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Рассмотрена задача о расчете интегральных характеристик вязкоупругости ком-

позиционных материалов, исходя из информации об аналогичных характеристиках 

компонентов композита и его микроструктуры. Предложен алгоритм для прогно-

зирования эффективных ядер релаксации и ползучести композитов с произвольной 

микроструктурой армирования. Алгоритм основан на использовании преобразова-

ния Фурье и обратного преобразования Фурье, а также метода асимптотического 

осреднения для композитов при установившихся полигармонических колебаниях. В 

алгоритме используются экспоненциальные ядра релаксации и ползучести для ис-

ходных компонентов композита.  Основой вычислительной процедуры предложен-

ного алгоритма является конечно-элементное решение локальных задач вязкоупру-

гости на ячейке периодичности композита. Результатом применения алгоритма 

является определение параметров экспоненциальных ядер релаксации и ползучести 

композиционных материалов, что позволяет получить решение задачи в полностью 

замкнутом виде. В качестве примера проведено численное моделирование вязкоупру-

гих характеристик однонаправленно-армированных композитов на основе углерод-

ных волокон и эпоксидной матрицы. Показано, что разработанный алгоритм поз-

воляет получать эффективные ядра релаксации и ползучести композита с высокой 

точностью, без осцилляций, которые, как правило, сопровождают, методы обра-

щения преобразований Фурье.  

 

Ключевые слова: композиты, вязкоупругость, ядра релаксации, ядра ползучести, 

комплексные модули упругости, однонаправленные композиты, метод асимптоти-

ческого осреднения, метод конечного элемента, численное моделирование   

 

Введение. Полимерные композиционные материалы (ПКМ) про-

являют существенные вязкоупругие свойства [1–7], которые широко 

используются при разработке демпфирующих конструкций авиацион-

ной, судостроительной и автомобильной промышленности. Различные 

методы расчета вязкоупругих свойств композитов, главным образом 

при циклических колебаниях, предложены в работах [1, 2, 8–12]. Для 

конструкций из ПКМ, длительно эксплуатирующихся при значитель-

ных механических нагрузках, важное значение имеет расчет деформа-

ций ползучести композитов, в том числе — в зависимости от содержа-

ния их структурных компонентов — армирующих волокон, дисперс-

ных частиц и др. Для решения этой задачи необходимо вычислять                 

эффективные ядра релаксации и ползучести композита. Методы реше-

ния этой задачи рассматривались в работах [8, 9, 11, 13]. Эти методы 
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в основном основаны на приближенных алгоритмах расчета эффек-

тивных операторов вязкоупругости и применении преобразования 

Лапласа для обращения этих операторов.  В [14] для расчета операто-

ров вязкоупругости композитов предложено использовать метод 

асимптотического осреднения, а для обращения этих операторов пред-

ложено обобщение метода аппроксимации А.А. Ильюшина [15]. Раз-

личные варианты метода применения метода осреднения для расчета 

напряженно-деформированного состояния тонких вязкоупругих кон-

струкций предложены в [16–20]. 

 Целью настоящей статьи является построение алгоритма вычис-

ления эффективных ядер релаксации и ползучести композитов на ос-

нове метода асимптотического осреднения для гармонических колеба-

ний и применения обратного преобразования Фурье, с аналитиче-

скими аппроксимациями полученных функций. Показано, что такой 

способ обеспечивает высокую точность расчетов ядер релаксации и 

ползучести композитов.  

Определяющие соотношения структурных компонентов 

вязкоупругих композитов.  Рассмотрим композит периодической 

структуры, ячейка периодичности (ЯП) которого состоит из N   

компонентов [14, 21]. Все компоненты полагаем линейно-

вязкоупругими. Определяющие соотношения всех компонентов 

задаются в виде интегральных соотношений вязкоупругости в форме 

Вольтерры [15, 22–24]  

    4 4

0

,

t

t d      σ C ε K ε   (1) 

где σ  — тензор напряжений, ε— тензор малых деформаций, 4
C  — 

тензор модулей упругости,  4
K t — тензор ядер релаксации. 

Полагаем все компоненты композита изотропными, тогда тензоры 
4
C  содержат 2 независимые константы, а тензоры  4

K t  — 2 

независимые функции [14, 15, 24] 

 4 2
2

3
K G G

 
    
 

C E E Δ   (2) 

        4

1 2 2

2
2 ,

3
t K t K t K t

 
    
 

K E E Δ   (3) 

где K , G  — упругие константы компонент ( K  — модуль объёмного 

сжатия, G  — модуль сдвига),  1K t  — ядро объемной релаксации, 

 2K t  — ядро сдвиговой релаксации, E — метрический тензор,                 

Δ  —единичный тензор 4-го ранга [25]. 
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Cделаем обычное допущение, справедливое для большинства 

изотропных материалов [14, 15, 24], об отсутствии объёмной 

релаксации для всех компонентов  1 0K t  . Тогда 

    4

2

1
2 .

3
t K t

 
   

 
K Δ E E   (4) 

Обозначая интегральный оператор 

    2

0

t

ij ijK K t d        (5) 

соотношение (1) для компонент тензоров в декартовом базисе можно 

записать в матричном виде  

    ,C       (6) 

где 

 

 

 

1 2 1 1

1 1 2 1

1 1 1 2

2

2

2

,

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

C C K

C

   

   

   







       

 
 

 
 

  
 
 
  
 

  (7) 
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,

,
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K K K

K
K K K

K

K

K

      

      

 
  

 
  
 
 

       
 
 
 
 
 
 





  (8) 

здесь 1212 2C  , 
1212K K  ,  

1 2 3K G   , 2 G  , а ij и ij  —  ком-

поненты тензоров напряжений и деформаций в декартовом базисе. 
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Обратные соотношения линейной вязкоупругости. Кроме 

прямых соотношений линейно-вязкоупругости (1) рассмотрим также 

обратные к ним соотношения [14, 15, 22, 24] 

    4 4

0

,

t

t d      ε П σ Г σ   (9) 

где 4
П  — тензор упругих податливостей,  4

Г t  — тензор ядер 

ползучести. Для изотропных компонент композитов с нерелаксирующим 

объемом эти тензоры имеют вид аналогичный (2) и (4) 

    4 4

2

1 1
, 2 ,

3
t Г t

E E

   
       

 
П E E Δ Г Δ E E   (10) 

где  , E  — коэффициент Пуассона  и модуль Юнга,  связанные с K  

и  G  известными соотношениями [15]: 
3(1 2 )

E
K





 , 

2(1 )

E
G





, а 

 2Г t  — ядро сдвиговой ползучести. 

Обозначая интегральный оператор 

    2

0

t

ij ijГ Г t d        (11) 

соотношение (9) записываем в матричном виде  

    ,П       (12) 

где 

  П П Г        , (13) 

  

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

2

1
0 0 0 0 0

2

1
0 0 0 0 0

2

Е Е Е

Е Е Е

Е Е Е
П

G

G

G

 

 

 

 
  

 
  
 
 
  
 

  
 
 
 
 
 
 
 
 

,  (14) 
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4 2 2
0 0 0

3 3 3

2 4 2
0 0 0

3 3 3

2 2 4
0 0 0

3 3 3

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

Г Г Г

Г Г Г

Г
Г Г Г

Г

Г

Г

 
  

 
  
 
 

       
 
 
 
 
 
 

.  

Матрицы   П  и  C , а также  матрицы-операторы вязко-упругости 

П 
   и  C 

   являются взаимообратными, т.е. имеют место следующие 

уравнения: 

         , .П C E П C           (15) 

Второе уравнение  в (15) представляет собой матричное интегральное 

уравнение Вольтерры 2-го рода для вычисления матричного оператора  

П 
   по заданному оператору C 

 
, и наоборот. 

Определяющие соотношения для вязкоупругих компонент 

композита при гармоническом нагружении.  Для нахождения ядра 

ползучести  2Г t  по заданному ядру релаксации   2K t , и наоборот, 

для изотропных компонентов композита необходимо решать 

интегральное уравнение Вольтерры 

 12 12

1
( 4 )( ) ,Г G K
G

      (16) 

которое вытекает из матричного интегрального уравнения (15).  

Для этой цели обычно применяют методы преобразований 

Лапласа [23], преобразования Фурье, приближенные методы аппрок-

симации [15] и другие методы. 

Рассмотрим метод, основанный на преобразовании Фурье, кото-

рый также далее применим и для расчета эффективных ядер релакса-

ции и ползучести композита.  

Рассмотрим гармоническое нагружение композита, когда тензоры 

напряжений и деформаций, а также вектор перемещений представля-

ются в виде действительных частей комплексных величин, меняю-

щихся по гармоническому закону 

      * * *Re , Re , Re ,i t i t i te e e    σ σ ε ε u u   (17) 
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где   — частота колебаний, а *
σ , *

ε и  *
u — тензоры и вектор ком-

плексных амплитуд колебаний. 

Тогда определяющие соотношения (1) и (9) для комплексных ам-

плитуд принимают вид [14, 24] 

 

* 4 * *

* 4 * *

( ) ,

( ) ,





 

 

σ C ε

ε П σ
  (18) 

где  4 *
C   и 

4 *( )П   — тензоры комплексных модулей упругости и 

упругих податливостей  

 
   

   

4 * 4 4 *

4 * 4 4 *

,

,

 

 

 

 

C C K

П П Г
  (19) 

здесь  4 *
K   и  4 *

Г   — тензоры комплексных ядер релаксации и 

ползучести соответственно, определяемые следующим образом: 

        4 * 4 * 4

0 0

, .i t i te d e d      
 

   K K Г Г   (20) 

Для изотропных компонентов композита из (3), (5) и (20) следует, 

что 

 

   

   

4 * *

2

4 * *

2

1
2 ,

3

1
2 ,

3

K

Г

 

 

 
   

 

 
   

 

K Δ E E

Г Δ E E

  (21) 

где  

        * *

2 2 2 2

0 0

, ,i t i tK K e d Г Г e d      
 

      (22) 

— комплексные ядра релаксации и ползучести (сдвиговые). 

Используя формулу Эйлера для комплексных чисел, из (21) выде-

ляем действительную и мнимую части комплексного ядер релаксации 

и ползучести: 

            * *

2 2 2 2 2 2, ' " ,K K iK Г Г iГ            (23) 

где 
2'Г ,  2"Г   обозначены косинус и синус преобразования  

            2 2 2 2

0 0

' cos , " sin .Г Г d Г Г d       
 

     (24) 
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Если известно ядро ползучести  2Г t , то, вычисляя для него ком-

плексное ядро ползучести  *

2Г    по формуле  (22), а затем тензор 

комплексных ядер релаксации   4 *
Г   — по формуле (21), тензор 

комплексных упругих податливостей 
4 *( )П   — по формуле (19), 

находим тензор   4 *
C  , как обратный к 

4 *( )П  . Затем по первой 

формуле (19) вычисляем тензор  4 *
K  , он имеет структуру (21), по-

этому по компонентам этого тензора находим  *

2K  . Из (16) находим 

явное выражение для  *

2K   

  
 

*

2 *

2

1
.

1/ 4
K G

G Г



 


  (25) 

Далее, используя обратное преобразование Фурье 

    *

2 2

1
Re ,i t

o

K t K e d 


 
  

 
   (26) 

находим ядро релаксации  2K  . 

Вычисление комплексных модулей упругости для компонент 
композита для экспоненциальных ядер.  Каждая вязкоупругая ком-

понента композита имеет 1 ядро ползучести  2Г t . Для аналитиче-

ского представления этой функции применяются различные способы 
[14, 26, 27], наиболее широко распространенным является способ 
представления в виде суммы экспонент [28] 

  2

1

exp ,
n B t

Г t


   

 
   

 
   (27) 

где B ,   — константы ползучести материалов (компонент 

композита) 1 n  .  Ядро (25) — регулярное (ограниченная, гладкая, 

монотонноубывающая функция для всех 0t  ). 
Подставляя выражения (25) в (23), находим действительную и 

мнимую части комплексных ядер релаксации для экспоненциальных 
ядер [24] 

  
 

 
 

2 22 2
1 1

' , " .
1 1

n nB B
Г Г

  

 
 


 

  

 
 

    (28) 

Подставляя (28) в (23), (21), а затем в (21) в (19), получаем соответ-

ствующее выражение для тензора 
4 *( )П   для экспоненциальных ядер. 
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Расчёт эффективных вязкоупругих комплексных моделей 

упругости композитов методом асимптотического осреднения.  
Для вычисления эффективных вязкоупругих характеристик компози-

тов при гармоническом нагружении применим метод асимптотиче-

ского осреднения [14]. Используя вариант данного метода, предложен-

ный в [12], для достижения указанной цели необходимо рассмотреть 

серию локальных задач pqL  на 1/8 ячейке периодичности (ЯП) 

{ | 0 }i i iV a      в безразмерных локальных координатах 
i  при 

гармоническом нагружении: 

 
 

*

( )

* 4 * *

( ) ( )

* * *

( ) ( ) ( )

* *

( ) ( )

0, в  

( ) , в  

1
,в  

2

[ ] 0, [ ] 0, на  

pq

pq pq s s

T

pq pq pq

pq pq N

V

V

V

 



  





  

   

    

   

σ

σ C ε

ε u u

u n σ

  (29) 

где 
ia  — длины ребер 1/8 ЯП по координатным направлениям, 

{ 0}s s    — координатные плоскости,  { }s s sa    — торцевые 

плоскости ЯП, N  — поверхность раздела компонентов в ЯП, 

/s s    e  — набла-оператор относительно локальных координат 

i , 
se  — векторы декартова (ортонормированного) базиса, ориентиро-

ванного по ребрам ЯП. В (29) обозначены также 
*

( )σ pq , 
*

( )ε pq , 
*

( )u pq  — 

тензоры комплексных амплитуд напряжений, деформаций и векторов 

перемещений в ЯП Lpq .  

К задачам (27) присоединяются граничные условия на поверхно-

стях 
s   и

s
 .  

* * * *

( ) ( ) ( )

* * * *

( ) ( ) ( )

1
: , 0, 0,

2

,

1
: , 0, 0,

4

,

если

если

pp s s pp sp s pp h s pp h

pq h s pq sp s pq s pq r

p q

s h r s

p q

s h r s

  

  

        

  

       

  

u e e σ e e σ e

u e e σ e u e

  (30) 

здесь 0s    — на 
s   и 1s    — на 

s
 , а   

*

pq  — заданные компо-

ненты тензора комплексных амплитуд средних деформаций компо-

зита в базисе 
se . По немым индексам p  и q  здесь и далее суммирова-

ния нет. 
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Для численного решения локальных задач pqL  (29), (30) использу-

ется метод конечного элемента. Программная реализация решения 

этих задач осуществлена в программном комплексе SMCM, разрабо-

танном на кафедре «Вычислительная математика и математическая 

физика» и НОЦ «Суперкомпьютерное инженерное моделирование и 

разработка программных комплексов» МГТУ им. Н.Э. Баумана [29].  

После решения локальных задач pqL  (29), (30)   находим компо-

ненты эффективного тензора комплексных модулей упругих компози-

тов  4 *
C  . 

  
*

( )*

*
,

ij pq

ijpq

pq

С





 
   (31) 

здесь обозначены средние напряжения по ЯП V   

  
* *

( ) 8 .ij pq ij pq

V

dV



      (32) 

Эффективный тензор комплексных податливостей композита 

 4 *
П   вычисляем как тензор, обратный к  4 *

C  , т.е. 

удовлетворяющий 

    4 * 4 * 4 .  П C Δ   (33) 

Вычислим по формуле (31) тензор 4
C  — эффективный тензор 

модулей упругости композита для случая чисто упругих компонентов, 

для которых ядра релаксации равны нулю   2 0K t  , а также  
4
П  —

обратный к нему тензор эффективных упругих податливостей 

композита 

 4 4 4 . П C Δ   (34) 

Тогда эффективные тензоры ядер релаксации и ядер ползучести 

композиционного материала  4 *
K   и  4 *

Г   находим с помощью 

следующей формулы  

        4 * 4 4 * 4 * 4 * 4, .      K C C Г П П   (35) 

Если ЯП композита имеет группой симметрии [25] — группу 

ортотропии с главными осями анизотропии 
sOe , то тензоры  4 * K   

и   4 *
Г   являются индифферентными относительно группы 

ортотропии с главными осями ортотропии 
sOe .  Обозначая их 
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компоненты  *

ijklK   и  *

ijklГ   в базисе 
sOe , разделим их на 

действительную и мнимую части 

 
     

     

* / / /

* / / /

,

.

ijkl ijkl ijkl

ijkl ijkl ijkl

K K iK

Г Г iГ

  

  

 

 
  (36) 

Тогда, применяя обратные косинус- и синус-преобразования 

Фурье  

 

       

       

/ / /

/ / /

1 1
( ) cos sin ,

1 1
( ) cos sin ,

ijkl ijkl ijkl

o o

ijkl ijkl ijkl

o o

K t K t d t K t d t

Г t Г t d t Г t d t

     
 

     
 

 

 

 

 

 

 

  (37) 

находим эффективные ядра релаксации ( )ijklK t  и эффективные ядра 

ползучести  композита ( )ijklГ t . 

Для аналитического представления эффективных ядер ( )ijklK t  и 

( )ijklГ t  используем экспоненциальные функции 

  
   

1 1

exp , ( ) exp ,
n n

ijkl ijkl

ijkl ijkl

A Bt t
K t Г t

 

        

   
         

   
    (38) 

где 
 
ijklA


, 
 
ijklB


,  ,    — константы аппроксимации, которые находим 

из условия наилучшей аппроксимации ядер ( )ijklK t  и ( )ijklГ t  с 

помощью (38).  

Эффективные функции релаксации и ползучести композита в этом 

случае имеют вид 

 

   

 

1

1

1 exp ,

( ) 1 exp .

n

ijkl ijkl ijkl

n

ijkl ijkl ijkl

t
R t C A

t
П t П B



 



 









  
       

  

  
       

  





  (39) 

Результаты численного моделирования полей концентрации 

амплитуд напряжений.   В соответствии с разработанной методикой 

было проведен расчет ядер релаксации и ползучести для однонаправ-

ленных композитов на основе эпоксидной матрицы и углеродных                

волокон. Волокна считались упругими изотропнымии, а матрица —   

вязкоупругой.  



Ю.И. Димитриенко, Ю.В. Юрин, С.В. Сборщиков… 

32 

При численных расчетах использовались следующие значения 

упругих характеристик матрицы (модуль упругости 
mE   и коэффици-

ент Пуассона
mv ), а также волокон (модуль упругости fE   и коэффи-

циент Пуассона fv ): 

3,0 ГПа, 0,35, 200 ГПа, 0,25.m m f fE v E v     

Коэффициент армирования 1D композита был принят равным 0,6. 

Функция ползучести эпоксидной матрицы при одноосном растя-

жении ( )mП t   была взята из экспериментальных данных работы [13]. 

Для аналитической аппроксимации этой функции было использовано 

экспоненциальное ядро ползучести (27) 

  2

1

1 4 3
( ) 1 exp , ( ).

3 4

n

m m

m

t
П t B Г t П t

E t


 

   
           

   (40) 

Были получены следующие значения констант ползучести мат-

рицы 

 
3 7 8

1

1

2

1

3

1

1 2

3

0,081 ГПа , 0,283 ГПа , 0,82

5,91 10 с,

4 ГПа ,

1,2 10 с, 1,8 10 с.

B B B

  

  

     

  
  (41) 

График функции ( )mП t , полученный  экспериментально по дан-

ным работы [13], и с помощью аналитической аппроксимации  экспе-

риментальных данных  по формулам (38),  показан на рис. 1, на кото-

ром введено 
0/t t t  — безразмерное время, а 8

0 1,8 10 сt    — макси-

мальное значение времени эксперимента.  

 

 

 
 

Рис. 1. Функция ползучести ( )mП t эпоксидной матрицы (пунктиром показаны  

экспериментальные значения по данным [13]), t  — безразмерное время 

1( ), ГПаmП t 

1,5

1, 2

0,9

0,6

0,3

0 t
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
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Найденные константы B   и     (41) с помощью (23) и (28) были 

использованы  для вычисления комплексного ядра сдвиговой  ползу-

чести  *

2Г   — как функции от частоты.  Далее был образован тензор 

 4 *
Г   (21), по нему составлен 

4 *( )П   — тензор комплексных упру-

гих податливостей. Обращением этого тензора вычислен тензор ком-

плексных модулей упругости  4 *
C  и тензор  4 *

K   по (19).  С по-

мощью формул (25) были вычислены значения функции  *

2K  . Для 

аналитической аппроксимации этой функции была использована мо-

дель экспоненциальных ядер 

  2

1

exp ,
m A t

K t


   

 
   

 
   (42) 

которая приводит к дробно-рациональным выражениям для комплекс-

ного ядра сдвиговой релаксации матрицы 

  
 

 
 

''

2

'

2

1

2 2
1

.,
11

m mA
K

A
K

 


 





 


 


  



   (43) 

На рис. 2 и 3 показаны графики функций  '

2K   и  2

''K   для 

эпоксидной матрицы. 

 

 
 

Рис. 2. Функции  '

2K   в полулогарифмических координатах для  

эпоксидной матрицы: 

 1 — графики, построенные по формуле (25), 2 — аппроксимация помощью (43) 

 '
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Рис. 3. Функции  2

''K   в полулогарифмических координатах для  

эпоксидной матрицы: 

 1 — графики, построенные по формуле (25), 2 — аппроксимация помощью (43) 

 
Были получены следующие значения констант 

 

1 2

3 7

2

3

1

8

3

0,354 ГПа, 0,483 ГПа,

0,2175 ГПа,  
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A A

A

 



 



 



 


  (44) 

График функции сдвиговой релаксации эпоксидной матрицы, постро-

енный с помощью сдвигового ядра релаксации (42) 

  2

1

exp1
m t

R t G A

 

 
    



 


 


 


   (45) 

показан на рис. 4. 
На рис. 5 показана КЭ-сетка, использованная для решения локаль-

ных задач вязкоупругости (29), (30). Использовался тетраэдальный че-
тырехузловой конечный элемент, количество узлов: 2812, количество 
конечных элементов: 15388, количество граничных элементов: 1368. 
Ось трансверсальной изотропии 1D композита направлена                           

по оси 
1O . 

Матрицы компонент тензоров 4
C и 

4
П  для 1D композита, вычис-

ленные по формулам (31) и (33) имеют вид  (все значения в ГПа и                      

ГПа-1, соответственно): 

 2

'' , ГПаK 
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0,20
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0,05

0,00
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4

4
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Рис. 4. Функция релаксации  2R t  в полулогарифмических координатах  

для эпоксидной матрицы, построенная по (44) и (45) 
 

 
Рис. 5. КЭ сетка для ЯП 1D композита 
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На рис. 6–11 показаны графики эффективных комплексных ядер 

релаксации композита   /

ijklK   и  / /

ijklK  для нескольких независимых 

компонент трансверсально-изотропного 1D композита. 

Для аналитической аппроксимации этих функций использовались 

экспоненциальные зависимости (38).  Графики  комплексных ядер ре-

лаксации композита  /

ijklK  и  / /

ijklK   в целом повторяют графики 

комплексных ядер  '

2K  и  "

2K  матрицы:  для действительных ча-

стей  /

ijklK  и  '

2K   имеется 3 характерных интервала частот, на ко-

торых реализуется максимальные значения производных этих функ-

ций (по абсолютной величине) ― на этих интервалах происходит рез-

кое падение функций    /

ijklK  и  '

2K  .  

Для мнимых частей  / /

ijklK  и  "

2K  существуют по 3 характер-

ных локальных экстремума, которые достигаются для матрицы и ком-

позита для одних и тех же значений частот. Максимальные значения 

 / /

1111K   меньше максимумов функции  '

2K   для матрицы, а функ-

ции  / /

2222K   и  / /

1212K   имеют большие значения максимумов, чем 

 '

2K  . 

  

 
 

Рис. 6. Функции  
'

1111K   в полулогарифмических координатах для  

1D композита: 

 1 — графики, построенные по формуле (35), 2 — аппроксимация помощью (38) 
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Рис. 7. Функции  
''

1111K   в полулогарифмических координатах для  

1D композита: 

 1 — графики, построенные по формуле (35), 2 — аппроксимация помощью (38) 

 

 

 

 

 

 

 

Рис. 8. Функции  
'

2222K   в полулогарифмических координатах для  

1D композита: 

 1 — графики, построенные по формуле (35), 2 — аппроксимация помощью (38) 
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Рис. 9. Функции  
''

2222K   в полулогарифмических координатах для  

1D композита: 

 1 — графики, построенные по формуле (35), 2 — аппроксимация помощью (38) 

 

 

 

 

 

 

 

Рис. 10. Функции  
'

1212K   в полулогарифмических координатах для  

1D композита: 

 1 — графики, построенные по формуле (35), 2 — аппроксимация помощью (38) 

111 10 9 8 7 6 5 4 3 2 lg , c          

 
''

2222 , ГПаK 

1,25

1,00

0,75

0,50

0,25

0,00

111 10 9 8 7 6 5 4 3 lg , c         

1 2

1 2

3

2

1

0

 
'

1212 , ГПаK 



Моделирование эффективных ядер релаксации и ползучести… 

39 

 

 

 

 

Рис. 11. Функции  
'

1212K   в полулогарифмических координатах для  

1D композита: 

 1 — графики, построенные по формуле (35), 2 — аппроксимация помощью (38) 

 

На рис. 12–15 представлены графики эффективных функций 

ползучести 1D композита, вычисленные по формулам (39). Характер 

поведения этих функций подобен функции ползучести ( )mП t  мат-

рицы, однако, максимальные значения всех функций композита 

 ijklП t   по абсолютной величине, существенно меньше, максималь-

ных значений функции ( )mП t . Изменения функция ползучести ком-

позита в направлении армирования  1111П t  малы: величина относи-

тельного изменения    1111 1111 11111 / 0 1П П П    составляют 0,014, в 

то время как аналогичные относительные изменения функций ползу-

чести в поперечном  направлении и при поперечном сдвиге состав-

ляют: 2222П  2,04 и 1212П  5,82. Аналогичное значение 

   1 / 0 1m m mП П П    для эпоксидной матрицы также  составляет  

5,82mП  . Эти результаты находятся в полном согласии с имеющи-

мися экспериментальными данными о вязкоупругих свойствах 1D 

композитов [13]. 
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Рис. 12. Эффективная функция ползучести 1D композита  1111П t   

 

 

 
 

Рис. 13. Эффективная функция ползучести 1D композита  1122П t   

 

 
 

Рис. 14. Эффективная функция ползучести 1D композита  1212П t  
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  Рис. 15. Эффективная функция ползучести 1D композита  2222П t  

 

Выводы.  Предложен алгоритм вычисления эффективных функ-

ций и ядер релаксации и ползучести композитов с периодической 

структурой, основанный на основе использовании метода асимптоти-

ческого осреднения для гармонических колебаний, применения обрат-

ного преобразования Фурье, и аналитической аппроксимациями ядер  

ползучести и релаксации в виде сумм экспонент. Проведен пример 

расчета функций и ядер ползучести и релаксации для случая однона-

правленного композита, который показал, что предложенный алго-

ритм обеспечивает высокую точность расчетов ядер релаксации и пол-

зучести композитов, а также обладает хорошей устойчивостью и от-

сутствием осцилляций, которые возникают, как правило, при обраще-

нии преобразования Фурье.  
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Modeling of effective relaxation and creep kernels of                  

viscoelastic composites by asymptotic averaging method  

 Yu.I. Dimitrienko, Yu.V. Yurin, S.V. Sborschikov,                                                                     

A.D. Yahnovskiy, R.R. Baymurzin  

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

The problem of calculating the integral characteristics of the viscoelasticity of composite 

materials is considered, based on information on similar characteristics of the composite 

components and its microstructure. An algorithm is proposed for predicting the effective 

relaxation and creep kernels of composites with an arbitrary reinforcement microstruc-

ture. The algorithm is based on the Fourier transform application and the inverse Fourier 

transform, as well as the method of asymptotic averaging for composites under steady-

state polyharmonic vibrations. The algorithm uses exponential relaxation and creep ker-

nels for the initial components of the composite. The basis of the computational procedure 

of the proposed algorithm is the finite element solution of local viscoelasticity problems 

over  the composite periodicity cell.  The result of the algorithm application is the deter-

mination of the exponential relaxation and creep kernels parameters for composite mate-

rials, which makes it possible to obtain a problem solution in a completely closed form. As 

an example, a numerical simulation of the viscoelastic-tic characteristics of unidirection-

ally  reinforced carbon /epoxy composites has been carried out. It is shown that the devel-

oped algorithm allows one to obtain effective relaxation and creep kernels of the composite 

with high accuracy, without oscillations, which, as a rule, ac-company the methods of in-

verting Fourier transforms. 

 

Keywords: composites, viscoelasticity, relaxation kernels, creep kernels, complex elastic 

moduli, unidirectional composites, asymptotic averaging method, finite element method, 

numerical simulation  
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