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В данной работе разработан метод и алгоритм решения задач об оптимальном  

выборе плотности источников тепла на стержне таким образом, чтобы темпера-

тура внутри рассматриваемой области находилась в заданных пределах. При этом 

источники тепла должны обеспечить заданный температурный режим минималь-

ной суммарной мощности и температуру в заданном температурном коридоре. 

Строятся консервативные конечномерные аппроксимации исходной задачи в виде 

задачи линейного программирования. Приводится метод построения консерватив-

ных разностных схем для решения уравнения теплопроводности с переменными     

коэффициентами, краткое описание разработанного программного приложения 

для построения расчётных сеток и решения уравнений. Предлагается и обосновы-

вается новый метод численного решения нестационарных задач оптимального           

выбора источников тепла в стержне. Создано программное приложение для прове-

дения численных экспериментов решения поставленной задачи. Приводятся описа-

ние основанного алгоритма и результатов численных экспериментов. 
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Введение. Одним из видов объектов, широко распространенных в 

различных областях человеческой деятельности, являются источники 

тепла на границе, обеспечивающие тепло в состоянии нестационар-

ного теплового баланса с окружающей средой. Понятно, что темпера-

тура внутри тела зависит от температуры греющей среды, находя-

щейся на границе области. В типичной постановке задача об опти-

мальном выборе мощности греющей среды состоит в том, чтобы            

создаваемое источниками температурное поле внутри тела находилось 

в данном коридоре. Подобные задачи возникают в организации обо-

грева жилых и производственных помещений, теплиц и при необходи-

мости поддержания заданного температурного режима в однородных 

и неоднородных твердых телах [1]. Они допускают ряд постановок, 

которые не эквивалентны из-за различий в критериях оптимизации. 

Здесь мы рассматриваем задачу нахождения плотности источников 

тепла минимальной мощности, которая обеспечивает заданный темпе-

ратурный режим в некотором теле в условиях ее нестационарного теп-

лового баланса с окружающей средой. В работе [2] предложено реше-

ние задачи оптимального размещения источников в неоднородных 

средах, скалярные стационарные поля в которых описываются эллип-

тическими уравнениями. В основу алгоритмов решения задачи              
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положены эффективные способы оценки значений функционала на 

множестве возможных мест размещения источников, что дает возмож-

ность выбора оптимального варианта путем реализации метода ветвей 

и границ в каждом конкретном случае. В работе [3] исследуются                

задачи оптимального нагрева помещения на основе принципа макси-

мума Понтрягина. Приведена методика расчетов оптимального управ-

ления переходными режимами при натопе помещения. Работа [4]          

посвящена формулировке в явном виде математической задачи по            

оптимизации теплоснабжения в смысле ее энергетической эффектив-

ности и поиску ее решений. В работе [5] рассмотрены случаи несжи-

маемой вязкой жидкости и предлагаются разностные схемы, отража-

ющие свойства исходных уравнений: сеточная аппроксимация нели-

нейных членов переноса не дает вклада в баланс энергии и энтропии. 

Схемы строятся на неравномерной сетке в прямоугольнике интегро–

интерполяционным методом. В работе [6] изучаются кинетические 

уравнения Больцмана на основе метода расщепления по физическим 

факторам, а также построен консервативный алгоритм численного          

решения. Дана формулировка соответствующих дискретных гранич-

ных и начальных условий. На ряде примеров показана эффективность 

метода, позволяющего значительно увеличить точность вычислений. 

В работе [7] изучена дифференциально–разностная задача управления 

процессом диффузии, получен аналог принципа максимума, позволя-

ющий определить такие моменты включения и выключения макси-

мальной мощности источника, при которых внутри параллелепипеда 

устанавливается допустимый уровень его концентрации при наблюда-

емом уровне концентрации этого вещества на границе параллелепи-

педа. В работе [8] рассмотрена третья краевая задача параболического 

типа. Распределение тепла в рассматриваемом теле контролируется 

функцией, которая находится на границе тела; решена задача, в случае 

конфликта, о возможности перевода исходного положения тела в нуж-

ное состояние. С математической точки зрения эта задача относится к 

задачам оптимального управления [9, 10] для эллиптических краевых 

задач. Существование решения и общие свойства подобных задач для 

квадратичных целевых функционалов, а также приближенные методы 

их решения изучались рядом авторов [11–13]. Нашу задачу можно             

отнести также к обратным задачам теплопроводности, методы при-

ближенного решения которых рассмотрены в [14]. В работах [15, 16] 

разработаны методы и алгоритмы решения нестационарных задач об          

оптимальном выборе плотности источников тепла на простых физиче-

ских телах таким образом, чтобы температура внутри рассматривае-

мой области находилась в заданных пределах. При этом источники 

тепла должны обеспечить заданный температурный режим минималь-

ной суммарной мощности и температуру в заданном коридоре, запол-

ненной однородной или неоднородной средой. 
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В настоящей работе рассматривается задача нахождения распре-

деления плотности источников тепла, которая обеспечивает заданный 

температурный режим при минимальной суммарной мощности этих 

источников. Предлагаются метод и алгоритм решения нестационар-

ных задач при оптимальном выборе плотности источников тепла на 

стержне таким образом, чтобы температура находилась в заданных 

пределах. Создано программное приложение для проведения вычис-

лительных экспериментов с помощью этого алгоритма. 

Постановка задачи и ее консервативная аппроксимация. В 

прямоугольнике { , 0 }D a x b t T      требуется определить функ-

цию ( , ) 0f x t  , доставляющую при каждом [0, ]t T  минимум линей-

ному функционалу 

 { } ( , ) min,

b

a

J f f x t dx    (1) 

при следующих условиях: 

 0

1

2

( ) ( , ), , 0 ,

( ,0) ( ), ,

( , ) ( ), 0 ,

( , ) ( ), 0 ,

u u
x f x t a x b t T

t x x

u x u x a x b

u a t t t T

u b t t t T







   
      

   

  

  

  

  (2) 

 ( , ) ( , ) ( , ), ( , ) .m x t u x t M x t x t D     (3) 

Здесь ( , )u u x t  — температура стержня в точке x  в момент времени 

;t  ( ) 0x   — коэффициент теплопроводности; 
0( )u x , 

1( )t , 
2( )t ,

( , )m x t , ( , )M x t  — заданные функции. Функции ( , )m x t , ( , )M x t  

имеют смысл функций минимального и максимального профиля тем-

пературы в области D  соответственно. Плотность источников тепла 

описывается квадратично интегрируемой функцией ( , )f x t  в про-

странстве
2( )L D . Решение данной краевой задачи можно получить в 

аналитическом виде с использованием метода Фурье [17]. 

Введем в D  равномерную по обеим переменным разностную 

сетку 1 2{( , ), 0,1, , , 0,1, , }h h i jx ih t j i N j N              с 

шагами 
1( ) /h b a N  , 

2/T N  . 

Для получения однородных консервативных разностных схем 

воспользуемся интегро-интерполяционным методом. 

В основе дифференциального уравнения теплопроводности лежит 

интегральный закон сохранения тепла (уравнение баланса): 
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( , ) ( , )

( , ) ( , ) ( , ) ,

x x x x

x x

t t t t t t x x

t t t x

u t t d u t d

W x d W x x d f d d

   

       

 

   

   

    

 

   

  (4) 

где t  и x  произвольные числа, ( , )u x t  — температура, ( , )W x t  — 

поток тепла 

 
( , )

( , ) ( ) .
u x t

W x t x
x




 


  

Для получения разностного уравнения рассмотрим интегральное 

уравнение баланса тепла на элементарной ячейке сетки на отрезке 

1/2 1/2i ix x x    за промежуток времени 
1j jt t t   : 

 

1/2 1/2

1/2 1/2

1 1 1 1/2

1/2

1

1/2 1/2

( , ) ( , )

( , ) ( , ) ( , ) .

i i

i i

j j j i

j j j i

x x

j j

x x

t t t x

i i

t t t x

u x t dx u x t dx

W x t dt W x t dt f x t dxdt

 

 

   





 

 

  

 

   

  

Аппроксимируем входящие в уравнение баланса интегралы прибли-

женными формулами [17] 

11/2 1/2

1/2 1/2

1 1 1/2

1/2

1 1

1 1/2 1/2

1 1

1/2 1/2

1 1
1 1

1/2 1/2 1/

( , ) ; ( , ) ; ( , ) ;

( , ) ; ( , ) ,

;

ji i

i i j

j j i

j j i

tx x

j j j

j i j i i i

x x t

t t x

j j

i i i

t t x

j j
j i i

i i i

u x t dx hu u x t dx hu W x t dt W

W x t dt W f x t dxdt hf

u u
W W

h



 



 

 

  



 

  

 

 

 
 

  

  

 


 

  

  

1 1
1 1
2 1/2 .

j j
j i i

i

u u

h


 
 




 

  

При этом 
1/2i 

 определяется равенствами 

1 1
1/2 1/2

1

1

, ,
2 2

( ), ( , ).

i i i i
i i

j

i i i i j

x x x x

x f f x t

   

 

 
 





    
    

   

 

 

После такой замены интегральное уравнение баланса тепла превраща-

ется в дискретное уравнение баланса тепла для элементарной ячейки  

 1 1 1 1

1/2 1/2 ,j j j j j

i i i i ihu hu W W hf     

       

которое после деления на h  дает разностное уравнение 
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1 1 1 1 1

11 1
1/2 1/2

1
.

j j j j j j
ji i i i i i

i i i

u u u u u u
f

h h h
 



    
 

 

   
   

 
  (5) 

Интегро-интерполяционным методом мы получили дискретное 

уравнение баланса тепла (5) только для элементарной ячейки. Эту        

задачу в полной математической постановке будем решать интегро–

интерполяционным методом на равномерной сетке. 

Неявная консервативная разностная схема для задачи (2) имеет 

вид [17]: 

 

1

1 1 1 1 1
11 1

1/2 1/22 2

1 2

0

0 1

1 1

0 1 1 2 1 2

,

1, 2, , 1, 0,1, , 1,

( ), 0,1, , ,

( ), ( ), 0,1, , 1.

j j j j j j
ji i i i i i

i i i

i i

j j

j N j

u u u u u u
f

h h

i N j N

u u x i N

u t u t j N

 


 

    
 

 

 

 

    
    
 


     

   

     

  (6) 

Оператор ( )
u u

Lu x
t x x


   

   
   

 с начальным и краевым усло-

вием будет самосопряженным, положительно определенным в 
2( )L D , 

а значит, он имеет ограниченный обратный оператор 1G L . С его 

помощью можно переформулировать задачу (1)–(3) как задачу на ми-

нимум функционала (1) при следующих условиях плотности источни-

ков: 

 
2( , ) ( ), ( , ) 0, ( , ) ( )( , ) ( , ).f L D f x t m x t Gf x t M x t        (7) 

Рассмотрим матрицу 

1 1

1 1/2 1 1/2

2 2

1/2 1/2 1/2

2 2 2

1/2 1/2 1/2

2 2 2

( 1) 1/2 ( 1) 1/2

2 2

1
0 0

1
0

.

1
0

1
0

i i i

i i i

N N

h h

h h h

A

h h h

h h

 



  



  



 



 

  

  

   

  
   

  
  

    
  

 
 

       
 

  
   

  

 

Получаем 

 1.G A   



Б.Х. Хайиткулов 

90 

Построим консервативную аппроксимацию (1)–(7) в виде задачи 

линейного программирования. Разобьём область D  по x  на 
1N , и по 

t  на 
2N  равных частей: 

2 1

1 1

N N

j

i

j i

D D
 

 , где {( , )j

iD x t , 
1 ,i ix x x    

1 }j jt t t   , 
11,2, ,i N  , 

21,2, ,j N  . Обозначим через 2

1
( )

N

NS D  

подпространство пространства 
2( )L D , в котором определены кусочно-

постоянные функции вида ( , ) j

if x t f , ( , ) j

ix t D  
1( 1,2, , 1i N   , 

21,2, , )j N  . Введем в 2

1
( )

N

NS D  базис, состоящий из функций 

( , ) 1j

ie x t  , ( , ) j

ix t D  и ( , ) 0j

ie x t  , ( , ) j

ix t D . Тогда 

1 1

1

( , ) ( , )
N

j j

i i

i

f x t f e x t




 . Пусть ( , )j j

ik i ig Ge e , ( ( , ), ( , ))j j

i im x t e x t m , 

( ( , ), ( , ))j j

i iM x t e x t M  11, 1,i N   11, 1,k N   21, ,j N где ( , )   −        

скалярное произведение в 
2( )L D . Подставим выражение для ( , )f x t  в 

(1) и скалярно умножаем неравенства (7) на ( , )j

ie x t  в 
2( ).L D  Получим 

задачу линейного программирования 
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i ik k i
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J f mesD f j N

m g f M i N j N

f k N j N









   

      

     



   (8) 

Решая задачу (8) численными методами, находим функцию 
1 1

1

N
j j

i ik k

k

u g f




 , которая является решением краевой задачи (2) с j

kf . 

При этом задача (8) решается симплекс-методом [18]. 

Описание алгоритмов и результатов численных эксперимен-

тов. Для приближенного решения задачи (1)–(8) разработано про-

граммное приложение, написанное на языке C#, в котором не исполь-

зуются сторонние математические библиотеки. Данное программное 

приложение позволяет принимать все необходимые входные данные: 

константы, коэффициенты, параметры сеток, в том числе начальное и 

краевые условия, функции температур в виде скриптов на языке C#. 

Для представления результатов разработаны графические модули. 

Программное приложение использует сведение задачи к задаче (8) при 

равномерном разбиении области по каждой координатной оси. На 

блок-схеме приведен общий алгоритм решения задачи с использова-

нием численного метода для вычисления функции j

if  (рис. 1). 
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Эксперимент 1. Найдем оптимальную плотность распределения 

источников на отрезке. В качестве расчётной области возьмём отрезок 

[0,1]x  с функцией теплопроводности 2( )x x   м2/с. Для определе-

ния начальных и граничных условий зададим функцию              
2

0( ) 2u x x   м/с, 2

1( ) 2t t    м/с, 2

2 ( ) 3t t    м/с. Ограничивающие 

температурные кривые зададим функциями 2 2( , ) 1m x t x t    K, 
2 2( , ) 4M x t x t    K, окончание времени 1T  . Расчётная сетка с чис-

лом источников 
2 1( 1) 50 49N N    . На рис. 2 представлен результат 

численного решения задачи (8). При численном решении минимум 

значения функционала равен 
min 2952,69J   K м/с. На рис. 2 показаны 

результаты минимальных (границы с синим цветом), максимальных 

(границы с красным цветом) и приближенных (зеленым цветом)               

значений температур. Для иллюстрации эффективности разработан-

ного метода на рис. 3 показано оптимальное распределение источни-

ков в виде поверхности различного цвета.  

 

 
 

Рис. 1. Блок-схема общего алгоритма решения задачи 

 

   
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

 

Решение уравнения (2) численно на сетке. 

Результат — значение температуры 

 , .u x t При численном решении данного 

уравнения результат интерпретируется как 

приближенное значение  ,i ju x t  в узлах 

сетки  , .i jx t   

Построим консервативную аппроксима-

цию задачи (1)–(7) в виде задачи линей-

ного программирования.  

Решение задачи (8) с использованием сим-

плекс-метода. Результат — оптимальная 

плотность источников min .f    

Возврат min .f    
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Рис. 2. График решения задачи (8), эксперимент 1 

 

 
 

Рис. 3. Распределение оптимальной плотности источников тепла  , ,f x t эксперимент 1 

  

Эксперимент 2. При тех же входных параметрах области прове-

дём вычисления с функцией теплопроводности ( ) 1x x    м2/с. Рас-

чётная сетка с числом источников 
2 1( 1) 50 49N N    . 

На рис. 4 представлен результат численного решения задачи (8). 

, ,m u M  ,M x t

 ,u x t

 ,m x t

50
40

30
20

10
0

t

50 40 30 20 10 0

6

5

4

3

2

1

x

 ,f x t

40

20
10

0

30

t
0

10
20

30
40

x

4110

5000

0



Консервативные разностные схемы по оптимальному выбору… 

93 

При численном решении минимум значения функционала равен 

min 3982,68J   K м/с. На рис. 4 показаны результаты минимальных (гра-

ницы с синим цветом), максимальных (границы с красным цветом) и 
приближенных (зеленым цветом) значений температур. Для иллюстра-
ции эффективности разработанного метода на рис. 5 показано оптималь-
ное распределение источников в виде поверхности различного цвета.   

 

 

 

Рис. 4. График решения задачи (8), эксперимент 2 

 

 
 

Рис. 5. Распределение оптимальной плотности источников тепла  , ,f x t эксперимент 2 
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Эксперимент 3. При тех же входных параметрах области прове-

дём вычисления с функцией теплопроводности 

1, 0 0,5,
( )

2, 0,5 1.

x
x

x


 
 

 
 м2/с. 

Расчётная сетка с числом источников 
2 1( 1) 50 49N N    . На рис. 6 

представлен результат численного решения задачи (8). При численном 

решении минимум значения функционала равен 
min 4430,7J   K м/с. 

На рис. 6 показаны результаты минимальных (границы с синим цве-

том), максимальных (границы с красным цветом) и приближенных (зе-

леным цветом) значений температур. Для иллюстрации эффективно-

сти разработанного метода на рис. 7 показано оптимальное распреде-

ление источников в виде поверхности различного цвета. 
 

 

 
Рис. 6. График решения задачи (8), эксперимент 3 
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неоднородной среды подтверждена эффективность разработанных                 

алгоритмов и всей методики в целом. 
 

 

Рис. 7. Распределение оптимальной плотности источников тепла  , ,f x t эксперимент 3 

 

Работа выполнена при финансовой поддержке Узбекского фонда фундамен-

тальных исследований (проект ОТ-Ф4-33). 
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Conservative difference schemes for the optimal selection of 

the location of heat sources in the rod 
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In this paper, we have developed a method and an algorithm for solving the problem of the 

optimal selection of the density of heat sources on the rod in such a way that the tempera-

ture inside the considered area is within the specified limits is developed. In this case, the 
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heat sources must provide the specified temperature regime of the minimum total power 

and temperature in the specified temperature corridor. Conservative finite-dimensional 

approximations of the original problem are constructed in the form of a linear program-

ming problem. A method for constructing conservative difference schemes for solving the 

heat conduction equation with variable coefficients, a brief description of the developed 

software application for constructing computational grids and solving equations is pre-

sented. A new method for the numerical solution of non-stationary problems of optimal 

selection of heat sources in a rod is proposed and substantiated. A software application 

has been created for carrying out numerical experiments to solve the problem. The de-

scription of the based algorithm and the results of numerical experiments are given. 
 

Keywords: nonstationary problems, optimal selection, heat sources, heat equation, bal-
ance equation, conservation law, integro-interpolation method, implicit schemes, con-
servative schemes, simplex method 
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