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Эквидистанта некоторой кривой — это множество точек, равноудаленных от 
этой кривой, т.е. множество концов равных отрезков, отложенных в определённом 
направлении на нормалях к кривой.  Создается эквидистанта на базе уже суще-
ствующих базовых кривых (сплайнов, функций), ее внешний вид определяется видом 
кривой и величиной смещения. Проблема построения эквидистантных линий имеет 
основополагающее значение в различных областях техники: при создании программ 
для станков с числовым программным управлением (ЧПУ), в проектировании трас-
сировки печатных плат, при проектировании трубопроводов. В этом случае прово-
дится только осевая линия, а затем строятся эквидистантные линии контуров са-
мой трубы. Эквидистанты широко применяют в геологии, при разработке строи-
тельных и архитектурных чертежей. В машиностроении эквидистанты использу-
ются при проектировании кулачковых механизмов. В теории систем автоматизи-
рованного проектирования (САПР) эквидистантой принято называть линию, рав-
ноотстоящую от обрабатываемого контура детали на расстояние, равное ради-
усу режущего инструмента. В металлообработке эквидистанта описывает тра-
екторию движения центра фрезы относительно контура обрабатываемой поверх-
ности, в системах автоматического раскроя ткани.  
В работе рассматривается проблема построения сети эквидистант для обследо-
вания прибрежной акватории при проектировании морских терминалов, а также 
для высадки морского десанта на побережье. Предложен компьютерный алгоритм 
построения эквидистант сложных негладких кривых на местности. Алгоритм ре-
ализован в виде компьютерной программы. Программа протестирована на примере 
кривой реальной береговой полосы. 
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Введение. Эквидистанта некоторой кривой L — это множество то-
чек, равноудаленных от этой кривой, т.е. множество концов равных 
отрезков, отложенных в определённом направлении на нормалях к L 
[1, 2]. Создается эквидистанта на базе уже существующих базовых 
кривых (сплайнов, функций), ее внешний вид определяется видом кри-
вой и величиной смещения [3–5]. Проблема построения эквидистант-
ных линий имеет основополагающее значение в различных областях 
техники, в первую очередь, при создании программ для станков с чис-
ловым программным управлением (ЧПУ), в проектировании трасси-
ровки печатных плат, в разработке элементов моделей трубопроводов 
и др. Эквидистанты применяются, например, при вычерчивании тру-
бопроводов. В этом случае проводится только осевая линия, а затем 
строятся эквидистантные линии контуров самой трубы [6–8]. При                      
проектировании морских терминалов [9]. Кроме того, эквидистанты 
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широко применяют в геологии [10], при разработке строительных и 
архитектурных чертежей. В машиностроении эквидистанты использу-
ются при проектировании кулачковых механизмов В теории систем 
автоматизированного проектирования (САПР) эквидистантой при-
нято называть линию, равноотстоящую от обрабатываемого контура 
детали на расстояние, равное радиусу режущего инструмента [11, 12]. 
В металлообработке эквидистанта описывает траекторию движения 
центра фрезы относительно контура обрабатываемой поверхности 
[11], в системах автоматического раскроя ткани [13]. В работе рас-
сматривается проблема построения сети эквидистант для обследова-
ния прибрежной акватории при проектировании морских терминалов, 
а также для высадки морского десанта на побережье. 

Теория. Для гладких кривых теория эквидистант достаточно 
полно разработана и все можно выразить в аналитическом виде [3–5]. 
Если кривая L задана параметрическими уравнениями 

 

 

( ),

( ),

, ,

x t

y t

t



 






  (1) 

то уравнения эквидистант есть 

 
   

   

2 2

2 2

( )
( ) ( ) ,

( ) ( )

( )
( ) ( ) .

( ) ( )

h t
x t t

t t

h t
y t t

t t


 


 


 

 




 


  (2) 

Здесь h  — параметр эквидистанты, определяющий её расстояние от 
базисной кривой. Меняя, будем получать различные эквидистанты по 
обе стороны от кривой. 

Например, эквидистанты эллипса 
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Параметрический способ построения эквидистант гладких кривых 
не является единственным. Можно определить их и алгебраическим 
уравнением. Если кривая задана уравнением 
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 ( ),y f x   (5) 

где ( )f x  — многочлен с вещественными коэффициентами, то уравне-
ния эквидистант есть: 

     2 2 2( ) 0,zD z x f z y h       (6) 

где (...)zD  — дискриминант многочлена, стоящего в скобках, рассмат-

риваемый  относительно переменной z, в то время как остальные пе-
ременные считаются параметрами [13]. Для того же эллипса, который 
имеет алгебраическое уравнение 
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эквидистанты имеют уравнение 
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где (...)zD  — дискриминант кубического многочлена относительно z, 

записанного в скобках [13, 14]. Вычисление этого дискриминанта при-
водит к очень громоздкому выражению в виде многочлена восьмой 
степени относительно x и y. Таким образом, даже для такой простой 
гладкой кривой как эллипс уравнение эквидистант в алгебраической 
явной форме бесполезно для практического применения. Тем более 
это касается сложных негладких кривых на реальной местности. 

В данной статье предложен и реализован алгоритм компьютер-
ного построения эквидистант реальных негладких кривых на местно-
сти. В качестве примера дано решение проблемы компьютерного мо-
делирования прибрежной полосы акватории морского побережья. 
Описывается построение массива точек для определения черты без-
опасной глубины для швартовки крупнотоннажных грузовых судов, 
для высадки десанта и др. практически важных применений. 

Постановка задачи и её решение. Имеется некоторая исходная 
базисная кривая, представляющая реальную кривую на местности, 
например, береговую черту. Эквидистанта на расстоянии h от базис-
ной кривой — это контур, состоящий из ребер, каждое из которых от-
стоит от соответствующего ему ребра исходного контура на заданное 
расстояние h  (рис. 1). На ней по определенному алгоритму с заданным 
шагом строится дискретный набор точек.  
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Рис. 1. Аппроксимация реальной кривой на местности линейным сплайном 
 

По этим точкам нужно построить кусочно-линейную кривую (эк-
видистанту), равноудаленную от базисной кривой, с заданным рассто-
янием от неё, повторяя все изгибы базисной кривой и не допуская 
наложений и дефектов. Иными словами, нужно построить массив то-
чек кусочно-линейной кривой (эквидистанты) по имеющемуся набору 
точек базисной кривой (например, береговой черты) с заданной точ-
ностью [17]. 

Математическая постановка задачи такова: пусть  

       1 1 2 2, , , ... , .n nB x y x y x y   (9) 

Это массив точек, описывающих базисную кривую. Задаем расстояние 
0h   от базисной кривой — параметр эквидистанты. В дальнейшем 

для рассматриваемого конкретного случая моделирования прибреж-
ной полосы предполагается, что поверхность суши находится по пра-
вую сторону от береговой линии (базисной кривой), определяемой 
точками массива (9). Необходимо построить массив точек 

       1 1 2 2, , , ... , ,m mE x y x y x y   (10) 

описывающих линию эквидистанты на заданном расстоянии h . 
Рассмотрим произвольный отрезок базисной кривой, ограничен-

ный точками 1 1 2 2( , ), ( , )A x y B x y  (рис. 1). Рассмотрим вектор 

 ,a aa AB x y 


. Его координаты определяются через координаты то-
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Определим вектор ( , )n nn x y


, перпендикулярный вектору a
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, которое состоит в равенстве нулю их ска-
лярного произведения: 
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Условие (4) является необходимым, но не достаточным условием пер-
пендикулярности векторов a


 и n


 . Это означает, что из уравнения (12) 

нельзя однозначно определить координаты нормального вектора n


. 
Уравнение (12) имеет бесконечно много решений относительно неиз-
вестных ,n nx y , т.е.  существует бесконечно много векторов с коорди-

натами ,n nx y . Не все из них перпендикулярны вектору a


. Именно в 

этом проявляется не достаточность условия (12). Поэтому немного 
сузим задачу. Будем искать нормальный вектор n


 как единичный. Это 

добавляет еще одно условие к уравнению (4): 

 2 2 1.n nx y    (13) 

В результате для нахождения координат нормального вектора n
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Решая её, получаем 
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Здесь четыре различных варианта в зависимости от выбора знаков. 
Прямая проверка показывает, что только два из них определяют реше-
ния системы (14). Получаем два нормальных вектора: 
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В формулах (15) и (16) через а обозначена длина вектора a


 , равная 

 2 2 .a aa x y    (17) 

Векторы в формуле (16) — это два единичных вектора, перпенди-
кулярных к вектору a


. Они имеют противоположные направления. 

Один из них назовем внешней нормалью, другой внутренней норма-
лью к базисной кривой. Пусть первый вектор-внешняя нормаль. 
Именно его и будем дальше иметь в виду.  Из выбранных на базисной 
кривой точек 1 1( , )A x y  и 2 2( , )B x y  в направлении внешней нормали 

определим точки 1 1( , )Г
Г ГA x y  и 2 2( , )Г

Г ГB x y , находящиеся на рассто-

янии h  от точек A  и B . Отрезок ГA  , ГB  — это отрезок кусочно-ли-

нейной эквидистанты с параметром h . Координаты точек 1 1( , )Г
Г ГA x y  

и 2 2( , )Г
Г ГB x y  равны 
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Такую же процедуру проделаем со всеми остальными точками из 
массива (1) на базисной кривой. Далее, в зависимости от угла между 
отрезками базисной кривой, возможны две ситуации (рис. 2 и 3), нуж-
дающиеся в пояснении. 

Угол больше 180 градусов (рис. 2) — необходимо достроить недо-
стающий участок.  

 

 

Рис. 2. Варианты построения участка эквидистанты 

БГО или ДГО

БЛH
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Предполагается два пути решения. Первый: передавать в массиве 
три параметра (вместо двух для построения отрезка) для построения 
дуги, два параметра — начало и конец дуги, третий — центр. Второй 
вариант: с необходимой точностью произвести приближенное постро-
ение дуги отрезками, тогда в результирующий массив достаточно бу-
дет передать параметры для построения отрезка, что избавит от нали-
чия особых конструкция для построения дуги по трем точкам. 

Угол меньше 180 градусов (рис. 3) — необходимо отбросить точки 
A , B  и заменить их на точку C . 

 

 
Рис. 3. Варианты построения участка эквидистанты 

 
Для этого необходимо найти пересечение отрезков эквидистанты 

и в результирующем массиве точек эквидистанты заменить точки 
конца первого и начала второго пересекающихся отрезков на точку пе-
ресечения этих отрезков. Для этого, на каждой итерации нахождения 
точек отрезка эквидистанты необходимо провести поиск точки пере-
сечения вновь полученного отрезка с каждым отрезком                                           
(по убыванию — от последнего, добавленного в массив, до первого), 
найденным на предыдущих итерациях следующим образом: Достроим 
каждый отрезок до прямой (найдем их функциональную зависимость) 
и найдем точку пересечения этих функций, решив СЛАУ двух уравне-
ний. Проверим точку пересечения на принадлежность проверяемым 
отрезкам одновременно. При положительном ответе (точка принадле-
жит обоим отрезкам) — точка пересечения найдена; при отрицатель-
ном — повторяем проверку дольше, пока не найдем искомую точку. 
Это позволит избежать ситуации, когда очередной отрезок эквиди-
станты полностью исключает один или несколько из отрезков, постро-
енных на предыдущих итерациях (рис. 4). 

В результате получим кусочно-линейную кривую — эквиди-
станту, находящуюся на расстоянии h от исходной базисной кривой. 
Варьируя параметр h, получим семейство эквидистант.  

Алгоритм реализован в виде компьютерной программы. Код про-
граммы приведен в Приложении. На рис. 5 приведен пример сети по-
строенных эквидистант для реальной береговой полосы. 

БГО или ДГО

БЛ
A

BC
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Рис. 4. БГО — ближняя граница обнаружения; ДГО — дальняя граница                         
обнаружения; БЛ — береговая линия 

 
 

 

 

 

 

  
 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 

Рис. 5. Блок-схема алгоритма построения эквидистант 
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Алгоритм реализован в виде компьютерной программы. На рис. 6 
приведен пример сети построенных эквидистант для реальной берего-
вой полосы. 

 

Рис. 6. Пример построения сети эквидистант 
 

Предложенный алгоритм не учитывает некоторые важные фак-
торы, наиболее весомым из которых является то, что возможная черта 
швартовки судов или черта высадки десанта не всегда находится на 
одинаковом расстоянии в разных частях береговой линии. Для реше-
ния этой проблемы можно использовать распознавание глубины водя-
ного слоя вдоль береговой черты по аэрофотоснимку методами ком-
пьютерного зрения. Этому будет посвящена следующая статья. 

Выводы. Предложен компьютерный алгоритм построения экви-
дистант — сложных негладких кривых на местности. Алгоритм реали-
зован в виде компьютерной программы. Программа протестирована на 
примере кривой реальной береговой полосы. 
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Computer construction of an equidistant network of                
complex non-smooth curves on the terrain 

 A.A. Valishin, I.A. Tumanov, M.R. Akhund-zade 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The equidistant of a curve is the set of points equidistant from this curve, i.e. the set of ends 
of equal segments, laid in a certain direction on the normals to the curve]. An equidistant 
is created on the basis of already existing basic curves (splines, functions), its appearance 
is determined by the type of curve and the amount of displacement. The problem of con-
structing equidistant lines is fundamental in various fields of technology: when creating 
programs for machine tools with numerical program control (CNC), in designing traces of 
printed circuit boards, when designing pipelines. In this case, only the axial line is drawn, 
and then the equidistant lines of the pipe contours are built . Equidistants are widely used 
in geology, in the development of construction and architectural drawings. In mechanical 
engineering, equidistants are used in the design of cam mechanisms. In the theory of com-
puter-aided design (CAD) systems, it is customary to call the equidistant line a line that is 
equal to the radius of the cutting tool from the workpiece contour. In metalworking, the 
equidistant describes the trajectory of the center of the cutter relative to the contour of the 
machined surface, in automatic fabric cutting systems. The paper considers the problem of 
constructing a network of equidistant surveys of coastal waters during the design of marine 
terminals, as well as for landing amphibious assaults on the coast. A computer algorithm 
is proposed for constructing equidistant complex irregular curves on the ground. The al-
gorithm is implemented as a computer program. The program is tested on an example of a 
curve of a real coastal strip. 
 
Keywords: equidistant, not smooth curves on the ground 
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