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Статья посвящена разработке метода расчета нелинейных диэлектрических 
свойств композитов с периодической структурой. Методы прогнозирования нели-
нейных диэлектрических свойств композитов играют важную роль для проектиро-
вания диэлектрических материалов с заданными свойствам, в частности для гете-
рогенных сегнетоэлектриков, широко применяющихся для создания различных при-
боров и электротехнических устройств, например, для создания накопителей па-
мяти компьютеров. Рассмотрена квазистатическая задача о распределении элек-
трического заряда в неоднородной поляризующейся среде с периодической структу-
рой и нелинейно диэлектрическими свойствами. Для решения этой нелинейной за-
дачи применен метод асимптотической гомогенизации, предложенный Н.С. Бахва-
ловым, Э. Санчес-Паленсией, Б.Е. Победрей. В результате сформулированы локаль-
ные нелинейные задачи электростатики на ячейке периодичности, предложен ал-
горитм вычисления эффективных нелинейных определяющих соотношений для ди-
электрических свойств, и осредненная задача для композита с эффективными свой-
ствами. Для случая композита со слоистой структурой получено решение локаль-
ных задач и построены эффективне определяющие соотношения для нелинейных 
диэлектрических свойств композита. Показано, слоистый композит является 
трансверсально изотропным нелинейно диэлектрическим материалом, если его                
сли являются изотропными материалами.  Рассмотрен численный пример расчета 
нелинейных свойств 2-х слойного композита на основе титаната бария и сегнето-
керамического вариконда ВК4.  Предложена модель, описывающая нелинейную за-
висимость диэлектрической проницаемости этих материалов от вектора напря-
женности электрического поля.  Показано, что нелинейная зависимость тензора 
диэлектрической проницаемости композита от вектора напряженности суще-
ственно отличается при направлении поля в плоскости слоев и в поперечном направ-
лении. Показано, что разработанная методика может служить основой для про-
ектирования нелинейно диэлектрических композиционных материалов с анизотроп-
ными свойствами. 
 
Ключевые слова: резиноподобные материалы, пластина, конечные деформации, 
напряжения, перемещения, градиент перемещения, пространственные и матери-
альные координаты, краевая задача 
  

Введение. Материалы с нелинейными диэлектрическими свой-
ствами, в частности сегнетоэлектрики, пироэлектрики и др.,  представ-
ляют собой  перспективный класс материалов для создания различных 
приборов и электротехнических устройств [1-3]. В частности, данные 
материалы используются для различных типов нелинейных конденса-
торов-варикондов, которые применяются «для умножения и деления 
частоты; для детектирования сигналов; для создания частоты                               
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модуляции в схемах реле времени; в ячейках памяти; для создания ди-
электрических усилителей и других устройств» [4]. Одним из перспек-
тивных направлений является создание элементов памяти компьюте-
ров для записи и хранения информации [3, 5]. В этой связи весьма ак-
туальной является задача создания методов прогнозирования свойств 
композиционных материалов с нелинейно диэлектрическим свой-
ствами, которые позволили бы проектировать материалы с наперед за-
данными диэлектрическими свойствами. Проектирование нелинейно 
диэлектрических гетерогенных  структур и материалов в настоящее 
время активно осуществляется, в том числе с использованием домен-
ной структуры на наноструктурном уровне [5]. Однако, как правило, 
при этом используются приближенные методы расчета, которые не 
всегда учитывают анизотропию свойств композита в нелинейной об-
ласти. 

Целью настоящей работы является применение для композитов с 
нелинейно диэлектрическими свойствами метода асимптотического 
осреднения [6 – 9], который был ранее применен для большого числа 
различных задач [10 – 13 ],в том числе для линейных задач электроди-
намики и пьезоупругости [14, 15]. 

Постановка квазистатической задачи нелинейной электроста-
тики для поляризующихся композитов. Рассмотрим в трехмерном 
пространстве композит (неоднородную среду V  с периодической 
структурой, состоящую из N  изотропных фаз V  , 1,..., N  ), кото-

рая находится под воздействием переменного электрического поля. 
Все фазы V  композита будем полагать поляризованными диэлектри-

ками [16] с нелинейными диэлектрическими диаграммами напряжен-
ности, а распределение в композите  полей электрической напряжен-
ности и электрической индукции будем полагать подчиняющимся ква-
зистатическим уравнениям Максвелла [16]. 

Тогда, в указанных допущениях, в декартовой системе координат 
ix  постановка задачи нелинейной электростатики для  указанного 

типа композита примет вид [16,17]: 

 0, ,i
i id x V     (1) 

 , Σ,( ),k
j

k
i id xf e x V    (2) 

 , Σ,k
i ie x V      (3) 

   0 ,  ,0, Σk
i id n x         (4) 

 
1 2Σ Σ
 ,  , e i i ed n d     (5) 

где обозначены: id  — компоненты вектора индукции электрического 

поля; ie — компоненты вектора напряженности электрического поля;  
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i  — оператор набла; if   — компоненты нелинейной векторной функ-

ции, описывающей соотношения  между ie  и id   для композита;   — 

электрический потенциал; in  — компоненты вектора нормали; [ ]   — 

скачок функций на границе Σ  раздела фаз композита с номерами   

и  , , 1,..., N   , e — заданный потенциал на части поверхности 1
композита, ed — заданная нормальная составляющая вектора индук-

ции электрического поля на части поверхности 2 . Уравнение (1) 

представляет собой локальное уравнение Гаусса [16]. 
Модель нелинейно-диэлектрических свойств фаз композита. 

Все фазы композита будем полагать изотропными, тогда векторные 
функции (2), описывающие нелинейные диэлектрические соотноше-
ния для фаз могут быть представлены с помощью скалярных нелиней-
ных функций [18]  

 ( , ) (| |, ) ,k k
i j if e x x e e   (6) 

где (| |)e  — нелинейная диэлектрическая проницаемость фаз, завися-

щая от модуля | |e i j
ije e — вектора напряженности e  электриче-

ского  поля и от координаты kx ,  ij — символ Кронекера. Зависимость 

(6) от координаты является кусочно-гладкой: при переходе от одной 
фазы композита к другой меняется нелинейная диэлектрическая про-
ницаемость 

 (| |, ) (| |), .k kx x V   e e   (7) 

Тогда соотношения (2) примут вид 

 (| |, ) .ki ix ed  e   (8) 

В качестве конкретных функций (| |) e  нелинейной диэлектри-

ческой проницаемости фаз примем следующие зависимости: 

  
0

0

| | ,
(| |) 1,..., ,

| | | ,

,  0

1 exp ( ), 
s

s s

e

A B e
N

e
 

  


 





 

 
     

e
e

e e
  (9) 

где 0 , ,, sA B e    — константы характеризующие материал каждой 

фазы композита . 
Обезразмеривание. Все уравнения в системе (1) – (5), а также (8) 

будем полагать безразмерными. Обезразмеривание осуществим сле-

дующим образом. Путь , , , , k
i id e x      — размерные величины, соот-

ветствующие безразмерным , , , , k
i id e x  .  Введем характерные 
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значения размерных величин: 0 0 0 0 0, , , ,d e x L   , и свяжем безраз-

мерные и размерные величины следующими соотношениями 

 0 0 0

0

/ , / , / ,

/ , / .

i i i i

k k

d d d e e e

x x L

  

  

  

 

 
 

  

Из соотношений (3) и (8) следует, что 0 0 0d e  и  0 0 /e L . Кон-

станты 0 , ,, sA B e    в (9) являются безразмерными. 

Линеаризация задачи. Применяя метод последовательных при-
ближений для нелинейного соотношения (8), линеаризуем определяю-
щие соотношения 

 { 1} { }{ } (| |, ) , 1, 2,...,m k m
i

m
i xd e m  e   (10) 

где m  — номер приближения. 
Тогда постановка задачи (1) – (5), (8) примет вид 

 

1 2

{ }

{ }

{ } { }

{ } { }

{ } {

{ { }

}

Σ Σ

1}(| |, ) ,

,

1, 2,

0, ,

, Σ,

0, 0, Σ

 , . ., .

m i
i i

m
i

m m i
i i

m m i

m

i i

m m
i e

i

e

m

i

k

d x V

d

e x

x e

m

V

d n x

d n d







 

 

  

   

        



 

e

  (11) 

Асимптотические разложения системы нелинейных уравне-
ний Максвелла.  В силу периодичности структуры композита, следуя 
общей концепции метода асимптотического осреднения [6 – 9], введем 
малый параметр   

 1,
l

L
     (12) 

где  𝑙 – характерный размер ячейки периодичности (ЯП). 

Введем следующие безразмерные координаты: ix — глобальные 

координаты и  i  — локальные координаты  
i

i x


 . 

Все функции, входящие в систему (11), будем полагать квазипе-
риодическими  )( , i i jh x h x  , т.е. периодическими по j и завися-

щими от глобальных координат.  В частности, определяющие соотно-
шения (10) примут вид 

 { } { 1} { }(| |, ) , 1, 2,...m km m
i ie md   e   (13) 
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Локальные координаты j  изменяются в пределах области V  — 

ячейки периодичности.  Все уравнения в этой системе (11) cчитаются 
безразмерными. Дифференцирование от квазипериодической функ-
ции  ,i jh x   осуществляется по следующему правилу: 

 1
, |

1
,i i i i i

h h
h h h

x


 
  

    
 

  (14) 

где обозначены производные ,i i

h
h

x




 , |i i

h
h







. 

Решение задачи (11) ищем в виде асимптотических разложений по 
малому параметру     

 
         { } 0 { }{ }

1

, , ,

, .

m m nm i j i n i j

n

j j

x x x

V x V

     









 


  (15) 

Подставляя (15) в третье уравнение системы (11), получаем асимп-
тотические разложения для   компонент вектора напряженности элек-
трического поля { }m

ie   

 { } { }( )

0

,m n m n
i i

n

e e




   (16) 

где 

    { } { } 1{ }( )
, | , 0,1,2,...m n m nm n

i i ie n       (17) 

Подставляя (16) в (13), и используя формулу Тейлора, получаем 
асимптотические разложения для диэлектрической проницаемости  

 { 1}( ){

0

1}(| |, ) ,n

n

k mm n  






 e   (18) 

где 

 

{ 1}(0)

{ 1}(0)
{ 1}(1)

{ 1}(0)

{ 1}(0)

{ 1}(0) { 1}( )

{ 1}(1)

{ 1}( ) { 1}( )

(| |, ),

(| |, )
| |,

| |

(| |,...,| |, ).

m

m

m k

m k
m

m n

m

mn km m n

  

 

  





 






 










e

e
e

e

e e

  (19) 

Подставляя (16) и (18) в (13), получаем асимптотическое разложе-
ние для компонент вектора индукции электрического поля { }m

id     
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 { } { }( )

0

,m n m n
i i

n

d d




   (20) 

где  

 

{ }( ) { }(0) { }( ) { 1}(0) { 1}( )( )

{ 1}( ')

' 0

{ }( ')

( ,..., ,..., )

, 0,1, 2,...

,m n m m n m m n
i i i i i

n
i

m n
n

m n n

n
i

d e e e ef

e n

 

 










  (21) 

В том числе первые члены имеют вид 

 

{ }(0) { }(0) { 1}(0)
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(0) { 1}(0) { }(0)
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{ 1}(0) { }(1) { 1
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i i
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m m m

i i i i i
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i i

d e e

d e e e e

f e

f

e e

 
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

  



 



 

 

 

e

e e e

  (22) 

Рекуррентная последовательных локальных задач. Подстав-
ляя разложения (15), (16)  и (20) в систему уравнений (11), и собирая 
члены при одинаковых степенях малого параметра, получим следую-
щую рекуррентную последовательность локальных задач 

    

 

{ }( ) { }( 1) { }( )
, |

{ }( ) { }(0) { }( ) { 1}(0) { 1}( )

{ } { } 1{ }( )
, |

{ }( 1) { }( )

{ }

( )

1

, ,

,( ,..., ,...,

, Σ ,

0 , 0, Σ

, ),

,

0, 

m n m n m n
i i i i

m n m m n m m n
i i i i i

m n m nm n i
i i i

m n m n i

k
i

i

k

n

i

m

n

d d b V

d e e e e

e V

d n

f



 





  



 







 







  



   

        

   { } 1 0,1, 2,..., 1, 20 ,., ..m n n m     

  (23) 

Здесь обозначены Σ - граница ЯП,  Σ Σ V     — граница раздела 

компонентов композита в рамках одной ЯП,  { } 1 0m       — условие 

периодичности на границе ЯП, а  

    { { }1} 1 ,m mn n

V

dV


       (24) 

Функции { }( )m nb  , представляющие собой фиктивные заряды, не за-
висят от локальных координат k , они возникают из условия разре-
шимости задачи (23) в классе периодических функций  относительно 

функций  1{ }m n  . 
Для нулевого приближения 0n   имеем следующую задачу 
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    

   

{ }(0)
|

{ }(0)

{ }

{ 1}(0) { }(0

0 { } 1{ }(0)
, |

{ }(1) { }(0)

{ } { } 1

)

1

(

0, ,

, Σ ,

0,

| |, ) ,

, 0, Σ

0, 0 1,2,., ..

m k
i i

m
i

m mm i
i i i

m

m k m

i

i

m
i i

m m

e

d V

d

e V

d

m

n



 





  

 

 

 

 

   

        
      





e

  (25) 

Решение этих задач ищется относительно функций  1{ }m . Вход-

ными данными этой задачи являются градиенты  { } 0
,

m
i , поэтому реше-

ние можно представить в формальном виде 

    1 (10){ } { } 0
, ,m m
iiN    (26) 

где функции  (10)
iN  зависят от следующих аргументов  

 (1)(0) (1)(0) { 1}(0)(| |, ).m k
i iN N  e   (27) 

Аналогично, используя рекуррентную зависимость (21), формаль-
ное решение задач (23) можно представить в виде 

    
1

{ } { } '( ')
,

' 0

,
n

m m nnn
i

n

n
iN 





   (28) 

 ( ') ( ') { 1}(0) { 1}( ),..( ., , ).nn nn m m n k
i i i iN N e e     (29) 

После подстановки функций (29) друг в друга при разных n, это 
выражение можно записать следующим образом: 

    
1 ' 1 '

1
{ } { } 0( ')

... , ...
' 0

,
n n

n
m mnn

i i i
n

i
n

N 




   (30) 

где функции 
1 '

( ')
... n

nn
i iN  имеют те же аргументы, что и  ( ')nn

iN (29). 

Подставляя (30) в третье уравнение системы (23), находим об-
щее представление для векторов напряженности электрического поля 

  
1 ' 1 '

{ } 0{ }( ) { 1}( )
... , ...

' 0

,
n n

n
mm n m n

i ii i i i
n

e W 



   (31) 

где функции  
1 '

{ 1}( )
... n

m n
ii iW  выражаются через производные 

1 '

( ')
... ,n

nn
i i iN  и 

1 '

( , ' 1)
... | ,

n

n n
i i iN  и поэтому также зависят от аргументов ( { 1}(0) { 1}( ),..., ,m m n k

i ie e   ). 

Осредненные задачи. После подстановки асимптотических раз-
ложений (20) в первое уравнение (11) – уравнение Гаусса, и приравни-
вания членов в асимптотическом ряду этого уравнения к некоторым 



Моделирование нелинейных диэлектрических свойств композитов… 

33 

функциям  { }( )m nb (первое уравнение в (23)), оно принимает следующий 
вид  

 { }( )

0

0.n m n

n

b




   (32) 

Функции  { }( )m nb  найдем из условия разрешимости задач (23), ко-
торое имеет следующий вид 

 { }( ) { }( )
, .m n m n

i ib d    (33) 

Подставляя (33) в (32), получаем  

 { }( )
,

0

0.n m n
i i

n

d




     (34) 

Введем обозначение для осредненного асимптотического ряда 
вектора электрической индукции 

 { } { }( )

0

.m n m n
i i

n

d d




     (35) 

Тогда уравнение (33) примет следующий вид 

 { }
, 0.m

i id    (36) 

Это уравнение представляет собой осредненное уравнение Гаусса для 
композита. 

Подставим функции { }( ) ( )n
i

nm
ifd   из (23)  в уравнение  (35), тогда 

получим следующее уравнение 

 { } { }(0) {( }( ) { 1}(0) {) 1}( )

0

( ,..., ,..., ., )m n m m n m m n
i i i i i

n

n
id e e e ef


 



     (37) 

Поскольку функции  { }( )m n
ie  согласно (31) зависят от  производных 

 
1 '

{ } 0
, ... ( )

n

m k
i i x , являющихся в свою очередь функциями только глобаль-

ных переменных, то каждый член осредненного ряда зависит от 
 

1 '

{ } 0
, ... ( )

n

m k
i i x  и  

1 '

{ 1} 0
, ... ( )

n

m k
i i x   

 
1 1

{ }( ) { }(0) { }( ) { 1}(0) { 1}( )

{ } { } { 1} { 1}
, ... , .

)

( )
.

(

.

( ,..., ,..., )

( ,..., ,.. .,

,

, ).
n n

m n m m n m m n
i i i i i

m m m

n
i

n m
i ii i i i i i i

f

f

d e e e e

e e e e

 

 

  


  (38) 

Здесь обозначены осредненные векторы напряженности 

  { }{ } { }
,

0 .mm m
i i ie e     (39) 
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Подставляя (38) в (37), получаем соотношения между осреднен-
ными векторами индукции и напряженности для композита 

 
1 1

{ } { } { } { 1} { 1}
, ... , .

}
.

{
.,.( ,..., ,....., , .. ,, . )

n n

m m m m m m
i i i ii i i i i id e e ef e    (40) 

где 

 
1 1

1 1

{ } { } { 1} { 1}
, ... , ...

{ } { } { 1} { 1}
, ... , ...

0

{ }

( )

,..., ,...)( ,..., ,...,

( ,..., ,...,, ).

n n

n n

m m m m
i i i i i i i i

n m m m m
i i i i i i i i

m
i

n
i

n

e e e e

e e

f

e ef

 


 






  (41) 

Подставляя асимптотические разложения (15) и (20) в граничные 
условия задачи (11), после осреднения, получаем 

  
21

} }0{ {

ΣΣ
 ,   .m m

e i i ed n d      (42) 

Здесь учтено, что    0{ } 0} {m m   и  { } 0nm   при 1n  , в силу 

условий нормировки, наложенных на локальные задачи (23). 
Система уравнений (36), (39), (40) и условий (42) образует поста-

новку линеаризованной осредненной задачи электростатики компо-
зита. Эта задача рассматривается относительно потенциала нулевого 

приближения  0{ } ( )m kx .   

Осредненная задача имеет сложный тип, так как содержит беско-

нечное число производных от   0{ } ( )m kx в определяющих соотноше-

ниях (40), стоящих при различных степенях малого параметра.  Для 
решения этой задачи используем метод малого параметра, согласно 

которому  функцию  0{ } ( )m kx  ищем в виде ряда по малому параметру 

  { }{ }(0)

0

.r m rm

r

 




   (43) 

Подставляя ряд (43) в систему уравнений (36), (39), (40) и (42), для 

старшего члена этого ряда  0{ }m  получаем следующую задачу 

  

 
21

{ }(0)
,

{ }(0) { }(0) { 1}(0)

{ }{ }(0)
,

{ } { }(0)

ΣΣ

{ }(0)

0

0

0,

),

 ,   

( ,

,

. 

m
i i

m m m
i i i

mm
i i

m m
e i i e

m
i

d

d e e

e

d d

f

n



 









   

  (44) 

Определяющие соотношения в этой задаче следуют из (38)  и имеют 
вид 
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 { }(0) { 1}(0) { }(0) { 1}({ }(0) )( 00))( , ( , ) .m m mm
i ii

m
i i ie ef ef e     (45) 

Для вычисления этой функции необходимо решить локальную          
задачу нулевого приближения (25), в которой следует осуществить       

замену    { } 0 { } 0
, ,

m m
i i  . 

Решение локальной задачи для слоистых композитов. Рас-
смотрим частный случай, когда композит имеет слоистую структуру, 
а ЯП композита состоит из N слоев, ортогональных к направлению 

3O . Обозначим далее эту координату 3  , в рамках ЯП V  она из-

меняется в интервале 0,5 0,5   . 

Тогда задача (25) является одномерной и содержит производные 
только по   
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m

m
i
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m m

m

i

m

d V

d

e V

d

e

m

d



 







   

 

 











 

   

        
        

      



 

e

2,...

  (46) 

Для слоистых композитов периодические граничные условия и 
операция осреднения имеют вид 

 

   

     

0.5
{ } { }

0.5

{ } 1 { } 1 { 1

1 1

}( ) (0,5) ( 0,5 .

,

 )

m m

m m m

d  

  







 

 
  


  (47) 

Интегрируя первое уравнение в (46) и подставляя найденное ре-
шение во второе уравнение этой системы, находим 

 { }(0)
3 3 ,md C const    (48) 

    { } 0 { } 1{ }(0)
3 ,3 |3

{ 1}(0)(| |, )( ).mm mmd    e   (49) 

Интегрируя уравнение (49), находим общий вид функции  { } 1m  

    { } 1 { } 0
3 ,3

0.
{ 1}(0

5
)

.
(| |, )m

m md
C С












   e


   (50) 
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Подставляя выражение (50) в условия (47), находим константы ин-

тегрирования 3 ,C С , и формула (50), записанная в форме (26),  при-

обретает вид 

    { } { } 0
,

1 (10) (10) (10)
3, ,m

i i
m

iiN N N      (51) 

 (10) { 1}(0) 1 1 { 1}(0) 1( (| |, )) ( (| |, )) ,m mN             e e    (52) 

 (10) { 1}(0) 1 1 { 1}(0) 1
|3 ( (| |, )) ( (| |, )) 1.m mN          e e    (53) 

Здесь обозначен оператор интегрирования 

 
0,5 0,5

( ) ( )f d f df






   
 

           (54) 

С использованием (51) и третьей формулы в (46) вычисляем вектор 
напряженности { }(0)m

ie  

  { } 0{ }(0) { 1}(0)
, ,mm m

i ij je W    (55) 

 { 1}(0) (10)
/3 3 3 ,ij

m
ij i jNW       (56) 

здесь использованы обозначения (31). 
Подставляя (55) во второе уравнение системы (46), находим век-

тор индукции электрического поля { }(0)m
id  и функцию 

{ }(0)(0 }) { 1 (0)( , )m
ii

m
ie ef   

  { } 0{ }(0) { }(0) { 1}(0) { 1(0) }({ 1}(0) 0)
,( , ) (| |, ) .mm m m m

i i i i
m

i j jfd e e W     e   (57) 

Тогда, после подстановки (57) в (45), получаем линеаризованные 
определяющие соотношения слоистого композита 

 
{ }(0) { }(0) { 1}(0)

{

{ }(0)

{ 1}( 1}(0 )0) ) { }(0

)( ,

(| |, ) .

m m m
i i

m
i i

m m
ij j

m

d ef e

W e  

 

  e
  (58) 

Обозначим тензор эффективных диэлектрических проницаемо-
стей слоистого композита 

 { 1}(0){ 1} { 1}(0)(| |, ) ,m m
ij ij

m W    e   (59) 

тогда соотношения (58) примут вид 

 { }(0) { 1} { }(0).m m m
i ij jd e    (60) 

Подставляя (52) и (56) в (59), найдем явное выражение для тензора эф-
фективных диэлектрических проницаемостей слоистого композита в 

1m  приближении 
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{ 1}(0)

3 3

{ 1}(0) 1 1
3

{

3

1} (| |, ) ( )

( (| |, )) .

m
ij i j

m

m
ij

i j

    

  







  

  

 

 






e

e
  (61) 

Из формулы (61) следует, что тензор { 1}m
ij

 является диагональным 

и имеет 2 независимые компоненты 

 { 1} { 1}
11 22

{ 1}(0)(| |, ) ,m m m      e   (62) 

 { 1} { 1}(0) 1 1
33 ( (| |, )) ,mm      e   (63) 

т.е. нелинейно- диэлектрический композит является трансверсально 
изотропным [18]. 

Подставляя (63) в (60), получаем, что определяющие соотношения 
(60) можно записать в виде 2-х групп соотношений: в плоскости слоев 
и в поперечном направлении 

 { }(0) { 1} { }(0)
11 1,, 2,m m m

I Ie Id      (64) 

 { }(0) { 1} { }(0)
3 33 3 .m m md e    (65) 

Модуль вектора напряженности { 1}(0)| |e m в формулах (62) – (65)  вы-
числяется с помощью (54) 

 { 1}(0) 2 { 1}(0) 2 { 1{ 1}( }(0) 2
1 3

0 2
2

)| | ( () () ) ,m m mm e e e     e   (66) 

где, согласно (55), (56) и (53) 

 { 1}(0) { 2}(0) { 1}(0) { 1}(0) { 2}(0) { 1}(0)
11 3 33 3, ,m m m m m m

I Ie W e e W e         (67) 

 
{ 2}(0

{

)

1}(0)
11

{ 2}(0) 1 1 { 2} 1
3

(0
3

)

1

( (| |, )) ( (| |, ) .

,

)m m

m
j

m

W

W    



      



  e e
  (68) 

Формулы (62) – (68) полностью позволяют вычислить определяющие 
соотношения для нелинейно диэлектрического КМ со слоистой                
структурой. 

Результаты численного моделирования.  В соответствии с раз-
работанной методикой были проведены расчеты определяющих соот-
ношений для двухслойного нелинейно диэлектрического композита, 
один из слоев которого представлял собой титанат бария 3BaTiO , а 

другой — сегнетокерамический материал —  вариконд ВК4 [4, 19 –
22].  Диаграммы нелинейно диэлектрических  функций (| |)e  — за-

висимостей диэлектрический проницаемостей от напряженности элек-
трического поля | |e для 3BaTiO и вариконд ВК4 были взяты из работ 

[19 – 22]. Были проведены аппроксимации этих экспериментальных                 
функций (| |)e  с помощью аналитических функций (9). Значения 
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безразмерных констант 0 , ,, sA B e     для 3BaTiO и ВК4, полученные 

таким способом , приведены в таблице 1. При обезразмеривании были 
введены следующие характерные значения величин 

 6 8
0 01 м, 10  B/м, 8,854 10  Kл/(В×м),C NL e           

здесь C  — диэлектрическая постоянная, N  — нормирующий коэф-

фициент, при этом 2 2
0 8,854 10  Kл/мd   ,  6

0 10  B  . 

Таблица 1 

Значения констант в модели (9) для титаната бария 3BaTiO  
 и вариконда ВК4 

Материал 0  A  B  se  

3BaTiO ( 1  ) 0,1 1,0 40 0,25 

ВК4 ( 2  ) 0,2 2,5 40 0,02 
 

Относительные толщины слоев композита (концентрации фаз) 
обозначались как 1h  и 2h  ( 1 2 1h h  ,  0 1Ih  ).  

На рис. 1 и 2 представлены графики функции (0)
11 1( )e , (0)

33 3( )e  — 

зависимостей диэлектрической проницаемости 2-х слойного компо-
зита от компонент (0)

1e  и (0)
3e  вектора средней напряженности элек-

трического поля, соответственно,  вычисленные по формулам (62) и 
(63). Графики построены для различных значений концентраций фаз 

1h и 2h . У сегнетоэлектрика ВК4 диэлектрическая проницаемость, уве-

личивается при возрастании напряженности электрического поля 
практически сразу. Это увеличение достигает максимальных значений 
(более, чем в 10 раз) по сравнению с начальным значением  (0) . У 
титанана бария существует достаточно большой диапазон значений 

(0)e  , в котором диэлектрическая проницаемость не меняется.                          

У 2-х слойного композита ВК4+ 3BaTiO  с 50% содержанием титанана 

бария диэлектрическая проницаемость 11  в основном следует харак-

теру изменения диэлектрической проницаемости ВК4: возрастание 

значений 11 начинается практически сразу при увеличении                           

значений (0)
1e . 

В то же время изменение диэлектрической проницаемости 33  2-х 

слойного композита ВК4+ 3BaTiO  по характеру ближе к аналогичной 

зависимости титанана бария: существует достаточно большая область 
значений (0)

3e , при которых 33 практически не меняется (рис. 2). 
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Рис. 1. Зависимость диэлектрической проницаемости 11  2-х слойного композита 

ВК4+ 3BaTiO  от компоненты вектора средней напряженности электрического поля   
(0)

1e  для различных значений  концентрации фазы 1h  ( 3BaTiO ): 

1 — 1,0; 2 — 0,8;  3 — 0,5;  4 — 0,2; 5 — 0 (ВК4)   
 
 

 
 

Рис. 2. Зависимость диэлектрической проницаемости 33  2-х слойного композита 

ВК4+ 3BaTiO  от компоненты вектора средней напряженности электрического поля   
(0)

3e   для различных значений  концентрации фазы 1 ( 3BaTiO ): 

1 — 1,0; 2 — 0,8;  3 — 0,5;  4 — 0,2; 5 — 0 (ВК4)   
 

На рис. 3 и 4 показаны графики зависимости компонент вектора 
индукции  (0)

1d  и (0)
3d 2-х слойного композита ВК4+ 3BaTiO от               

2,5

2, 0

1,5

1,0

0,5

0

11

 0
10 0,1 0,2 0,3 0,4 0,5 e

1

2

5

4

3

2,5

2, 0

1,5

1,0

0,5

0

33

 0
30 0,1 0,2 0,3 0, 4 0,5 e

12

3

4

5
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компонент (0)
1e  и (0)

3e  вектора средней напряженности электрического 

поля, соответственно,  вычисленные по формулам (64) и (65)  для раз-
личных значений концентраций фаз 1h и 2h . Поскольку диэлектриче-

ская проницаемость рассмотренных материалов значительно выше, 
чем C , то компоненты вектора поляризации (0)(0)p d eC   чис-

ленно близки к (0)d . Поэтому графики зависимостей  (0)
11 )(p e и 

(0)
33 )(p e  фактически совпадают с к аналогичными графиками 

((0)
1

0)
1( )ed  и ((0)

3
0)

3( )ed .  Поляризация (0)
11 )(p e  и индукция ((0)

1
0)

1( )ed  

композита ВК4+ 3BaTiO  в плоскости слоев, по характеру зависимости 

от (0)
1e  близки к аналогичным зависимостям вариконда ВК4, а поляри-

зация (0)
33 )(p e  и индукция ((0)

3
0)

3( )ed  композита ВК4+ 3BaTiO  в 

направлении, перпендикулярном к плоскости слоев, по характеру                
зависимости от (0)

3e  близки к аналогичным зависимостям титаната                       

бария. 
Разработанный метод позволяет прогнозировать нелинейно ди-

электрические свойства композитов с различными содержаниями фаз, 
и тем самым, проектировать материалы с заданными диэлектриче-
скими свойствами.  

 

 

 

Рис. 3. Зависимость компоненты вектора индукции  0
1d  2-х слойного композита 

ВК4+ 3BaTiO  от компоненты вектора средней напряженности электрического поля   
(0)

1e   для различных значений  концентрации фазы 1 ( 3BaTiO ): 

1 — 1,0; 2 — 0,8;  3 — 0,5;  4 — 0,2; 5 — 0 (ВК4)   
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Рис. 4. Зависимость компоненты вектора индукции  0
3d  2-х слойного композита 

ВК4+ 3BaTiO  от компоненты вектора средней напряженности электрического поля   
(0)

3e   для различных значений  концентрации фазы 1 ( 3BaTiO ): 

1 — 1,0; 2 — 0,8;  3 — 0,5;  4 — 0,2; 5 — 0 (ВК4)   
 

Заключение. С помощью метода асимптотического осреднения 
периодических структур предложен методика расчета эффективных 
определяющих соотношений для нелинейно диэлектрических компо-
зитов.  Методика основана на построении асимптотических решений 
системы квазистационарных уравнений Максвелла для электриче-
ского поля.  

Сформулированы локальные нелинейные задачи электростатики 
на ячейке периодичности композита, с помощью которых вычисля-
ются тензоры эффективных нелинейно-диэлектрических свойств ком-
позитов, обладающих анизотропией. 

Рассмотрен пример решения локальных задач и расчета нели-
нейно-диэлектрических соотношений для слоистых композитов. Про-
ведены численные расчеты для композита титанат бария — вариконд 
ВК4, которые показали, что разработанная методика расчета нели-
нейно-диэлектрических соотношений композитов является доста-
точно эффективной и позволяет прогнозировать диэлектрические 
свойства композитов при различных концентрациях фаз композита. 
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Modeling nonlinear dielectric properties of composites 

  based on the asymptotic homogenization method  

 Yu.I. Dimitrienko, E.A. Gubareva, K.M. Zubarev                                                   

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The paper is devoted to the development of a method for calculating the nonlinear dielec-
tric properties of composites with a periodic structure. Methods for predicting of the non-
linear dielectric properties of composites play an important role in the design of dielectric 
materials with specified properties, in particular for heterogeneous ferroelectrics, which 
are widely used to create various devices and electrical devices, for example, to create 
memory storage devices for computers. A quasi-static problem of the distribution of an 
electric charge in an inhomogeneous polarizable medium with a periodic structure and 
nonlinear dielectric properties is considered. To solve this nonlinear problem, the asymp-
totic homogenization method proposed by N.S. Bakhvalov, E. Sanchez-Palencia, B.E. 
Pobedria. As a result, local nonlinear problems of electrostatics on the periodicity cell are 
formulated, an algorithm for calculating effective nonlinear constitutive relations for die-
lectric properties, and an averaged problem for a composite with effective properties are 
proposed. For the case of a composite with a layered structure, the solution of local prob-
lems is obtained, and effective defining relations for the nonlinear dielectric properties of 
the composite are constructed. It is shown that a laminated composite is a transversely 
isotropic nonlinear dielectric material if it is isotropic materials. A numerical example of 
calculating the nonlinear properties of a 2-layer composite based on barium titanate and 
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ferroelectric ceramic varicond VK4 is considered. A model is proposed that describes the 
nonlinear dependence of the dielectric constant of these materials on the vector of the elec-
tric field strength. It is shown that the nonlinear dependence of the dielectric constant ten-
sor of the composite on the strength vector differs significantly for the direction of the field 
in the plane of the layers and in the transverse direction. It is shown that the developed 
technique can serve as a basis for designing nonlinear dielectric composite materials with 
anisotropic properties. 

Keywords: numerical modeling, finite element method, asymptotic averaging method, tex-
tile composites, twill weave, plain weave, unidirectional composites, high temperatures, 
thermal destruction, polymer phase, pyrolytic phase, amorphous phase, crystalline phase, 
elastic characteristics, microstresses 
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