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В работе представлен метод численного моделирования тепломассообмена при 

бездренажном хранении криогенных компонентов топлива в баках с учетом                      

свободно-конвективных течений в жидкой и паровой фазах. Физико-математиче-

ская модель основана на приближении малых чисел Маха для пара и приближении 

Буссинеска для жидкости. Предложен способ численного моделирования начальной 

неоднородности температуры в паре. Адекватность заложенных в метод                          

допущений и подходов подтверждена сравнением с экспериментальными данными 

по хранению азота и водорода. 
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Введение. Бездренажное хранении криогенных жидкостей, таких 

как водород, кислород, азот, метан, сопряжено с проблемой роста дав-

ления в баке вследствие наличия внешнего теплопритока. Моделиро-

вание хранения осложняется протекающими внутри бака физиче-

скими процессами, такими как свободно-конвективные течения в жид-

кости и паре. 

Наличие перегрузки как в земных условиях, так и в условиях ор-

битального полета приводит к достаточно интенсивной конвекции. 

Однако, характерные скорости такого движения существенно меньше 

скорости звука, а температурные перепады в жидкости достаточно            

невелики. Эта особенность позволила использовать для описания кон-

векции в жидкости широко известное приближение Буссинеска [1], и 

исследовать особенности естественной конвекции в жидкости при 

бездренажном хранении. Эти исследования позволили получить пред-

ставление о наличии вертикальной температурной стратификации в 

жидкости и изучить ее структуру [2, 3]. Обобщение полученных ре-

зультатов позволило построить упрощенные модели хранения [4, 5], 

основанные на одномерном уравнении теплопроводности для описа-

ния теплообмена в жидкости. Однако, сравнение результатов расчета 

по данным моделям с данными экспериментов показали, что при 

уменьшении степени заполнения бака значительно растет погреш-

ность определения давления. Необходимо отметить, что одно из                  



А.О. Городнов 

48 

основных допущений данных методик заключается в пренебрежении 

неоднородностями температуры и наличием естественной конвекции 

в паровой области. 

В паровой подушке бака могут реализовываться значительные 

температурные перепады [6], что ограничивает применение прибли-

жения Буссинеска для описания тепломассообмена [7]. Однако, ма-

лость скоростей конвективного движения позволяет воспользоваться 

приближением гомобаричности (приближение малых чисел Маха)               

[8–10], в рамках которого динамические перепады давления, связан-

ные с движением, не учитываются в уравнениях энергии и состояния. 

Данный подход существенно упрощает теоретический анализ и чис-

ленное моделирование по сравнению с полной постановкой системы 

уравнений Навье-Стокса для сжимаемого газа. Применение данной 

модели для конвекции в газе также показало наличие значительной по 

величине вертикальной температурной стратификации даже в случае 

интенсивной ламинарной конвекции водородного пара с числами               

Рэлея порядка 106—108 [11], причем полученные в расчетах перепады 

температуры значительно превышали наблюдавшиеся в эксперимен-

тах по бездренажному хранению. 

В последнее время были опубликованы работы, в которых для мо-

делирования модельных экспериментов и натурных испытаний по ис-

следованию бездренажного хранения использовались современные 

вычислительные программные комплексы, позволяющие решать за-

дачу в сопряженной многомерной постановке с учетом реальной гео-

метрии бака [12–14]. Однако, несмотря на хорошее совпадение с дан-

ными экспериментов по давлению, в данных работах наблюдалось 

значительное расхождение по температурному расслоению в запол-

ненной газом части объема бака. Необходимо отметить, что одним из 

факторов, учет которого может существенно влиять на свободно-кон-

вективный тепломассообмен в паровой подушке, является стенка бака. 

В данной работе предлагается физико-математическая модель и 

метод численного решения, в которых для описания свободной кон-

векции пара используется приближение малых чисел Маха. Уравнения 

для пара и жидкости решаются с учетом теплообмена со стенкой бака. 

Математическая постановка задачи, принятые допущения. 

Криогенный топливный ракетный бак представляет собой замкнутый 

металлический сосуд, частично заполненный жидкостью, и частично 

газом, и, чаще всего, окруженный теплоизоляцией. В реальном баке 

предусмотрены заборные устройства, дренажный клапан, могут при-

сутствовать перегородки для гашения колебаний жидкости. Условия 

полета, такие как величина перегрузки, ее направление, интенсивность 

нагрева бака, также могут значительно варьироваться. Рассмотрение 

задачи о хранении во всем диапазоне изменений определяющих                    

параметров с учетом произвольной геометрии и подвижности границы 
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раздела фаз в полной пространственной постановке является чрезвы-

чайно сложной задачей. Вместе с тем, общепринятой в науке практи-

кой является анализ влияния различных определяющих параметров на 

примерах модельных задач. Поэтому в рамках данной работы рассмот-

рим следующую упрощенную постановку, представленную на рис. 1.  

  

 
 

Рис. 1. Схема рассматриваемой сопряженной задачи 

 

Рассматривается осесимметричный вертикальный цилиндриче-

ский сосуд со стенками заданной толщины, заполненный до некото-

рого уровня криогенной жидкостью. В газовой подушке емкости при-

сутствуют только пары компонента топлива. При построении модели 

принят ряд допущений: не будут рассматриваться вопросы, связанные 

с влиянием поверхностного натяжения на кривизну зеркала жидкости 

в баке, поэтому межфазная поверхность считается плоской; перепады 

температуры в жидкости малы; давление и температура на зеркале 

жидкости связанны кривой насыщения; скорости движения в обеих 

фазах компонента в баке существенно меньше скорости звука; темпе-

ратура межфазной поверхности одинакова на всей площади зеркала 

жидкости. 

Так как в рассматриваемой постановке скорости движения газа в 

паровой подушке существенно меньше скорости звука, математиче-

ская модель для пара основана на приближении гомобаричности. Важ-

ной особенностью данного подхода является разделение давления на 

«термодинамическую», зависящую только от времени составляющую, 

и «динамическую», переменную как по времени, так и по                                     

пространству: 
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Термодинамическое давление присутствует в уравнениях энергии 

и состояния, а динамические перепады давления появляются лишь в 

уравнениях движения. Благодаря данным обстоятельствам, данный 

подход фильтрует акустические волны и позволяет избежать связаных 

с ними ограничений по устойчивости. Кроме того, в рамках данного 

приближения вязкой диссипацией в уравнении энергии можно 

принебречь.  

Уравнения неразрывности, движения и энергии для описания про-

цессов в паре запишем в цилиндрических координатах для осесиммет-

ричного случая [15] в безразмерном виде. Для этого введем следую-

щие соотношения для масштабов и основных критериев подобия: 
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Здесь «волна» над переменными относится к размерным величинам, 

индекс «0» обозначает некоторые реперные значения. С учетом           

введенных обозначений и, опуская «волну» над переменными, уравне-

ния для пара можно записать в следующем виде: 
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Будем рассматривать пар как совершенный газ, учитывая 

температурные зависимости теплоемкости, вязкости и 

теплопроводности: 

 .TP T   (5) 
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Уравнение энергии пара запишем в следующем виде: 
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Уравнения неразрывности, движения и переноса тепла в жидкости 

запишем в тех же безразмерных масштабах: 
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Здесь введены следующие соотношения для задания критериев 

подобия в жидкости: 
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Перенос тепла в стенке бака будем моделировать уравнением тепло-

проводности [16]: 
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Перейдем к граничным условиям для задачи. В начале определим 

безразмерную толщину стенки, высоту уровня жидкости и пара в 

сосуде, а также степень заполнения бака: 

 ; ; ; .VL L
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На оси симметри в паре и жидкости зададим следующие 

соотношения для температуры и компонент скорости: 
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На внешней поверхности стенки в качестве граничного условия 

зададим раномерный нагрев: 
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На поверхности раздела газ–стенка будем считать температуру и 

тепловой поток непрерывными. Граничные условия для скорости на 

внутренней поверхности стенки, контактирующей с паром: 
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Постановка граничных условий на омываемой жидкостью части 

стенки осложняется возможностью реализации режимов теплообмена, 

при которых температура на поверхности раздела жидкость–стенка 

вырастет выше температуры насыщения [17]. В таком случае при 

достаточно больших величинах перегрева на этой поверхности может 

начаться кипение жидкости [18]. Для учета данного эффекта 

предложена упрощенная модель фазовых переходов. Обозначим как 

TD температуру в некоторой точке на поверхности раздела жидкость–

стенка. В рамках данной модели при достижении температурой TD 

уровня температуры насыщения начинается кипение. Температура TD 

остается равной температуре по кривой насыщения TS плюс некоторая 

надбавка ΔTMS, внесение которой учитывает возможность нахождения 

жидкости в перегретом состоянии, а парообразование рассчитывается 

по разнице тепловых потоков из стенки в поверхность раздела 

жидкость-стенка и из поверхности раздела жидкость–стенка в 

жидкость. Интеграл данной массы пара автоматически переносится 

через площадь поверхности раздела жидкость–газ. Влияние пузырей 

пара на течение и теплообмен в жидкости в рамках данной модели не 

рассматривается. Тогда граничные условия на поверхности раздела 

стенка-жидкость и поверхности раздела жидкость–пар запишутся 

следующим образом: 
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 2 .
LB

L LQ A q dz







    (17) 

Граничные условия для скорости на поверхности раздела жидкость-

пар включают в себя условия непрерывности касательных напряжений 

и радиальной компоненты скорости. Задание начальных условий для 

задачи осложняется возможным наличием неоднородности 

температуры пара перед хранением. Способ учета данной 

неоднородности в начальных условиях будет приведен ниже. 

Численный алгоритм решения задачи. Основу предложенного 

алгоритма составляет метод SIMPLE [19] для расчета переменных   

скорость–давление. Применение данного алгоритма к расчету пара-

метров пара осложняется необходимостью совместного решения урав-

нений для скорости и уравнения Пуассона для поправок давления вме-

сте с уравнениями для температуры, плотности и термодинамического               

давления пара. Данная особенность может существенно влиять на                      

скорость сходимости решения. 

Для разделения вычисления динамических переменных и расчета 

полей температуры жидкости и пара, плотности пара, термодинамиче-

ского давления и температуры стенки была произведена адаптация 

подхода, описанного в работе [20]. В рамках данного алгоритма урав-

нение энергии решается в следующей неконсервативной форме: 
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  (18) 

Здесь: 
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Для коррекции дивергенции скорости в правой части уравнения ис-

пользуется следующее соотношение: 

  
11 1
.T

P T

T

dPT T
U r c P

r r r z z dt
 


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  (19) 

Дискретизация расчетной области проводится методом контроль-

ных объемов на разнесенной сетке. Для аппроксимации временных 

производных использовалась схема Эйлера 1-го порядка, дискретиза-

ция конвективных членов проводилась с помощью схемы 2-го порядка 

точности с разностью против потока Самарского [21], значения диф-

фузионных потоков на гранях рассчитывались с использованием цен-

тральных разностей. Для расчета уравнений для температуры и ком-

понент скорости применялся метод переменных направлений, для ре-

шения уравнений Пуассона для поправок давления применялся метод 

сопряженных градиентов [22]. 

Предложенный в данной работе алгоритм расчета строится следу-

ющим образом. В начале расчета временного шага организован цикл 

для расчета тепловых переменных задачи. Итерации начинаются с сов-

местного расчета температуры газа, жидкости и стенки. Температуры 

газа, жидкости и стенки находятся из дискретных форм уравнений 

(10), (11), (18), причем значения скоростей в левой части (10), (18) бе-

рутся с предыдущего временного шага, а диффузионные члены во всех 

уравнениях аппроксимируются неявно. Значения дивергенции скоро-

сти в правой части (18) берется с предыдущего шага итерации.  

Термодинамическое давление в подушке бака рассчитывается из 

условия сохранения массы следующим образом: 
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  (20) 

Далее рассчитывается поле плотности пара из уравнения состояния. 

Из кривого насыщения вычисляется новая температура поверхности 

раздела фаз: 

  1 1 .m m

S TT f P    (21) 

После этого, используя соотношения на поверхностях раздела жид-

кость–стенка и жидкость-пар, находится скорость испарения жидко-

сти на зеркале. После нахождения скорости, из объемного интеграла                  
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уравнения неразрывности находится новая масса пара: 
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S sM M w rdrdz      (22) 

Далее проверяется сходимость температуры в емкости. В данной ра-
боте был выбран следующий критерий сходимости: 
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Если соотношение (23) не выполняется, то значения переменных на 
предыдущей итерации обновляются рассчитанными и выполняется 
переход обратно к расчету температуры. При выполнении (23) проис-
ходит расчет динамических уравнений методом SIMPLE c учетом              
рассчитанных температур, плотностей и скорости испарения на                       
поверхности раздела жидкость–пар: 

  0 ;T TP const P    (24) 

     0 0 ;S TT f P   (25) 

 .
L

Sz B
T T

 
   (26) 

Будем решать задачу предложенным выше методом с тем же, что 
и при хранении, тепловым потоком в стенку бака, не учитывая тепло-
обмен с жидкостью и стенкой ниже поверхности раздела жидкость–
пар. Кроме того, так как давление в данной постановке постоянное, 
после расчета температуры будем сразу переходить к вычислению 
плотности пара, а также не будем рассчитывать скорость испарения 
жидкости. Масса пара будет меняться автоматически, чтобы удовле-
творить уравнению состояния. Завершать расчет будем либо при до-
стижении в паре известной из опытных данных максимальной началь-
ной температуры, либо при установлении стационарного режима. 

Валидация математической модели и численного метода. Для 
тестирования задачи были проведены расчеты бездренажного хране-
ния водорода и азота, результаты которых сравнивались с данными 
экспериментов. Первый тестовый пример — бездренажное хранение 
водорода в малом модельном цилиндрическом баке радиуса 0,05 м с 
полусферическими днищами [24] (рис. 2). 

Будем рассматривать приближение реальной геометрии бака ци-
линдром с такой же высотой и радиусом. Толщина стенки бака —                       
1 мм, материал стенки — сталь 12Х18Н10Т. Теплофизические                
свойства паров водорода и материала стенки в безразмерном виде за-
давались следующими полиномами, обобщающими данные [25–27]: 
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Значения определяющих параметров брались следующими: 

9 9

0

9 9

0

12,66; 12,66; 10 ; 10 ; Pr 1,0; 0,15;

Pr 1,1; 1,667; 0,0172; 8,0; 0,75;

53,3; 2,2; 234; 7,08;

10 ; 10 ; Pr 1,0; 0,15;

Pr 1,1; 1,667; 0,0172;

V L V MAX

L VL VL

E r E

VL VL VW VW

V L V MAX

L VL VL

A A Ra Ra t

K K

K K K K

Ra Ra t

K K

 



 

 



     

    

   

   

   8,0; 0,75;

53,3; 2,2; 234; 7,08.E r E

VL VL VW VWK K K K

 

   

  

 

 
 

Рис. 2. Схема бака из эксперимента по хранению водорода 

 

Для валидационных расчетов было проведено исследование         

сеточной сходимости с однородными начальными условиями. 

 Рассматривались три сетки: грубая равномерная сетка с шагом по 

r и z: 0,025 на 6400 контрольных объемов в паре и жидкости, сетка со 

сгущением у границ от максимального шага по r и z: 0,025 до                              
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минимального шага 0,00625 размером 13298 узлов; сетка со сгуще-

нием у границ от максимального шага по r и z: 0,01 до минимального 

шага 0,0025 размером 48400 узлов. Стенка для всех сеток делилась               

на 5 контрольных объемов по толщине. На рис. 3 представлены ре-

зультаты расчета роста термодинамического давления на различных 

сетках. Расхождение между результатами расчета давления на всех ти-

пах сеток составило менее 1 % от величины начального давления. 

 

 

Рис. 3. Расчет давления 

▬ — подробная сетка, □ — сетка со сгущением узлов, ▲ — грубая сетка  

 

На  рис. 4 и 5 представлены результаты расчета профилей верти-

кальной компоненты скорости на разных сетках в горизонтальных            

сечениях 
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Рис. 4. Профили вертикальной компоненты скорости в сечении 

0,5 V Lz B B    , а  — 0,015,t   б  — 0,15 :t   

▬ — подробная сетка, □ — сетка со сгущением узлов, ▲ — грубая сетка  
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Рис. 5. Профили вертикальной компоненты скорости в сечении  

0,5 ,Lz B    а  — 0,015,t   б  — 0,15 :t   

▬ — подробная сетка, ▬ — сетка со сгущением узлов, ▬ — грубая сетка  
 

На рис. 6 также представлены изолинии температуры, рассчитан-

ные на различных сетках. Полученные в результате расчетов данные 

продемонстрировали, что на грубой сетке плохо разрешаются течения 

в жидкости и паре. При этом, отличия рассчитанных на средней и           

подробной сетках параметры, продемонстрированные выше, отлича-

ются между собой менее, чем на 4 %. Из представленных данных 

можно сделать вывод, что сетка со сгущением узлов у границы доста-

точна для анализа основных характеристик задачи. 

Для валидации модели была проведена серия расчетов задачи при 

различной степени заполнения. Результаты сравнения расчетных и 

экспериментальных данных по давлению представлены на рис. 8. Ре-

зультаты сравнения расчетных и экспериментальных данных по тем-

пературе на оси симметрии бака представлены на рис. 9. Максималь-

ное отклонение от данных эксперимента по приросту давления соста-

вило 25 %. Максимальное отклонение по приросту температуры не 

превысило 10 %. Существенное отклонение по давлению объясняется 

упрощением реальной геометрии бака в расчетах. Однако, с помощью 

предложенного метода, в отличии от упрощенных методик [4, 5],                 
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получилось корректно воспроизвести эффект понижения скорости                  

роста давления с уменьшением степени заполнения. 

 

 
 

Рис. 6. Изолинии температуры в паре, рассчитанные на различных сетках в 

момент времени 0,15 :t   
▬ — подробная сетка, ▬ — сетка со сгущением узлов, ▬ — грубая сетка 

  

 

 
 

 

 

Рис. 7. Сравнение расчетных и               

экспериментальных данных по росту 

давления: 

0,86 :   ▬ — расчет, ■ — эксперимент; 

0,62 :   ▬ — расчет, ■ — эксперимент; 

0,37 :   ▬ — расчет, ■ — эксперимент 

 

Рис. 8. Сравнение расчетных и              

экспериментальных данных                          

по температуре, 0,80 :   

▬ — расчет; 

× — эксперимент 
 

Второй тестовый пример — бездренажное хранение азота в сталь-

ном цилиндрическом баке [23]. Схема геометрии данного бака                 
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представлена на рис. 9. Толщина стенки бака бралась равной 1 мм. 

Теплоемкость газообразного азота при низких температурах хорошо 

описывается моделью идеального газа, поэтому в расчетах величина 

Pc  бралась постоянной и равной 3,5 VR . Зависимость теплопровод-            

ности пара в безразмерном виде аппроксимировалась следующим                     

полиномом: 
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Зависимости теплоемкости и теплопроводности стенки от темпе-

ратуры аппроксимировалась следующими соотношениями: 
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Значения определяющих параметров брались следующими: 
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K Fo

 



  

 

  

 

  

В эксперименте рассматривались степени заполнения бака жидко-

стью 70 %, 50 % и 30 %. Интегральный тепловой поток WQ  в бак из-

мерялся по расходу пара при открытом дренажном клапане на стацио-

нарном режиме. Для максимального заполнения бака он составлял              

2,5 Вт, для степени заполнения 50 % — 1,2 Вт, для минимального 

уровня — 1,0 Вт. Необходимый для расчетов удельный тепловой по-

ток пересчитывался путем деления интегрального теплового потока 

общую площадь стенки бака. В таблице 1 приведены значения                      
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параметра A и чисел Рэлея для пара и жидкости для рассматриваемых 

опытов, используемые в расчетах. 

 

 

Рис. 9. Схема азотного бака 

Таблица 1 

Значения тепловых потоков и чисел Рэлея в расчетах  

Параметр 30 % 50 % 70 % 

   0,3 0,5 0,7 

WQ , Вт 1,0 1,2 2,5 

Wq , Вт/м2⸱K 5,13 6,16 12,84 

A   0,87 1,04 2,17 

RaV   5,3∙107 6,3∙107 1,3∙108 

Ra L  1,9∙108 2,3∙108 4,7∙108 

 
В ходе экспериментов на момент начала хранения в паре реализо-

вывались существенные градиенты температуры. Поэтому расчеты 

проводились для двух типов начальных условий для параметров пара. 

В первом случае задавалась однородная температура, равная темпера-

туре насыщения при начальном давлении. Во втором случае градиент 

температуры, реализовывавшийся в эксперименте, моделировался 

численно описанным ранее способом. Начальные значения темпера-

туры поверхности раздела вычислялись из кривой насыщения азота 

[27]. На рис. 10 представлен пример одного из рассчитанных началь-

ных профилей температуры. 

На рис. 11 показано сравнения расчетных данных по росту                             

давления с экспериментом. 

0,1 мR 

H
 =

 0
,2

1
 м
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Рис. 10. Сравнение расчетного начального профиля температуры пара с опытными 

данными 0,5, 1,2 ВтQ     

▬ — расчет; × — эксперимент 

 

 

 

 

 
 
 

а б 
Рис. 11. Сравнение расчетных (сплошные линии) и экспериментальных (точки) 

данных по росту давления в азотном баке, 

 а  — неоднородные начальные условия, б  — однородные: 

▬ — 0,3  , ▬ — 0,5  , ▬ — 0,7   

 

Как видно из представленных результатов расчета, применение 
предложенного способа учёта неоднородных начальных условий          
значительно снижает погрешность в определении давления. Сравне-
ние результатов расчета разработанным численным методом с дан-
ными эксперимента по температуре представлены на рис. 11. 

Из представленных данных видно, что расчётные и эксперимен-
тальные профили температуры в баке достаточно хорошо согласуются 
между собой. Максимальное расхождение рассчитанных значений 
температуры по сравнению с экспериментальными данными                          
составило 20%. 
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а б 
Рис. 12. Сравнение расчетных и экспериментальных данных по температуре в 

азотном баке в момент времени 0,6,t   

а  — 0,3  , б  — 0,5  : 

▬ — расчет; × — эксперимент 

 

Заключение. Предложена физико-математическая модель для         

задачи о бездренажном хранении криогенного компонента топлива в 

баке с учетом свободной конвекции в жидкости и паре, а также тепло-

обмена со стенкой бака. Приведена адаптация численного метода для 

газа в приближении малых чисел Маха с разделением расчета на теп-

ловой и динамический циклы для решения задачи сопряженного сво-

бодно-конвективного тепломассообмена с учетом влияния стенки бака 

и фазовых переходов. Предложен упрощенный способ численного мо-

делирования начальной неоднородности параметров в паровой по-

душке бака. Проведен анализ сеточной сходимости для валидацион-

ной задачи. Проведена валидация модели и метода, показавшая хоро-

шее совпадения результатов расчета и данных экспериментов по 

бездренажному хранению водорода и азота. 
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Mathematical modelling of conjugate  

natural convection in vapor and liquid  

during ventless storage of cryogenic fuel components 
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Method for numerical modelling of natural convection heat and mass transfer in liquid and 
vapor phases during ventless storage of cryogenic fuel components in tanks is presented in 
this paper. The proposed mathematical model is based on low Much number approach for 
vapor phase and Boussinesq approach for liquid phase. Method for numerical modelling 
of inhomogeneous initial conditions in vapor phase is given. Presented model and method 
is validated using experimental data for ventless storage of liquid hydrogen and nitrogen. 

 
Keywords: ventless storage, cryogenic fuel component, natural convection, Boussinesq ap-
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