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В статье рассматриваются конечные (геометрически нелинейные) упругие дефор-
мации резиноподобных материалов и конструкций. Такие деформации описыва-
ются математической моделью, разработанной на основе неклассического                 
подхода к решению краевых задач статики. Приводятся формулы по определению 
конечных деформаций упругих резиноподобных тел на основе элементов простран-
ственного и материального градиентов перемещений. Дается сравнение определе-
ний по этим двум подходам. Подтверждается правомочность приведенных выво-
дов на примере одномерного, двумерного и трехмерного преобразований в системе 
MathCad. Рассмотрен пример определения элементов пространственного гради-
ента перемещения. Известно, что статическая краевая задача имеет две поста-
новки. Первая выдвигается при ее формулировании и используется для вывода фун-
даментальных соотношений механики деформируемого тела (теорема Бетти, об-
щее решение в виде формул Сомильяны и др.). Вторая используется при решении 
таких задач. Считается, что задачи обеих постановок имеют одно и то же реше-
ние. Предлагается неклассическое решение краевой задачи статики. Оно строго со-
ответствует общепризнанной постановке. Приведен способ Чезаро представления 
поля перемещений с помощью компонент деформаций. Далее этот способ получает 
развитие, становится возможным выразить поле перемещений и через компо-
ненты напряжений. Решена задача о равновесии прямоугольной пластины из рези-
ноподобного материала. Полученные выражения определяют компоненты дефор-
маций, напряжений и перемещений в любой точке пластины. Во всех этих выраже-
ниях присутствуют только координаты конечной области упругого тела. Здесь 
нет обычного координатного разночтения: в перемещениях и напряжениях одни и 
те же координаты. Данная задача представлена и уравнениями Навье. Доказыва-
ется единственность ее решения. 
 
Ключевые слова: резиноподобные материалы, пластина, конечные деформации, 
напряжения, перемещения, градиент перемещения, пространственные и матери-
альные координаты, краевая задача 
  

Введение. Элементы конструкций из резины и резиноподобных 
материалов широко используются в машиностроении, судостроении, 
в авиационной промышленности, строительстве. 

Резиновые детали могут допускать значительные относительные 
деформации с полным восстановлением геометрической формы и раз-
меров, если нагрузка статическая или имеет медленно изменяющийся 
характер. 

Исследования закономерностей деформирования таких элементов 
важны как с точки зрения создания основ расчета, так и в плане прак-
тических приложений, связанных с деформационными расчётами.  
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Аналитические решения для такого рода задач возможны только для 
отдельных и достаточно простых расчетных схем. 

Несмотря на то, что компьютерные технологии и вычислительные 
программные комплексы обеспечивают широкое распространение 
численных методов в инженерных расчетах, роль и значение аналити-
ческих методов не снижается. Они могут выступать в качестве эталон-
ных решений при тестировании надежности вычислительных ком-
плексов и пакетов прикладных программ. 

Два способа математического описания преобразования. В лю-
бом преобразовании рассматриваются два состояния тела: 

 состояние тела до преобразования, 
 состояние тела после преобразования. 
Координаты точек тела до преобразования, следуя тому, как при-

нято в механике деформируемого тела, обозначим через 321 ,, XXX  (ко-

ординаты Лагранжа). А координаты точек тела после преобразо-            
вания — 321 ,, xxx . 

Есть два вида описания преобразования [5,6,7]: 
В первом виде используются пространственные координаты: 

  1 2 3, , , 1,2,3.i iX X x x x i   (1) 

В развернутой записи приведенные описания можно представить 
в виде вектора, соединяющего точки x , X  на рис. 1: 
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А во втором — материальные координаты: 

  1 2 3, , , 1,2,3.i ix X x x x i   (2) 

В развернутой записи: 
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Приведенные описания можно представить в виде вектора, соеди-
няющего точки x , X  на рис. 1: 

 Xxu  . (3) 

Этот вектор можно описать в пространственных координатах: 
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    1 2 3 1 2 3, , , , ,u x x x x X x x x   (4) 

а также в материальных координатах: 

    1 2 3 1 2 3, , , , .u X X X x X X X X   (5) 

 

Рис. 1. Преобразование векторами iu  области V  в область v 

 
Способ определения деформации в координатах конечного со-

стояния. Здесь функции перемещения выражаются в координатах ко-
нечного состоянии: 

  1 2 3, , .i iu u x x x  (6) 

Дифференциал функции перемещения: 

 j
j

i
i dx

x

u
du




  (7) 

в механике деформируемого тела называется вектором относитель-
ного перемещения. Тензор ije , определяемый как  

 ,i
ij

j

u
e

x





 

называется пространственным градиентом перемещения. 
Дифференциал (7) представим в виде: 
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 (10) 

где ij , ij  — соответственно тензор Коши и тензор вращения. Теперь 

напишем дифференциал в элементах этих тензоров: 

   .i ij ij jdu dx    (11) 

Введем единичный вектор: 

 .i
i

dx
n

dx
  (12) 

Вектор относительного перемещения, отнесенный к длине век-
тора idx : 

     .ji
ij ij ij ij j

dxdx
n

dx dx
        (13) 

Проекцию вектора (13) на направление единичного вектора in  

обозначим  . Таким образом, величина   является относительной 
деформацией удлинения в направлении вектора idx : 

 .i
i ij i j

dx
n n n

dx
    (14) 

Здесь учтено, что 0jiij nn . 

Вектор относительного перемещения, отнесенный к длине век-
тора idx , теперь можно представить в виде суммы трех слагаемых: 

   .i
i ij ij j ij j

dx
n n n

dx
        (15) 

Модуль вектора in , равный  , как уже сказано выше, выражает 

собой величину относительного удлинения в направлении вектора idx . 

Модуль вектора  ij ij jn   характеризует величину относитель-

ного сдвига плоскостей, нормальных к вектору in , и проходящих че-

рез точки ix  и ii dxx  . Пусть   модуль вектора  ij ij jn  : 
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2 .ij ik j kn n      (16) 

Модуль вектора jij n  обозначим  : 

 .ij ik j kn n    (17) 

Способ определения деформации в координатах начального 
состояния. Здесь функции перемещения выражаются в координатах 
начального  состояния: 

  1 2 3, , .i iu x X X X  (18) 

Дифференциал функции перемещения 

 j
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i
i dX
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u
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


  (19) 

в механике деформируемого тела называется вектором относитель-
ного перемещения. 

Тензор ijE , определяемый как  
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называется материальным градиентом перемещения. Дифференциал 
(19) представим в виде: 
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Введем обозначения: 
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где ijG , ij  — соответственно называются тензором Грина и тензором 

вращения. 
Теперь напишем дифференциал в элементах этих тензоров: 

   .i ij ij jdu G dX    (23) 

Введем единичный вектор: 
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 .i
i

dX
N

dX
  (24) 

Вектор относительного перемещения, отнесенный к длине век-
тора idX : 

     .ji
ij ij ij ij j

dXdX
G G N

dX dX
     (25) 

Проекцию вектора (25) на направление единичного вектора iN  

обозначим как  . Таким образом, величина   является относитель-
ной деформацией удлинения в направлении вектора idX : 

 .i
i ij i j

dX
N G N N

dX
    (26) 

Здесь учтено, что 0 jiij NN . 

Вектор относительного перемещения, отнесенный к длине век-
тора idX , теперь можно представить в виде суммы трех слагаемых 

   :i
i ij ij j ij j

du
N G N N

dX
        (27) 

Модуль вектора iN , равный  , как уже было сказано, выра-

жает собой величину относительного удлинения в направлении век-
тора idX . 

Модуль вектора  ij ij jG N   характеризует величину относи-

тельного сдвига плоскостей, нормальных к вектору iN , и проходящих 

через точки iX  и ii dXX  . Пусть    модуль вектора  ij ij jG N  : 

 
2 .ij ik j kG G N N     (28) 

Модуль вектора jij N  обозначим  : 

 .ij ik j kN N     (29) 

Сводка формул по определению деформации на основе эле-
ментов пространственного и материального градиентов переме-
щения. Определение характеристик деформированного состояния по 
элементам пространственного градиента перемещения: 
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Определение характеристик деформированного состояния по эле-
ментам материального градиента перемещения: 
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Cравнение способов определения деформаций по элементам 
пространственного и материального градиентов перемещения. 
Выше изложены существующие два способа определения деформаций 
(30) и (31). Рассмотрим к каким результатам они приводят — совпа-
дают ли они друг с другом или различаются. Для изучения этой про-
блемы составлены программы в системе MathCad, которые сопровож-
даются графикой в системе Matlab. 

Рассмотрим преобразование на рис.1: 

 .i i iX x u   (32) 

Функции перемещения iu  заданы или в виде  1 2 3, ,iu x x x , или в 

виде ),,( 321 XXXui . Пусть эти функции и их производные до второго 

порядка непрерывны. В таком случае, преобразование (32) является 
однозначным. Это преобразование устанавливает однозначное соот-
ветствие между точками области v, описываемой координатами ix , и 

точками области V , описываемой координатами iX . 

Приведенные выше определения деформации в механике дефор-
мируемого тела рассматриваются как идентичные. Но вычисления, 
вместо ожидаемых от этой идентичности равенств: 

 , , ,           (33) 

всегда приводят к неравенствам: 

 , , .           (34) 

Это вынудило считать, что эти меры деформации корректны 
только в области малых величин, как самих перемещений, так и эле-
ментов их градиентов, когда определения дают приблизительные ра-
венства:  

 , , .           (35) 

Однако эти определения должны приводить не к одним и тем же 
величинам, а, наоборот, к различным. В обоих подходах речь идет об 
одном и том же. А именно, о деформациях, которые созданы переме-
щениями iu . Эти деформации следуют определять только в области v, 
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ибо перемещения iu  создадут деформации, надо полагать, лишь тогда, 

когда они переместят тело из области V  в область v. Это простое и 
ясное толкование преобразования (32). Изучение деформаций уравне-
ниями (30) находится в строгом соответствии с таким положением ве-
щей. В этих уравнениях определения проводятся в точках области v. 

Состояние же пространства в области V , ни в какой мере не свя-
зано ни с перемещениями ix , ни с его частными производными. Ничто 

в этом состоянии не изменится от того, произойдут эти перемещения 
или не произойдут. В связи с этим, определения (31) не описывают 
состояние пространства в области V . Эти определения не описывают 
состояние пространства и в области v, так как они вычисляются в точ-
ках области V . Отсюда следует вывод:  

Деформации от перемещений iu  в преобразовании (32) возникают 

в области v, определяемой координатами ix . Эти деформации должны 

определяться уравнениями (30) в точках области v. В этом свете, урав-
нения статической краевой задачи должны составляться в координа-
тах ix  области v: 

  
22

0, .ji
i i

j j j i

uu
f x v

x x x x
  


    

   
 (36) 

Определяемые решением этого уравнения перемещения iu  это те 

перемещения, которые образовали область v, и создали в ней дефор-
мации и напряжения. 

Определение деформаций уравнениями (31) некорректно, некор-
ректно и составление уравнений статической краевой задачи в коор-
динатах iX  области V  в виде: 

  
22

0, .ji
i i

j j j i

uu
f X V

X X X X
  


    

   
 (37) 

Подтвердим правильность вышеприведенных выводов на примере 
одномерного, двумерного и трехмерного преобразований в системе 
MathCad. 

Одномерное преобразование. Рассмотрим одномерное преобра-
зование (рис. 2) 

 ,x X u   

в координатах конечного x  и начального состояния s . 
Одномерное преобразование в координатах конечного состояния: 
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 2

2

1 ,

3 1,

3 2 ,

.

X x

u x x

du
x

dx
du du dX

dx dX dx

 

  

 



 

Одномерное преобразование в координатах начального                 
состояния: 

1 ,

1 ,

1
1,

2

.

x X

u X X

du

dx X
du du dX

dx dX dx

 

  

 



 

 

Рис. 2. Одномерное преобразование 
 

Линия  2 7l x   конечное состояние, а линия  1 36L x   

начальное состояние. Вектором перемещения точки линии L  перено-
сятся в точки линии l . 

Разобьем конечное состояние l равномерно на 10 элементарных 
отрезков и вычислим деформации на их начальных и конечных точках 
в координатах конечного состояния: 

 
du

dx
 –1 –2 –3 –4 –5 

du

dX
 –0,500 –0,667 –0,750 –0,800 –0,833 

 

du

dx
 –6 –7 –8 –9 –10 –11 

du

dX
 –0,857 –0,875 –0,889 –0,900 –0,909 –0,917 

L

l



Математическая модель для оценки конечных деформаций… 

13 

Вычисление деформаций с учетом перемены координат: 

du

dx
 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 

Двумерное преобразование. Рассмотрим двумерное                     
преобразование (рис. 3):  

,x X u   

2

2 2 2 2
1 2 1 1 2

1 2 2 2
1 1 2

2 2, ,
2 1

2 2
2

X

x x X X XX x
x x

X X X

 
                
 

 

2
12 2 2 2

1 2 1 1 1 2

2 1 2 2 2
1 1 2 2

2 2, .
2 1

2 2
2

X
X

x x x X X XX u
x x x

X X X X

  
                  

 

 

 

Рис. 3. Двумерное преобразование 

 
Определение деформации удлинения по уравнениям (30): 

 
0,1

,
0,2

dx
dx n

dx

 
   

 

       3,5 5, 3,12 5, 10,5 19, 10,12 19.            

200

150

100

50
100

50
0

50
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Определение деформации удлинения по уравнениям (31): 

     1 2 1 2, , , , ,
dX

X x u x x dX e x x dx N
dX

      

 
   
   

16,30 0,956, 75,100 0,960,

135,72 0,990, 44,240 0,980.

 

 

     

     
 

Трехмерное преобразование. Рассмотрим трёхмерное преобра-
зование (рис. 4): 

2
1 1 2

2 1 3
2

3 1 2 3

2
1 2

1 3
2

1 2 3

0,6

0, 4

0, 2 0, 2

0,6

0, 4 .

0, 2 0, 2

x X u

x x x

X x x x

x x x x

x x

u x x

x x x

 

 
 

  
   
 
 

  
  

 

 

Рис. 4. Трёхмерное преобразование 

По уравнениям (30):                          

     
     

   

2;2;3 0,868, 2;4;3 1,580, 5;4;3 0,776,

5;2;3 0,431, 2;2;7 2,115, 2;4;7 2,827,

5;4;7 2,024, 5;2;7 1,678.

  

  

 

     

     

   
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10
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5 10
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По уравнениям (31): 

       

   
   
   
   

6,8;4, 4;4 0,644, 21, 2;6, 4;2 0,794,

53;10;0,8 0,803, 17,8;2,8;2,3 0,834,

6,8;7,6;16 0,787, 21,2;9,6;15, 2 0,822,

53;18;12,8 0,845, 17,8;16;14,8 0,864.

 

 

 

 

    

    

    

    

                              

Краевая задача статики. Многое из того, что создается челове-
ком, рассчитывается в виде статической краевой задачи.  

В зависимости от граничных условий различают первую, вторую 
и третью краевые задачи. При их решении прибегают к двум допуще-
ниям: 

1. конечное состояние мало отличается от начального; 
2. силы прикладываются настолько медленно, что любая их вели-

чина соответствует состоянию равновесия. 
Эти допущения необходимы, ибо без них задача в классическом 

подходе математически неопределена и некорректна с точки зрения 
механики.  

Однако, указанные допущения не входят в решаемые уравнения. 
Предлагаемый подход. Статическая краевая задача, изображён-

ная на рис. 5, решается в строгом соответствии с ее общепринятой по-
становкой. 

Обстоятельство, что тело с заданными силами в объеме и на по-
верхности находится в равновесии, является исходным. 

Областью определения уравнений равновесия, совместности де-
формаций и граничных условий служит конечное состояние равнове-
сия.  

Конечное состояние должно считаться заданным, а не искомым. 
Иначе невозможно указать положение сил, распределенных в объеме 
и на поверхности тела. 

Используются пространственные (эйлеровы) координаты и линей-
ный тензор деформаций Коши.  

 
Рис. 5. Иллюстрация уравнений статической краевой задачи. В любой точке 

внутри V  и на S  внешние усилия уравновешены внутренними напряжениями, 
 j  — вектор напряжения на площадке с нормалью jx  

,j j

f

S
j jn

V

P
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Постановка краевой задачи. Тело с заданными силами внутри 
своего объема V  и на его поверхности S  находится в равновесии. 
Нужно найти напряжения и деформации внутри тела.  

Объем тела V  и его поверхность S , разумеется, должны быть за-
даны, в противном случае внешние силы не указываемы. 

Пусть if  и ip  — внешние силы, соответственно, заданные в V  и 

на S . Обозначая через ij  компоненты напряжения, представим по-

становку математически: 

 , 0, ,ji j i ij ji if x V       (38) 

 Vxfff iijjikkijijkkkkij  ,0,,,,,   (39) 

 , ,ji j i in p x S    (40) 

где v  — коэффициент Пуассона. 
Решение краевой задачи. Определение деформаций и переме-

щений. Решением подразумевается функция  ij x , удовлетворяю-

щие уравнениям (38) – (40). 
Из него определяются деформации: 

   1
1 ,ij ij ij ijv v

E
        

где E  — модуль Юнга. 

Перемещения  iu x  определяются по формулам Чезаро [3]: 

      
       

0 0 0

, ,

1
,

i i ij j j

ik j j ki j kj i k

l

u x u x x x x

y x y y dy
E



  

   

   
 

где l  — линия в области ,V  0x  — начальная точка этой линии, 0( )iu x , 
0( )ij x  — постоянные интегрирования. 

Удобнее пользоваться ее преобразованным видом: 

 

      
     
   

0 0 0

, ,

, ,

1
1

1

i i ij j j

ik tt ik j j ki tt j kj tt i

l

ki j kj i k

u x u x x x x

v v x y
E

dy



       

  

   

        

  

  

 0
iu x ,  0

ij x  — произвольные постоянные, соответствуют не                  
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вызывающим деформации перемещениям (параллельному переносу и 
жесткому повороту тела). Исключим из рассмотрения такие переме-
щения:  

 
       

  
, ,

, ,

1
1

1

i ik tt ik j j ki tt j kj tt i

l

ki j kj i k

u x v v x y
E

dy

       

  

        

  


(41) 

Сравниваемое состояние. Как показано на рис. 6, векторы: 

    , , ,i i i i i i i iz x u x x V z x u x x S       (42) 

определяют некоторую область 0V  и ее поверхность 0S .  0 0,V S , оче-

видно, состояние равновесия без внешних сил.  0 0,V S  назовем срав-

ниваемым состоянием статической краевой задачи. 
Определяемое координатами iz  (42) сравниваемое состояние есть 

некое математическое преобразование области  ,V S . Поле )(xui  

определяет относительные изменения координат, компонент деформа-
ции, вращения и напряжения этих состояний.  

 

 

     

     

, ,

, ,

,

,
2

,
2

i i i

i j j i

ij ij

i j j i

ij ij

x z u x

u u
x z

u u
x z

 

 

 


 


 

 

    , , , .ij ij k k i j j ix u u u      (43) 

 

 

Рис. 6. Состояния равновесия 
 

Состояние равновесия без  
внешних сил 

Состояние равновесия  

0S

0V

z

S
ij

f
V

 u x j jn

P

x
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Тут ix ,  ij x ,  ij x ,  ij x  относятся к положению равновесия 

с внешними силами, а iz , )(zij , )(zij  — к положению равновесия 

без внешних сил.  

Поле  iu x  только преобразует  ,V S  в  0 0,V S , следовательно, 

оно определяет только относительные изменения координат, деформа-
ций и напряжений этих сравниваемых состояний. 

Пример решения второй краевой задачи статики. Область 
определения. Зададимся областью определения уравнений статиче-
ской краевой задачи в виде указанной на рис. 7 прямоугольной плиты. 
Начало прямоугольной декартовой системы координат поместим в 
центре левой торцевой грани. 

Под V  будем подразумевать следующую область: 

 1 2 3/ 2 / 2, 0 , / 2 / 2.b x b x L h x h        (44) 

Рассмотрим вторую краевую задачу без массовых сил. 

 

Рис. 7. Прямолинейная плита с усилиями (47) на своей поверхности находится 
в равновесии 

 

 Vxijiijjji   ,0,  (45) 

 Vxiijkkkkij  ,0,,   (46) 

 Sxcxn iijij  ,32  (47) 

где V  определяется выражениями (44). 
Из (47) следует, что на четырех гранях плиты нет внешних сил, 

они приложены на левую и правую торцевые грани, создают изгибаю-
щие моменты, равные соответственно: 

 
/2 /2 3

2
1 1 1 2

/2 /2

,
12

b h

b h

cbh
m c x dx dx

 

    

 
/2 /2 3

2
2 1 1 2

/2 /2

.
12

b h

b h

cbh
m c x dx dx

 

    

Задача (45) — (47) математически полностью определена. Она 
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имеет простой механический смысл — прямоугольная плита с усили-
ями (47) на своей поверхности находится в равновесии. 

Требуется найти во внутренних точках этой плиты напряжения, 
деформации и создавшие их перемещения.  

Решение задачи. Решение задачи (45) – (47): 

 Vxcx ijiij  ,322  (47) 

Функции перемещений можно определить, внося (48) в (41). 
Интегрируя это выражение, находим: 

 
       

      
0 0 2 2 2

1 3 1 1 2 3 2 2 3 2 3 1

20 0 0 0 0
2 2 2 3 1 1 1

( (

2 2 / 2 / , ,

i i i i

i

u x c vx x x x x x x v x x

x x x v x x x x E x V

          

     


 (48) 

где 0
1x  — любая фиксированная точка области V . 

Развернутый вид функций (49): 

 

   

   

     
    

0
3 1 1

1 1

0
3 2 2

2

2 2 2 0 0
3 2 3 1 2 2 2

20 0 0
3 1 1 1

, ;

, ;

2

2 / 2 , .

i

i

cvx x x
u x x V

E

cx x x
u x x V

E

u x c x v x x x x x

v x x x x E x V


  


 

      

   

 

Функции (49) удовлетворяют уравнениям равновесия в форме                
Навье. 

Наконец, из поля перемещений (49) определим компоненты де-
формации и вращения: 

 
  3 1 1 3 3 2 2

, ,
i j i j i j

ij i

cx v
x V

E

     


  
   (49) 

 
  

   

0
1 1 1 3 3 1

0
2 2 2 3 3 2 / , .

ij i j i j

i j i j i

c v x x

x x E x V

    

   

    

   
 (50) 

По полученным выражениям в любой точке находящегося в рав-
новесии в области V  тела можно определить компоненты напряже-
ния, деформации и вращения. Особо отметим то, что во всех выраже-
ниях (48)  (51) присутствуют координаты только области V  (44). 
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Здесь нет обычного координатного разночтения. В  iu x ,  ij x  одни 

и те же координаты. 
Различие между координатами, деформациями, напряжениями 

сравниваемого и заданного состояний, определяемыми уравнениями 
(43), имеет вид:   

    
  3 1 1 3 3 2 2i j i j i j

ij ij

cx v
x z

E

     
 

  
   (51) 

 
      

  

0
1 1 1 3 3 1

0
2 2 2 3 3 2 /

ij ij i j i j

i j i j

x z c v x x

x x E

     

   

     

  
 

   2 2 3.ij i jx cx    

Сравниваемое состояние. Координаты сравниваемого состояния 

iz  связаны с координатами рассматриваемого состояния равновесия 

выражениями: 

 

   
   

    

0 0
1 3 1 1 2 3 2 2

2 2 2 0 0
3 2 3 1 2 2 2

20 0 0
3 1 1 1

2

2 / 2 / ,

i i i i

i

i

z x c vx x x x x x

x v x x x x x

v x x x x E x V

 



     

     

   


 (52) 

В качестве 0x  можно брать координаты любой точки области (44). 
В дальнейшем положим: 

  0 0 0
1 2 30, , 0

2

l
x x x   . 

Случаи нагружения. Рассмотрим три случая 0c  , 30c  , 60.c   
Пусть 0c  , на поверхности S  внешних сил нет. Тело занимает 

область V  (44) и находится в равновесии. Выражения (53) принимают 
вид:  

 
   
   

 

0,

0,

0,

0.

i i

ij ij

ij ij

ij

x z

x z

x z

x

 

 



 

 

 



 (53) 

Сравниваемое состояние совпадает с заданным. Подставляя пер-
вое из уравнений (54) в остальные, приходим к неопределенности: 
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          0, 0, 0.ij ij ij ij ijx x x x x          

Здесь )(xij , )(xij  остаются неопределенными. Такая неопреде-

ленность не противоречит сути краевой задачи, а наоборот, более 
полно отражает то, что может быть в действительности. В равновесии 
может находиться не только тело, которое не имеет никаких остаточ-
ных деформаций, но и тело, которое их имеет. 

Пусть 30c  . Тело занимает ту же область V  (44). Подставим это 
значение в (54) и определим сравниваемое состояние на рис. 8: 

 

Рис. 8. Сравниваемые состояния при 30c   
 

Теперь пусть 60c  . В этом состоянии равновесия тело занимает 
то же положение, что и раньше, т.е. имеет форму прямоугольной 
плиты. Подставим это значение с в (54) и определим сравниваемое со-
стояние на рис. 9: 

 

Рис. 9. Сравниваемые состояния при 60c   
 

Во всех трех случаях тело имеет одну и ту же конфигурацию и 
занимает одно и то же положение в пространстве. Это положение тела 
недвижимо и геометрически неизменяемо при любых величинах 
внешней нагрузки. 

Решения: 

      2 2 3 2 2 30, 30 , 60 , ,ij ij i j ij i j ix x x x x x V           

соответствующие трем рассмотренным выше случаям, удовлетворяют 
уравнениям задачи (45)—(47) в одном и том же положении тела, а 
именно, в его прямолинейном очертании. 
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О том, что граничное условие (47) удовлетворяется на поверхно-
сти соответствующих этим решениям сравниваемых состояний на рис. 
8 и рис. 9, говорить не приходится.  

Внешние силы являются атрибутами декларируемого уравнени-
ями (45)(47) равновесия и, в связи с этим, они уже никак не могут 
рассматриваться в роли нарушителей этого равновесия.  

Условие (47) ничто иное, как условие равновесия точек поверхно-
сти тела. Усилия, действующие снаружи поверхности равны усилиям 

jijn , действующим изнутри. 

Единственность решения. Данную задачу представим уравнени-
ями Навье: 

  , , ,i jj j ji iu u x V      (55) 

Граничные условия для этих уравнений напишем в трех видах: 
1. Заданы перемещения на поверхности S , которые определя-

ются функцией: 

 

   
   

    

0 0
1 3 1 1 2 3 2 2

2 2 2 0 0
3 2 3 1 2 2 2

20 0 0
3 1 1 1

( )

2

2 / 2 / , .

i i i

i

i

u x c vx x x x x x

x v x x x x x

v x x x x E x V

 



     

     

   


 

при поочередной подстановке в нее значений координат 

 1 1 2 2 3 3, , 0, 0, , .
2 2 2 2

b b h h
x x x x x x         (56) 

2. Заданы внешние силы на поверхности S : 

 2 3 , .ij j i in cx x S    (57) 

3. Заданы на четырех гранях перемещения, которые определя-
ются функцией: 

 

   
   

    

0 0
1 3 1 1 2 3 2 2

2 2 2 0 0
3 2 3 1 2 2 2

20 0 0
3 1 1 1

( )

2

2 / 2 / , .

i i i

i

i

u x c vx x x x x x

x v x x x x x

v x x x x E x V

 



     

     

   


 

в которую поочередно надо подставить следующие значения                        
координат ,2/,2/,2/,2/ 2211 hxhxbxbx   а на остальных двух 
гранях:  
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    1 3 2 3 1 3 2 3,0, , , .ij i ij ix x cx x x cx       (58) 

Статическая краевая задача имеет единственное решение. Реше-
ние задач (55), (56); (55), (57); (55), (58): 

 

   
   

    

0 0
1 3 1 1 2 3 2 2

2 2 2 0 0
3 2 3 1 2 2 2

20 0 0
3 1 1 1

( )

2

2 / 2 / , .

i i i

i

i

u x c vx x x x x x

x v x x x x x

v x x x x E x V

 



     

     

   


 (54) 

то же самое, что и задачи (45)—(47). 
Это легко показать. Из (59) находим: 

 

  

3
,

3 2 2 1 1 3 3

, ,

1 2
,

2
.

k k

i j i j i j

i j j i

c v x
u

E

cx v
u u

E

     




 
 

 

Подставим эти величины в выражение для )(xij : 

      3 2 2 1 1 3 3

, , , .
1

i j ij i j i j

ij ij k k i j j i

cx v
x u u u

v

      
  

  
   


 

Далее, учитывая равенство 331122 jijiijji   , находим: 

   2 2 3i j i jx cx    

Механический смысл задач (45) – (47); (55),(56); (55),(57); (55),(58) 
один и тот же — плита в области V  (44) находится в состоянии равно-
весия. 
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Mathematical model for finding finite                                 
deformations of rubber - like materials 

© T.B. Duishenaliev1, I.V. Merkuryev1, A.S. Duishembiev2 
1NRU "MPEI", Moscow, 111250, Russia 

2KSTU named after I. Razzakov, Bishkek, 720044, Kyrgyzstan 
 

The article considers finite (geometrically nonlinear) elastic deformations of rubber-like 
materials and structures. Such deformations are described by a mathematical model de-
veloped on the basis of a non-classical approach to solving boundary-value problems of 
statics. Formulas are given for determining the final deformations of elastic rubber-like 
bodies based on the elements of spatial and material displacement gradients. Comparison 
of definitions for these two approaches is given. The validity of the above conclusions is 
confirmed by the example of one-dimensional, two-dimensional and three-dimensional 
transformations in the MathCad system. An example of determining the elements of the 
spatial displacement gradient is considered. It is known that a static boundary value prob-
lem has two formulations. The first one is put forward during its formulation and is used 
to derive the fundamental relations of the mechanics of a deformable body (Betty's theo-
rem, general solution in the form of Somiliani formulas, etc.). The second is used in solving 
such problems. It is believed that the problems of both statements have the same solution. 
A non-classical solution of the boundary value problem of statics is proposed. It strictly 
corresponds to the generally accepted statement. The Chezaro method of representing the  
displacement field using the deformation components is given. Further, this method is de-
veloped, it becomes possible to express the field of displacements also through the stress 
components. The problem of equilibrium of a rectangular plate of rubber-like material is 



Математическая модель для оценки конечных деформаций… 

25 

solved. The expressions obtained determine the components of deformations, stresses, and 
displacements at any point of the plate. In all these expressions, only the coordinates of the 
finite region of the elastic body are present. There is no usual coordinate misunderstand-
ing: in displacements and stresses are the same coordinates. This problem is also repre-
sented by the Navie equations. The uniqueness of its solution is proved. 

 
Keywords: rubber-like materials, plate, final deformations, stresses, displacements, dis-
placement gradient, spatial and material coordinates, boundary value problem 
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