, что объект 𝑥𝑖 принадлежит j-ой компоненте смеси               

вероятностных распределений;   jp — веса компонент смеси; ( )j if X — 

плотность вероятности j-той компоненты смеси для i-го наблюдения. 

Поиск максимума (6) происходит так: определяется число k,  и иници-

ализируются начальными значениями (НЗ) веса и параметры  их               

распределений. После этого наступает E-этап — вычисляются 𝑔𝑖𝑗 и 

подставляются в (6).  После следует M-этап: вычисляются оценки             

параметров распределений компонент, максимизирующие слагаемое 
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1 1

ln( ( ))
k n

ij j i

j i

g f X
 

 . Для  гауссовской смеси в [9] приведены точные 

аналитические формулы для r-того шага алгоритма (r — индекс): 
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Вычисления прекращаются по достижении заданного уровня             

точности  , такого, что: 

 
[ ] [ 1]max( ( )) , 1... , 1... .r r

ij ijabs g g i n j k      (10) 

Когда для всех значений k вычисления выполнены, из всех               

просчитанных моделей выбирается оптимальная по числу компонент 

смеси. Критерием выбора будет Байесовский информационный         

критерий (BIC) — выбор происходит в пользу той, у которой он                         

минимален [5]: 

  ˆ2   ;   ,k kBIC log L x M log n     (11) 

здесь 𝜃 — оценка максимального правдоподобия параметра  ; 

 ;ˆkL x  — ФП смеси распределений; 𝑀𝑘 — число независимых             

параметров модели. Чем больше значение    ;ˆklog L x , тем более 

правдоподобна рассматриваемая модель. Однако рост количества            
параметров и, соответственно, числа компонент смеси увеличивает 
значение этого выражения. Для учета этого эффекта  в (11) вводится 

второе «штрафовое» слагаемое  kM log n , которое не позволяет                  

выбрать модель со слишком большим числом компонент. 

Структура тестируемого изображения. В работе рассматрива-

ются 2 изображения размера 550 550  нормально распределенных 

пикселей с 25 отметками целевых объектов, отличающихся друг от 
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друга по яркости и размеру — отметки образуют квадратную сетку с 

пятью узлами. По вертикали полагается постоянным размер объекта, 

по горизонтали — распределение его отсчетов; размер i-того объекта 

в ряду,  i = 1…5, вычисляется как 2d i  , где d — минимальный                

размер объекта, равный 17 на первом изображении и 9 — на втором. 

Смесь получается шестикомпонентной — 5 от целей, одна от фона: 

значения параметров представлены в таблице 1.  

Таблица 1 

Истинные значения параметров компонент смеси пикселей 

 обрабатываемого изображения 

Номер   

компоненты 
1 2 3 4 5 6 

Параметр сдвига 128 184 201 218 235 252 

Параметр мас-

штаба 
37 1.5 3 4.5 6 7.5 

Вес  компоненты, 

17d   
0,9629 0,00742 0,00742 0,00742 0,00742 0,00742 

Вес  компоненты, 

9d   
0,9855 0,0029 0,0029 0,0029 0,0029 0,0029 

 

Исследуются модели с k–числом компонент смеси в локальной  

области (подробнее в следующем разделе), равным 2; 3; 4. В качестве 

НЗ используются от 2 до 4 компонент смеси с параметрами, приведен-

ными в таблице 2, выбираемыми по порядку, т. е. для k = 2 берутся 

компоненты 1 и 2, для k = 3 к ним добавляется третья и т.д. Эти значе-

ния заданы специально близкими к истинным, т. к. при задании их       

случайным образом из-за свойств EM-алгоритма не гарантируется                   

достижение глобального максимума ФП [5, 10]. 

Таблица 2 

НЗ параметров компонент смеси пикселей 

 обрабатываемого изображения  

Номер компоненты 1 2 3 4 

Параметр сдвига 125,000 187,500 218,750 234,375 

Параметр масштаба 20 4 6 8 

 

На рис. 1 приведены два исходных изображения. Номерами от 1 

до 6 обозначены области компонент смеси согласно таблице 1.  

На рис. 2 приведены результаты применения EM-алгоритма к 

этим изображениям (в качестве выборки 1( ... )nX x x  взято все изоб-

ражение целиком, число компонент k = 6): можно непосредственно 
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убедиться, что EM-алгоритм теряет отметки объектов тем чаще, чем 

меньший вклад в общую выборку вносит представляемый ими класс и 

чем меньше отличается соответствующее распределение от распреде-

ления фона. 

 

 
 

а б 

Рис. 1. Исходные обрабатываемые изображения: 

а — 17d  , б — 9d   

 

  
а б 

Рис. 2. Результат разделения смеси всех пикселей исходного изображения  

EM-алгоритмом на 6 классов для: 

а — 17d  , б — 9d   

 

Описание работы алгоритма. Процедуру, адаптирующую                

EM–алгоритм к поставленной задаче, можно разделить на три этапа:                  

подготовительный, этап оценки и этап раскраски. На подготовитель-

ном этапе выбираются  , d — минимальный размер цели, и l — размер 

(длина стороны) квадратной локальной области. Изображение разби-

вается на r пересекающихся l-областей, располагающихся внахлест на 
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0,5l пикселей — для корректной обработки случая, когда цель оказы-

вается на стыке непересекающихся l-областей. Также задается k —             

количество компонент, встречающихся в l-области и НЗ параметров 

смеси. 

На этапе оценки последовательно в каждой l-области смесь ее    

пикселей EM-алгоритмом  разделяется на k компонент. После i-тый 

пиксель области ассоциируется j компоненте смеси так что 
2( ) { : max( ), 1... }, 1...i ijclass x j g g j k i l    . Согласно этой 

классификации вычисляются веса компонент и сравниваются с               

порогом 
2

min 2

d
p

l
 : превышение означает, что в l-области есть область 

отсчетов j-го класса, размером больше или равная d d . В этом случае 

параметры такого класса запоминаются. 

После обхода всего РЛИ образуется множество пар параметров 

сдвига 
ja  и масштаба 

j . Из них необходимо выделить m компонент 

смеси, на которые разделяется РЛИ целиком. Стандартные алгоритмы 

кластеризации — например, k-means и fuzzy k-means — не справля-

ются с поставленной задачей, т.к.  требуют фиксированного  m – коли-

чества классов разбиения[11]. Значимое “сгущение”  ими пропуска-

ется, поскольку “доступные места” заняты “выбросами” — лишними 

ошибочно определенными компонентами. По этой причине был                  

разработан алгоритм автоматической кластеризации не требующий 

априорного знания m. 

На этапе раскраски исходное изображение разбивается на непере-

секающиеся l-области. Смесь пикселей каждой из них усеченной               

версией EM–алгоритма[12] разделяется на m выделенных классов, в 

ходе чего формируется соответствующая часть изображения-резуль-

тата. Параллельно ведется подсчет, сколько пикселей области принад-

лежит каждому из m классов для вычисления их веса на всем изобра-

жении. Эти значения используются для вычисления BIC.  

Результаты работы алгоритма на изображении с d = 17.                            
Результаты классификации приведены на рис. 3 для нескольких значений 

размера l. Выделенные области компонент смеси, удовлетворяющие по 

значениям параметров таблице 1, пронумерованы цифрами от 1 до 6.  

Значения параметров, полученные в ходе обработки изображений, 

приведены в таблице 3; p_mis  — ошибка второго рода при определе-

нии пикселей фона. Обработка изображения с d = 17 по локальным     

областям оказывается более эффективной, чем обработка его целиком. 

Выделено больше отметок целей и классов объектов. По полученным 

результатам прослеживается следующая закономерность: уменьшение 

l ведет к увеличению зашумленности и появлению «выбросов» —  

лишних компонент, на которые раскладывается смесь.  
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а б 

Рис. 3. Результаты классификации для областей с размерами: 

а — 34l  , б — 51l   

Таблица 3 

Значения параметров, полученные в ходе обработки РЛИ с d  = 17 

№ l  k  m  p_mis 
BIC, 

106 

Приближенные параметры 

компонент , p I / a / σ 

1 2 3 4 5 6 

1 34 4 8 0,009 3,090 0,93 

125,3 

35,58 

0,015 

183,9 

1,49 

0,01 

200,9 

2,66 

0,012 

217,6 

4,45 

0,012 

235,5  

5,66 

0,011 

251,9 

7,34 

2 51 3 6 0,0043 3,085 0,83 

126,8 

36,53 

0,039 

185,1 

1,46 

0,039 

201,9 

2,8 

0,036 

219,1 

4,46 

0,036 

236,1 

6,16 

0,022 

253,2 

7,61 

 

Результаты работы алгоритма на изображении с d = 9. Резуль-

таты приведены на рис. 4. 

Обработка такого изображения по локальным областям также ока-

зывается более эффективной, чем обработка его целиком. В сравнении 

со случаем d = 17, каждый целевой класс представляется меньшим            

количеством отсчетов. Из-за этого мы сталкиваемся с двумя пробле-

мами: пропуском объекта из-за выбора слишком большого l (рис. 4 а))  

и выбором неправильной модели (рис. 4 б) и в)) в качестве оптималь-

ной — в том,  что это так  можно убедиться, если рассмотреть модели 

с рис. 4 б) и в) для k = 3. 

Ошибки происходят из-за того, что EM–алгоритм неустойчив               

относительно изменения исходных данных и начальных приближений 
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[5, 9]. Кроме того, в качестве модели рассматривается дискретная 

смесь нормальных законов, для которой логарифм ФП не ограничен — 

т.е. не выполнены условия, гарантирующие правильность работы ал-

горитма. Цитируя [5]: «Для дискретной смеси нормальных законов 

EM-алгоритм находит не “правильные” оценки параметров, но наибо-

лее правдоподобные, причем правдоподобие их оказывается заметно 

выше правдоподобия “правильных”». Значение l в рассматриваемых 

случаях мало, что увеличивает вероятность появления “выбросов” на 

этапе оценки с точки зрения самой механики оценивания. Поэтому           

логарифм ФП в (12) для k = 2  оказывается больше, чем для k = 3, где 

компоненты смеси определяются более правильно. Т.к. эта функция 

принимает отрицательные значения, то первое слагаемое в формуле 

(12) для k = 2 оказывается меньше, следовательно, и значение BIC             

оказывается меньшим для неправильной модели.  

 

  
а б 

 
в 

Рис. 4. Результаты классификации для областей с размерами: 

а — 55l  , б — 27l  , в — 18l   
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Таблица 4 

Значения параметров, полученные в ходе обработки РЛИ с d  = 9 

№ l  k  m  p_mis 
BIC, 

106 

Приближенные параметры 

компонент , p I / a / σ 

1 2 3 4 5 6 

1 55 3 6 0,005 3.058 0,72  

126,8   

36,37 

0,057   

184,9 

1,43 

0,065  

201,58   

3,45 

0,059   

218,7 

4,56 

0,057   

235.8   

5,69 

0,038 

252,8 

7,28 

2 27 2 11 0,019 3,067 0,89  

126,8 

36,38 

0,018 

185,1 

6,42 

0,014  

201,98  

2,93 

0,014  

219,1 

4,29 

0,007  

236,07  

5,86 

— 

3 18 2 13 0,011 3,066 0,93 

126,2 

35,91 

0,005  

183,7 

19,36 

0,0003   

201,04 

3,0093 

0,005   

217,9 

4,443 

0,004 

234,8 

8,3253 

— 

 

  
а б 

Рис. 5. – Результат обработки при k = 3: 

а — 27l  , б — 18l   

 

Заключение. Было рассмотрено представление РЛИ смесью              
вероятностных распределений, а также возможность использования 
этой модели в контексте задачи поиска объектов.  В работе была              
предложена модификация существующего метода разделения конеч-
ных смесей вероятностных распределений — EM–алгоритма, позволя-
ющая    эффективно расщеплять смесь, классы которой представлены 
малым в сравнении с размером всей выборки числом наблюдений.    
Эффективность метода была рассмотрена на примере сгенерирован-
ной модели РЛИ, смесь отсчетов которого состояла из шести компо-
нент, распределенных по нормальному закону.  
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Созданный алгоритм показывает себя более эффективным для           
работы с приведенным набором данных. В сравнении с использова-
нием EM-алгоритма “классическим” образом выделяется больше             
объектов разного размера, более точно происходит соотнесение               
пикселей компонентам смеси. К достоинствам метода также можно 
отнести более гибкое определение числа компонент смеси, а также 
меньшее число итераций, требуемое для определения оптимального 
числа компонент. 

Алгоритм обладает и своими проблемами ― трудность состав-
ляют оценка ширины локальной области, зависимость от начальных                 
приближений, медленная сходимость метода и возможность выбора 
неверной модели в качестве оптимальной. Однако эти недостатки             
могут быть в будущем сглажены проведением предварительной 
оценки начальных приближений и использованием при разделении 
смеси в локальной области улучшенных версий EM–алгоритма, 
например, SEM-алгоритма. Данный метод видится перспективным    
инструментом для решения задач автоматической обработки                
изображений.  

Автор благодарен своему научному руководителю, Облаковой 
Т.В., доценту кафедры «Вычислительная математика и математи-
ческая физика» МГТУ им. Н.Э. Баумана, за поддержку и  помощь в 
написании данной работы.  
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Application of a finite mixture 

 model in radar image processing  
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The problem of target detection on a radar image (RI) is considered. When solving it, it is 

proposed to use a finite mixture as a model describing the structure of the processed image. 

It is assumed that each of its components corresponds to one of the classes of objects pre-

sent on the radar image, which are similar in their reflective properties. This hypothesis 

allows one to detect targets by solving the problem of finite mixture separating. It is possi-

ble to use for this existing methods of mixture decomposition — the EM-algorithm. How-

ever, the structure of the image, in which target classes are local inhomogeneities, consist-

ing of a small number of samples, imposes restrictions on the possibility of using these 

algorithms in their pure form and leads to the need to create their adaptations that take 

into account this feature of the input data. The article presents the results of applying the 

adapted EM-algorithm using the generated radar image with pixels obeying the normal 

law as an input data. The efficiency of the created algorithm is assessed in comparison 

with the results of applying the classical version of the EM-algorithm for this model. The 

data obtained made it possible to reveal the peculiarities of the method due to both the 

created mechanics of image processing and the properties of the procedure for separating 

mixtures — the EM-algorithm, which must be taken into account in the further use of this 

method of image processing. 

 

Keywords: mixture of distributions, target detection on radar images, identifiability, ЕМ-

algorithm, normal distribution model, local estimation of mixture parameter, Bayesian in-

formation criterion, finite mixture. 
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