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Представлено полное решение модели Манны — двумерной консервативной модели 
типа кучи песка с изотропными в среднем правилами передачи песчинок. Показа-
тели распределений лавин по основным характеристикам (размер, площадь, пери-
метр, длительность, кратность опрокидывания) определены для этой модели как 
аналитически, так и численно. 
Предлагаемое решение основано на пространственно-временной декомпозиции ла-
вин, описываемых посредством слоев и волн опрокидывания, а также на разделе-
нии движения песчинок на направленное и ненаправленное. Первый процесс может 
интерпретироваться в терминах динамики активных частиц, для которых опи-
сываются некоторые физические свойства. 

Ключевые слова: самоорганизованная критичность, масштабная инвариант-
ность, степенные распределения, конечно-размерный скейлинг, модель типа кучи 
песка, модель Манны, слои опрокидывания, волны опрокидывания. 

 
Введение. Важнейшим признаком сложного поведения является 

масштабная инвариантность, т. е. отсутствие у описывающих его ве-
личин собственных характерных значений. Возникновение масштабно-
инвариантных свойств у открытых нелинейных систем обычно связано 
с их самоорганизацией в критическое состояние [1, 2]. В работе изуча-
ется модель Манны [3] — двумерная изотропная консервативная само-
организованно-критическая модель типа кучи песка. Используется че-
тырехчастичный вариант правил данной модели, предложенный в 
работе [4] (в разных вариантах правил свойства этой модели одинаковы, 
но выбранный вариант наиболее удобен для сравнения с другими моде-
лями типа кучи песка). 

Целью исследования модели является аналитическое и численное 
определение показателей степенных распределений, которым подчи-
няются происходящие в ней события. Основой для этого служит де-
композиция их динамики как в пространственно-временном, так и в 
симметричном отношении. Возникающий при этом простой и удоб-
ный понятийный аппарат также следует рассматривать как важный 
результат работы. 

1. Правила модели. Модель Манны представляет собой двумерную 
ортогональную решетку размером ,L L  в ячейках которой находятся 
целые числа. Эти числа традиционно интерпретируются как количе-
ство песчинок. Если число в ячейке превышает установленный порог, 
она объявляется неустойчивой и опрокидывается. При этом из нее 
изымаются четыре песчинки, каждая из которых передается одной из 
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ячеек, имеющей с данной общую сторону (если ячейка находится на 
краю решетки, то передаваемые за него песчинки необратимо теряют-
ся). Выбор новой ячейки для каждой песчинки осуществляется слу-
чайным образом (правила изотропны). При наличии нескольких не-
устойчивых ячеек они опрокидываются одновременно — в ходе 
одного шага времени. 

Элементарное событие, в результате которого система переходит 
от одного устойчивого состояния к другому, инициируется добавле-
нием песчинки в одну из ячеек. Алгоритм ее выбора не влияет на 
свойства модели. В настоящей работе для добавления инициирую-
щей песчинки случайным образом выбирается одна из четырех цен-
тральных ячеек решетки ( L  — четное число). 

Если в результате добавления песчинки ячейка теряет устойчи-
вость, то песчинки, переданные при ее опрокидывании соседним, мо-
гут нарушить их устойчивость и т. д. Цепная реакция опрокидыва-
ний, продолжающаяся до тех пор, пока в системе сохраняются 
неустойчивые ячейки, называется лавиной. 

Далее рассматриваются следующие основные характеристики ла-
вины: 

  размер (количество произошедших опрокидываний) ;N  
  площадь (число опрокинувшихся ячеек) ;S  
  периметр (число ячеек, получивших песчинку, но не опроки-

нувшихся, включая песчинки, выпавшие за край решетки) ;C  
  длительность (число шагов времени) .T  
Кроме того, рассматриваются две производные характеристики: 
  кратность опрокидывания (средняя) ;M N S  
  радиус (характерная линейная протяженность) области лавины 

~ .R S  
Независимо от начального состояния системы после некоторого 

количества событий она приходит в критическое состояние, в кото-
ром происходящие процессы являются масштабно-инвариантными, а 
все перечисленные характеристики лавин подчиняются степенным 
распределениям с плотностью вероятности вида 

  (1 )( ) ~ ,u x x   (1) 

где   — характеристический показатель. Целью работы является 
определение его значений для всех характеристик лавины, т. е. пол-
ное решение модели. 

2. О решении критических моделей. Для критических систем до-
статочно типична ситуация, когда разные по своим правилам модели 
обладают одним и тем же набором показателей. В этом случае гово-
рят, что эти модели относятся к одному и тому же классу универ-
сальности.  
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Наряду с моделью Манны [3] в теории самоорганизованной кри-
тичности известны две родственных ей модели типа кучи песка. Пер-
вая из них — модель Бака — Танга — Визенфельда (БТВ) [1], един-
ственное отличие которой от модели Манны состоит в том, что 
песчинки из опрокинувшейся ячейки распределяются между ее со-
седками не случайно, а строго поровну. Вторая — модель Жанга [5], 
которая оперирует нецелыми числами, что позволяет при опрокиды-
вании неустойчивой ячейки поровну поделить между ее соседями все 
содержимое (а не фиксированное значение). По аналогии с моделью 
Жанга возможно рассмотрение модификации модели Манны, в кото-
рой из опрокинувшейся ячейки изымаются и передаются соседним 
все имеющиеся там песчинки. Однако эта модификация попадает в 
тот же класс универсальности, что и исходная модель, и потому са-
мостоятельного интереса не представляет. 

На сегодняшний день достоверно не известно, относятся ли мо-
дели Манны и Жанга к одному или к разным классам универсально-
сти. Но даже если эти классы различны, точно установлено, что мо-
дель БТВ не принадлежит ни к одному из них [4, 6, 7], хотя ее 
правила подчиняются тем же симметриям и законам сохранения, что 
и правила двух других моделей. Данное обстоятельство не позволяет 
применять для теоретического решения таких моделей перенормиро-
вочные методы, неплохо зарекомендовавшие себя при изучении 
обычных критических явлений. Так, использование блочного преоб-
разования в работах [8, 9] вылилось в ошибочное отнесение к одному 
классу универсальности моделей БТВ и Манны, а использование ме-
тода динамической ренормгруппы в работах [10, 11] — моделей БТВ 
и Жанга. 

К настоящему моменту теоретическое решение имеют только три 
двумерных модели типа кучи песка: детерминированная направлен-
ная модель Дхара — Рамасвами [12], которая была решена еще ее ав-
торами, ее стохастический аналог — модель Пастор-Саторраса — 
Веспигнани [13], которая была решена в работах [14, 15], и дискрет-
ная модель Федеров [16], решенная в работе [18] на основе представ-
лений о спонтанной анизотропии. В отличие от всех перечисленных 
рассматриваемая в настоящей работе модель Манны обладает изо-
тропной динамикой, что требует существенно иных подходов. 

Решение самоорганизованно-критических моделей непосредствен-
но на основе их правил является нетривиальной задачей, для которой 
нет общих алгоритмов. Ключом здесь служит формулировка промежу-
точной модели, описывающей коллективную динамику для исходной 
модели и тем самым позволяющей устанавливать количественную связь 
между различными характеристиками лавин, что существенно упроща-
ет анализ распределений вероятности. 

В данной работе предлагается и исследуется такая промежуточ-
ная модель. Следует особо отметить, что она не выводится из правил 
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модели Манны, а основывается на общем представлении о геометрии 
и динамике возникающих в ней лавин, в свою очередь опирающемся 
на физическую интуицию и компьютерное моделирование. То же 
можно сказать и про степенной вид распределений, который прямо 
не следует ни из исходной, ни из промежуточной модели. Подтвер-
ждением правильности таких теоретических построений в общем 
случае может быть только соответствие полученных значений пока-
зателей результатам компьютерного моделирования. Поэтому в ста-
тье уделено особое внимание анализу его результатов. 

Заметим, что попытки интенсивного компьютерного исследова-
ния модели Манны предпринимались ранее и другими авторами. В 
частности, в работах [19–21] некоторые показатели были определены 
с погрешностью, достаточно низкой для того, чтобы стало возмож-
ным угадывание их точных значений, которые выражаются дробями 
со сравнительно небольшими числителем и знаменателем. 

Кроме того, в работе [22] был предложен способ аналитического 
определения показателя T  посредством описания динамики числа 
неустойчивых ячеек как случайного блуждания, которое предполага-
ется несмещенным, некоррелированным и независимым от времени. 
Однако это предположение нетривиально, поскольку, например, для 
модели БТВ оно просто не выполняется. Для модели Манны в об-
суждаемой работе оно проверялось только численно, но не было 
обосновано теоретически, так что полученный результат можно счи-
тать аналитическим лишь с серьезными оговорками. Тем не менее он 
показывает один из потенциальных путей получения частичного ре-
шения данной модели, если используемые свойства блуждания будут 
объяснены. 

В настоящей статье избран иной путь, основанный на построении 
промежуточной модели и анализе зависимостей между различными 
характеристиками лавин. Для предлагаемого решения среди них 
ключевыми оказываются средняя кратность опрокидывания M  и пе-
риметр области лавины С, которые другими авторами, как правило, 
вообще не рассматриваются. Внимание обычно уделяется более тра-
диционным характеристикам, таким как размер лавины N, ее пло-
щадь S  и длительность T, ограничиваясь которыми получить реше-
ние не удается. 

 3. О степенных распределениях. Формула (1) является математи-
ческой идеализацией и применима только в промежуточной асимпто-
тике. Более адекватной реальности является запись 

   (1 )
1( ) ,u x x h x x   (2) 

где функция  h   примерно постоянна при 1  и убывает быстрее 

любой степени аргумента при     [17, 18]. 
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Ограничение диапазона степенной статистики значением 1x  обу-
словлено конечностью размеров системы, не позволяющей ей по-
рождать сколь угодно крупные события. В силу масштабной инвари-
антности критического состояния для величин, подчиняющихся 
распределению (2), характерный размер события 1x , крупного 
настолько, что оно уже не помещается в систему размера ,L  масшта-
бируется как некоторая его степень 

  1 ~ .x L  (3) 

Сочетание формул (2) и (3) позволяет определить скейлинговое 
поведение и для среднего размера события 

  б( ) ~ ,x xu x dx L   (4) 

где (1 ).      
Для некоторых характеристик лавины скейлинговые показатели 

  и   можно установить из общих соображений. Для рассматривае-
мой модели это удается сделать в двух случаях. 

Во-первых, площадь области лавины, очевидно, ограничена пло-
щадью решетки: 

  2
1 ~ ,S L  или 2.S   (5) 

Во-вторых, движение каждой отдельно взятой песчинки по ре-
шетке представляет собой случайное блуждание. Чтобы покинуть 
решетку, добравшись от ее середины до края, песчинке надо пройти 
дистанцию порядка L  ячеек, что требует порядка 2L  шагов. По-
скольку каждая лавина начинается добавлением одной песчинки в 
систему, то и покидать ее в стационарном состоянии будет в среднем 
одна песчинка. Таким образом, 

  2~ ,N L  или 2N  . (6) 

Ситуация, когда скейлинговые показатели, определяемые непо-
средственно на основе правил, относятся к разным характеристикам 
лавины, является типичной. Поэтому для теоретического исследова-
ния самоорганизованно-критических моделей принципиально важен 
учет не только статистических свойств отдельных характеристик ла-
вины, но и их взаимосвязей. При одновременном рассмотрении для 
одной и той же лавины двух характеристик x  и y  зависимость меж-
ду ними можно записать в виде 

  ~ .yxy x  (7) 

Воспользовавшись формулой преобразования вероятностей 
( ) ( ) ,x yu x dx u y dy  получим соотношение для характеристических 

показателей 
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  .yx x y     (8) 

Записав связь между размерами крупных событий 1 1~ ,yxy x  полу-

чим соотношение и для скейлинговых показателей 

  yx y x    . (9) 

Геометрия области лавины. Первый элемент предлагаемой про-
межуточной модели — описание взаимного расположения ячеек, со-
вершивших определенное количество опрокидываний в ходе лавины. 

1. Слои опрокидывания. Область лавины представляется как по-
следовательность слоев, внутри которых кратность опрокидывания 
одинакова (рис. 1). Для модели БТВ, правила которой строго детер-
минированы, такое описание было бы строгим [23]. Однако для мо-
дели Манны в силу случайного характера раздачи песчинок при 
опрокидывании ячеек оно является лишь приближением. Тем не ме-
нее поскольку основанные на нем расчеты находятся в прекрасном 
согласии с результатами моделирования, будем считать точность та-
кого приближения удовлетворительной. 

Рис. 1. Схематичное представление слоев опрокидывания. Увеличение но-
мера слоя соответствует уменьшению кратности опрокидывания. Изрезан-
ность границ слоев обеспечивает возрастание их ширины вместе с радиу- 
     сом (в случае гладкой границы слои имели бы постоянную ширину) 
 
Нумеровать слои области лавины будем из ее глубины наружу, 

начиная с единицы, т. е. если в данный момент времени максималь-
ная кратность опрокидывания для рассматриваемой лавины равна ,m
то она состоит из слоев с номерами 1 ,k m  на которых произошло 
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1m k   опрокидываний. Здесь и далее прописными буквами станем 
обозначать характеристики лавины, относящиеся ко всей ее области, 
а соответствующими строчными буквами с индексом k  — значения 
этих характеристик для k-го слоя. 

В силу масштабной инвариантности критического состояния ха-
рактерный радиус области лавины дается степенной зависимостью 

  ~ ~R m M   (10) 

(появление в этой и последующих формулах средней кратности 
опрокидывания M  пояснено далее). Поскольку показатель ,  связы-
вающий радиус и кратность, фигурирует далее во многих формулах, 
для удобства будем опускать у него индексы, сохраняя их для всех 
прочих показателей связи. 

Чтобы описать слои, сделаем еще одно важное допущение относи-
тельно динамики лавины. Предположим, что при появлении новых 
слоев границы уже имеющиеся не испытывают систематического сме-
щения в какую-либо сторону, подвергаясь лишь флуктуациям. Это 
предположение является очень сильным и неочевидным. Будучи спра-
ведливым для модели Манны, оно не выполняется для модели БТВ.  
И хотя причины, обусловливающие данное фундаментальное различие 
между моделями, удалось теоретически объяснить [7], окончательным 
подтверждением сделанного предположения, по всей видимости, мож-
но считать только совпадение результатов проведенного на его основе 
теоретического анализа и компьютерного эксперимента. 

Опираясь на сделанное предположение, запишем для характер-
ной величины внешнего радиуса k -го слоя выражение 

  ~ ,kr k   (11) 

превращающееся в частном случае k m  в зависимость (10). По-
скольку, очевидно, 0 0,r   для удобства выкладок далее формально 
будем использовать и нулевой слой, не содержащий ячеек. 

Характерная ширина k-го слоя 

  1 11~ ~ ,k
k k

dr
w k r

dk
   (12) 

а его площадь 

 2 12 1~ ~ ~ .k k k ks r w k r    

Суммированием по слоям лавины находим ее размер 

    2 1 2 1

0

1 ~ ~
m

k
k

N m k s m M 


    (13) 
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и площадь затронутой ею области 

  2 2

0

~ ~ .
m

k
k

S s m M 


   (14) 

Из формул (13) и (14) получим 

 ~ .M N S m  

Поэтому здесь и далее при проведении выкладок с точностью до 
коэффициента не различаем среднюю M  и максимальную m  крат-
ности опрокидывания, называя их просто кратностью опрокидыва-
ния. 

2. Распределение лавин по кратности опрокидывания. Предпо-
ложения о пространственной структуре лавины и общего анализа 
правил модели оказывается достаточно для определения показателя 
распределения лавин по кратности опрокидывания .M  Для этого 
сначала выразим его через показатель распределения лавин по разме-
ру, применив соотношение (8) к формуле (13): 

  2 1 .M N      

 Сочетание формул (13) и (14) дает связь между характеристика-
ми лавины 

 2 1 2~ ,S N   

которая в силу соотношения (9) приводит к выражению 

  2 2 1 .N S      

Запишем показатель для среднего размера лавины (4): 

  2 1 1
1 1 1 .

2 2 1 2
M M

N N N S S
       

                   
 

Отсюда с учетом равенства N S    (см. формулы (5) и (6)) найдем 

  1.M   (15) 

3. Структура границы слоев. Для полного описания слоев необ-
ходимо рассмотреть не только их взаиморасположение, но и геомет-
рию границ. 

Определим периметр слоя как длину его внешней границы. Она 
не является гладкой линией, образуя складки, соизмеримые с шири-
ной слоя (12) (см. рис. 1). Поэтому его периметр не пропорционален 
радиусу (11). Назовем фронтом слоя усредненное положение его 
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внешней границы. Поскольку усреднение сглаживает ее складки, 
длину фронта уже можно считать пропорциональной радиусу слоя. 
Количество складок границы определяется длиной фронта, что поз-
воляет записать для периметра выражение 

  2 12 1~ ~ ~ ~ .k k k k kс r w s k r    (16) 

 В частности, периметр области лавины равен периметру ее 
внешнего слоя: 

  2 1 2 1 2 1~ ~ ~ .mC c m M R     (17) 

Наглядное представление о фрактальных свойствах границы дает 
величина, которую можно назвать глубиной области лавины 

 .D S C  

 Если бы граница области лавины была гладкой линией, глубина 
была бы пропорциональна радиусу. Однако, как следует из формул 
(14) и (17),  

  ~ .D M  (18) 

 Соответственно 1.D M     Соотношение (4) дает значение 
0  при 1 , т. е. следует ожидать не степенного, а лишь лога-

рифмического увеличения средних значений кратности и глубины с 
ростом размера решетки, что подтверждается результатами модели-
рования, приведенными на рис. 2. 

Рис. 2. Средние глубина лавины и кратность опрокидывания. Логарифми-
ческая зависимость от L средних значений этих характеристик подтвержда-
ет для них тривиальное единичное значение показателя, найденное на ос-
нове общих соображений о пространственной структуре лавины. Прямыми  
    линиями показаны аппроксимации экспериментальных зависимостей 
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Обратим внимание именно на линейную зависимость D  и M  

от log L  для модели Манны, означающую отсутствие каких-либо не-
учтенных логарифмических поправок к используемым формулам. 
Поправки такого рода, несомненно, должны возникать в модели БТВ, 
для которой средняя кратность опрокидывания, как показывают ре-
зультаты моделирования, растет медленнее логарифма размера си-
стемы. А формула (18) для модели БТВ, принадлежащей к другому 
классу универсальности, не выполняется, вследствие чего средняя 
глубина области лавины для этой модели дается некоторой степенью 
размера решетки меньшей единицы (возможно, тоже с логарифмиче-
скими поправками). 

Динамика лавины. Второй элемент промежуточной модели — 
описание процесса формирования слоев и введение представления об 
ответственных за него активных частицах. 

1. Физика активных частиц. Внутри слоя ячейки (в среднем) отда-
ют соседним и получают от них одно и то же число песчинок. Однако 
на границе слоев этот баланс нарушается, так как ячейки внутреннего 
слоя отдают больше, чем получают от ячеек внешнего, т. е. количество 
песчинок, передаваемых слоем вовне, определяется его периметром 
(16), в каждой точке которого происходит передача песчинки. 

Введем понятие активных частиц, под которыми будем понимать 
песчинки, которые в ходе лавины покидают слой без компенсации. 
Количество активных частиц на k -м слое равно разности числа от-
данных наружу и полученных изнутри песчинок: 

  2 22 2~ ~ .k
k k

dc
a k r

dk
   (19) 

Активные частицы перемещаются из глубины области лавины к 
ее периферии, тогда как остальные песчинки — в случайном направ-
лении. Таким образом, развитие лавины представляет собой сочета-
ние направленного и ненаправленного движений. Подобное разделе-
ние имеет смысл только в критическом состоянии. В докритическом 
состоянии активные частицы будут утрачивать этот статус, не дости-
гая границ области лавины, а в сверхкритическом даже вынос вовне 
всех активных частиц не будет приводить к завершению лавины из-за 
продолжающегося появления новых активных частиц. 

Далее рассматривается поведение активных частиц с кинемати-
ческой, динамической и телеологической точек зрения, что неизмен-
но приводит к полученным выше формулам. Смысл такого дублиро-
вания состоит в прояснении физического смысла активных частиц и 
их свойств. 

 Кинематика. Перенос активных частиц вовне уместно связать  
с движением фронтов. На единицу длины фронта приходится  
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1 22~ ~k
k k

k

a
k r

r
   активных частиц. Следовательно, число шагов 

времени, необходимых для продвижения участка фронта, «обслужи-
ваемого» одной активной частицей, пропорционально его длине: 

 
1 2

~ ~ .k k
k

k k

r r
t

r  
 




 

 Таким образом, скорость движения k-го фронта 

  1 2~ ~ ,k
k k

k

r
v r

t
 


 (20) 

а время, которое он находится в пути с момента своего появления, 

  2 2~ ~ .k kt r k  (21) 

 Динамика. Плотность активных частиц на k-м слое 

 11~ ~ ~ .k
k k

k

a
k r

s
   

В качестве причины движения фронтов наружу можно рассмат-
ривать взаимное отталкивание активных частиц [5]. Его энергия 
внутри k-го слоя (т. е. включая более глубокие) 

 2 22 2 3 2 2

0 0

~ ~ ~ ~ .
k k

k i i k
i i

U s i k r   

 
   

 Приравняв скорость движения фронтов силе отталкивания 

 1 2~ ~ ,k
k k

k

dU
v r

dr
   

еще раз получим формулу (20). 
  Телеология. Активные частицы совершают направленное дви-

жение, которому можно приписать очевидную цель. В силу опреде-
ления (19) полное количество активных частиц суть периметр лави-
ны, который они образуют, а в ходе ее развития активные частицы 
проявляют себя в виде некоторой доли опрокидываний. Следова-
тельно, активность, понимаемая как среднее число опрокидываний 
за шаг 

 ,
N

A
T

  

с точностью до коэффициента совпадет с полным числом активных 
частиц, т. е. 
  А ~ С. (22) 



А.В. Подлазов 

100 

Сочетание этих формул с формулами (13) и (17) приводит к соот-
ношению 

  2~ ,T M  (23) 

являющемуся частным случаем формулы (21). 
Зависимость (23) может быть обобщена до вида (21) тем же спо-

собом, которым ранее был осуществлен переход от частной формулы 
для радиуса (10) к ее общему виду (11). 

2. Волны опрокидывания. Развитие лавины во времени можно 
представить как последовательность волн опрокидывания, идущих из 
глубины к периферии, увеличивающую кратность опрокидывания и 
число слоев. Для модели БТВ, для которой изначально была предло-
жена такая декомпозиция [23], она является математически строгой, 
но на физическом уровне строгости она применима и для модели 
Манны. 

Очередная волна может как достигнуть, так и не достигнуть гра-
ниц уже затронутой лавиной области. В первом случае к ней добав-
ляется новый внешний слой, во втором происходит разделение одно-
го из внутренних слоев на два. Если считать все, что находится вне 
зоны распространения волны, пока не затронутой областью, то под-
становка радиуса этой зоны в формулу (10) дает число слоев ,m  ко-
торое может не только увеличиваться (как происходит при развитии 
лавины), но и уменьшаться (как происходит при ее затухании). В са-
моорганизованно-критическом состоянии его среднее изменение 

  0.m   (24) 

В самом деле, при 0,m   лавина, инициированная добавлением 

песчинки, быстро затухает, как правило, не достигая краев решетки, 
что ведет к увеличению ее заполнения. С другой стороны, при 

0m   лавина с ненулевой вероятностью неограниченно распро-

страняется, достигая краев решетки во множестве мест и вынося много 
песчинок, что ведет к уменьшению заполнения. Возникающая отрица-
тельная обратная связь и обеспечивает выполнение условия (24), озна-
чающего диффузионное изменение кратности со временем, описывае-
мое формулой (23). Возможность обоснования этой формулы без 
привлечения представления об активных частицах служит дополни-
тельным обоснованием его адекватности. 

3. Поток песчинок. С помощью формул (19) и (20) запишем вы-
ражение для потока частиц через k-й слой: 

 3 4~ .k k k kj v a r    
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 Он не должен зависеть ни от номера слоя, ни от числа слоев, ибо 
выносит ту самую песчинку, добавлением которой инициирована ла-
вина. 

Таким образом, 4 3.   Полученное значение позволяет с помо-
щью формул (13), (14), (17) и (23) определить показатели связи для 
кратности опрокидывания, которые в силу формул (8) и (15) совпа-
дают с характеристическими показателями: 3 11MN N    , MS   

3 8,S    3 5MC C     и 1 2.MT T     На их основе с помо-
щью формул (5) и (9) вычисляются и скейлинговые показатели 

11 4 ,N   5 4 ,C   3 2T   и 3 4.M   
Сравнение с компьютерным экспериментом. 
1. Метод конечно-размерного скейлинга. Формулы (2) и (3) огра-

ничивают область промежуточной асимптотики, где плотность рас-
пределения может быть аппроксимирована формулой (1). Прибли-
женный характер степенной записи плотности затрудняет 
непосредственное определение характеристического показателя на 
основе  
результатов компьютерного эксперимента. Можно лишь убедиться в 
правильности известного из теории значения показателя доумноже-
нием плотности на соответствующую степень аргумента, в результа-
те чего график в области промежуточной асимптотики становится 
примерно горизонтальным. 

Более продуктивным оказывается метод конечно-размерного 
скейлинга, основанный на переходе от представления плотности в 
виде (2) к записи [17, 18] вида: 

   ( ) .u x L g xL   (25) 

 Если рассматривать выражение  L u x  как функцию от ,L x  то 

графики, полученные при разных значениях ,L  совместятся, а экви-
валентность представлений (2) и (25) требует степенного поведения 
функции  g   при малых аргументах и выполнения скейлингового 

соотношения 

   1 .     (26) 

Таким образом, для экспериментального определения показателя 
  не нужно компенсировать влияние неизвестных скейлинговых 
функций  h   и  g  . Достаточно, подобрав подходящие значения 

  и  , воспользоваться соотношением (26). 
На рис. 3–7 показан конечно-размерный скейлинг результатов 

компьютерного моделирования при теоретически определенных зна-
чениях скейлинговых показателей. Прекрасное совпадение графиков 
доказывает правильность проведенных расчетов. 
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Рис. 3. Распределение лавин по кратности опрокидывания. Показатели:  
1;M   3 4 ;M   3 2M   

Рис. 4. Распределение лавин по размеру. Показатели: 3 11;N   11 4;N 
7 2N   

 
Дополнительным аргументом служат врезки к рисункам, на кото-

рых проведена компенсация степенного множителя из формулы (2)  
с помощью известных значений характеристических показателей.  
В результате графики становятся в промежуточной асимптотике го-
ризонтальными, а их «горбики» выстраиваются на одной высоте. 



Двумерная самоорганизованно-критическая модель Манны… 

103 

Рис. 5. Распределение лавин по площади. Показатели: 3 8;S  2;S   
11 4S   

Рис. 6. Распределение лавин по периметру. Показатели: 3 5;C   5 4;C 
2C   

 
2. Статистика падений. Представление (25) имеет большую 

общность, нежели формула (2), позволяя работать и нестепенным 
распределениям лавин по числу падений .F  

Вероятность того, что лавина не помещается в систему размера 
,L  составляет 
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        
1

1

1

Prob ~ ,
x L

x x u x dx L g xL dx L g d L


  
            

где универсальный показатель       не зависит от того, какая 
именно характеристика лавины рассматривается [18, 21]. Для харак-
теристик, распределенных степенным образом, соотношение (26) да-
ет более удобную запись:    , делающую постоянство универ-
сального показателя очевидным в силу формул (8) и (9). Для модели 
Манны 1 4  . 

Рис. 7. Распределение лавин по длительности. Показатели: 1 2;T   3 2;T   
9 4T   

 
Выбор для добавления инициирующей песчинки центральных 

ячеек, максимально удаленных от края решетки, делает возможным 
падение за него только в результате крупнейших лавин. Таким обра-
зом, универсальный показатель определяет зависимость от размера 
решетки доли тех событий, в ходе которых происходят падения 
(см. врезку на рис. 8). Заметим, что поскольку падения не описыва-
ются степенным распределением, для них размер крупного события 

1,F  задаваемого формулой (3), и размер события, не помещающегося 
в систему, — не одно и то же. Не помещается любое событие с 0,F 
поскольку для его возникновения лавина должна дойти от точки 
инициации до края решетки. 

Определим скейлинговые показатели формулы (25) для величи-
ны .F  
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Рис. 8. Распределение лавин по числу падений. Показатели: 3 4;F   3 2.F   
Плотность убывает не как степень аргумента, а экспоненциально. Вероятность того, 
что за край упадет хотя бы одна песчинка, убывает как L  

 
За один шаг моделирования в систему добавляется одна песчин-

ка, значит, в стационарном состоянии в среднем одна ее и покидает, 
т. е. 1F   и 0.F   

По аналогии с формулой (4) можно вывести соотношение 
2 ,F F F     откуда 2 ,F F    что дает F  и ,F  совпадающие с 

M  и M , в чем позволяет убедиться рис. 8. 
Достижение лавиной края решетки в отдельных точках можно 

рассматривать как независимые события, что подтверждается экспо-
ненциальным видом распределения лавин по падениям (см. рис. 8). 
Ширина внешнего слоя крупнейшей лавины 1 4~ .W L  Характерное 
расстояние между точками, где она достигает края решетки, имеет 
тот же порядок в силу изотропии правил модели. 

Таким образом, вновь получаем для крупнейшего падения 
3 4

1 ~ .F L  
3. Взаимосвязь характеристик лавины. Наконец, скейлинговый 

подход применим и к анализу взаимозависимостей различных харак-
теристик лавины. Чисто степенной вид (7) они имеют тоже только в 
промежуточной асимптотике, отклоняясь от него на краях диапазона 
значений, принимаемых характеристиками. Однако при делении зна-
чений по обеим осям на L  графики совмещаются (рис. 9, 10), что 
позволяет находить показатель связи с помощью формулы (9). 
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Рис. 9. Связь средней кратности опрокидывания и длительности лавины.  
            Показатели: 3 4;M   3 2;T  2MT   (см. формулу (23)) 

 

Рис. 10. Связь активности в ходе лавины и ее периметра. Показатели:      
                           5 4;A C     1AC   (см. формулу (22)) 

 
Выводы. Для самоорганизованно-критической модели Манны 

предложена промежуточная модель. В ее терминах область лавины 
рассматривается как набор вложенных слоев опрокидывания убыва-
ющей наружу кратности. Увеличение кратности опрокидывания и 
появление новых слоев связано с прохождением последовательных 
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волн опрокидывания. Развитие лавины характеризуется постоянным 
потоком песчинок из ее глубины на периферию, который описывает-
ся в терминах активных частиц, обладающих интуитивно ясными фи-
зическими свойствами. Промежуточная модель допускает простое 
теоретическое исследование, основные результаты которого, под-
твержденные компьютерным моделированием исходной модели, све-
дены в таблицу. 

Характеристические и скейлинговые показатели, показатели связи 

Показатель         N  S  T  C  M  R  

Размер N  3/11 11/4 7/2 2 – 11/8 11/6 11/5 11/3 11/4 

Площадь S 3/8 2 11/4 5/4 8/11 – 4/3 8/5 8/3 2 

Длитель-
ность T  

1/2 3/2 9/4 3/4 6/11 3/4 – 6/5 2 3/2 

Пери- 
метр C  

3/5 5/4 2 1/2 5/11 5/8 5/6 – 5/3 5/4 

Крат- 
ность M  

1 3/4 3/2 0 3/11 3/8 1/2 3/5 – 3/4 

Радиус R  3/4 1 7/4 1/4 4/11 1/2 2/3 4/5 4/3 – 

 
Работа выполнена при поддержке РФФИ (проекты 13-01-00617 и  
14-01-00773). 
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Two-dimensional self-organized critical Мanna model 

© A.V. Podlazov 

Keldysh Institute of Applied Mathematics of the Russian Academy of Scienсes, Moscow, 
125047, Russia 
 
We propose a full solution for Manna model, two-dimensional conservative sand pile 
model with isotropic rules of grains redistribution on average. We determined the gen-
eral properties indices of avalanches distribution (size, area, perimeter, duration, the 
multiplicity of topplings) for the model both analytically and numerically. The solution is 
based on spatio-temporal decomposition of avalanches described in terms of toppling 
layers and waves and on division of the motion of grains into directed and undirected 
types. The former of the two is treated as the dynamics of active particles with some phys-
ical properties described. 

Keywords: self-organized criticality, scale invariance, power-series distribution, finite-
size scaling, sandpile models, Manna model, layers of toppling, waves of toppling.  
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