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Численное моделирование закритического нелинейного 

деформирования осесимметричных мембран 

© С.A. Подкопаев 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 
Рассмотрены теоретические основы нелинейного деформирования тонких                   

осесимметричных оболочек. Представлены эксплуатационные характеристики 

мембран в различных коммутационных устройствах, клапанах и датчиков давле-

ния. Рассмотрены типы нелинейного поведения закритического поведения               

мембран. Представлена математическая модель для описания процесса нелиней-

ного деформирования осесимметричных оболочек, метод дискретного продолже-

ния по параметру и прием «смены подпространства управляющих параметров». 

На примере шарнирно-опертой сферической оболочки выполнено исследование            

закритического поведения. Выбрана   рациональная математическая модель для 

описания нелинейного деформирования хлопающих симметричных оболочек.   Раз-

работан   и реализован в виде авторской программы численный алгоритм исследо-

вания процессов нелинейного деформирования многопараметрических систем. 

 
Ключевые слова: нелинейное деформирование, тонкостенная осесимметричная 

оболочка, мембрана, закритическое поведение, дискретное переключение, продол-

жение по параметру, смена подпространства параметров 

 

Введение. Разнообразные элементы конструкций и технических 

устройств, выполненные в формы осесимметричных оболочек (мем-

бран), широко применяются и используют в различных отраслях 

промышленности. В настоящее время, в связи цифровой промыш-

ленной революцией (Индустрия 4.0), особенно массовое распростра-

нение получили различные коммутационные устройства, предохра-

нители и клапаны, применяемые в промышленном интернете вещей 

[2, 6, 11, 12].  Под мембраной (рис. 1а) будем принимать тонкостен-

ную осесимметричную оболочку, которая, под действием внешней 

нагрузки может скачкообразно менять свой прогиб. Данный способ 

потери устойчивости, не сопровождающийся разрушением оболочки, 

будем называть прощелкиванием [14, 15, 16]. 

Эксплуатационные характеристики мембран, изготовленные 

в виде оболочек. Мембраны в форме оболочке находит применение 

в различных коммутационных устройствах (рис. 2а), клапанах, сиг-

нализаторах и датчиках давления (рис. 2б).  Осесимметричная обо-

лочка в виде мембраны также применяется в конструкции топливных 

баков авиастроении и кораблестроении в качестве вытеснительной 

мембраны (рис. 2в). 

Главным эксплуатационным элементом мембраны является 

упругая характеристика, отражающая зависимость между перемеще-
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нием контрольной точки мембраны и изменением внешней нагрузки 

(рис. 1б) [13, 17]. 

Показанные на рис. 1б участки 

графика ,AB CD  устойчивые участ-

ки упругой характеристики мем-

браны. Под воздействием внешней 

нагрузки при достижении первой 

экстремальной точки (экстремума) 

(точка B , рис. 1б), соответствую-

щей величине критического давле-

ния
1кpp , мембрана, минуя неустой-

чивый участок графика BC , скач-

кообразно меняет прогиб и процесс 

деформирования продолжиться по 

участку CD  упругой характеристи-

ки. При уменьшении (снятии) 

внешней нагрузки с оболочки будет 

происходить обратное скачкообраз-

ное изменение прогиба, соответ-

ствующее второму критическому 

давлению 
2кpp . Следует отметить, 

что после первоначальной нагрузки 

(первый скачок) напряжения в       

мембране будут оставаться упругими. 

 

 

 
 

а б в 
 

Рис. 2. Применение мембран в форме оболочек 

а — коммутационное устройство (кнопка); б — клапан (1 — мембрана; 2 — корпус);                 

в —топливный бак (В — топливо; Г — газ; М — вытесняющая мембрана) 

 

Следует отметить, что в результате геометрических несовер-

шенств и неточного осесимметричного нагружения оболочка при 

эксплуатации будет прощелкивать при значениях внешнего давления, 

 
а 

 

 

Рис. 1. Мембрана 
а — пример мембраны; б — вид упругой 

характеристики мембраны 
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отличных от 
1кpp  и 

2кpp . Давление, при котором оболочка будет 

прощелкивать, будем обозначать как xлp . Значение давления xлp  ле-

жит в интервале между верхним 
1кpp  и нижним 

2кpp  критическими 

давлениями.  

Типы исследования закритического поведения мембран. 

Можно выделить два основных подхода к исследованию закритиче-

ского поведения нелинейных механических систем. 

Первый подход – классический. Он заключается в нахождении 

критических значений величины внешней нагрузки, при которых су-

ществуют смежные формы равновесия конструкции [1, 5, 9]. 

Второй подход заключается в непосредственном построении са-

мой поверхности равновесных состояний в пространстве параметров 

системы. Достоинством данного подхода является возможность де-

тального исследования закритического поведения оболочки, которое 

зачастую и характеризует эксплуатационные свойства упругого эле-

мента [3, 4, 6, 7, 23, 24, 25].  

В статье авторами предлагается и используется многопараметри-

ческий подход к исследованию закритического нелинейного процес-

са деформирования прохлопывающих оболочек (мембран). 

Предлагаемый подход использует идею, при которой происходит 

процесс «погружения» конкретной задачи в многопараметрическое 

семейство подобных задач. 

Такой подход является удобным инструментом для проектирова-

ния и конструирования технических конструкций, позволяющий по-

лучить не одно частное решение, а решение сразу целого семейства 

задач прохлопывающих мембран, в зависимости от внешних пара-

метров системы. 

 Для построения поверхности равновесных состояний мембраны 

был использован дискретный метод продолжения по параметру од-

новременно с приемом «смены подпространства управляющих пара-

метров». Иначе говоря, сложную многопараметрическую задачу 

можно рассматривать, как множество однопараметрических задач, 

каждая из которых имеет свой дискретно изменяющийся параметр. 

Для перехода между однопараметрическими задачами был использо-

ван прием смены подпространства управляющих параметров [6, 7, 

10, 18, 19]. 

Задача исследования закритического поведения оболочки факти-

чески сводится к анализу поверхности равновесных состояний. Для 

некоторых значений параметров системы может наблюдаться много-

значность решений, наличие особых точек и изолированных реше-

ний. Отличительная особенность данного подхода заключается в том, 

что вместо решения бифуркационной задачи, предлагается численно 
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исследовать   графики перестроек решения при переходе через осо-

бую точку [4, 6, 7, 21, 22]. 

Для построения графика перестроек и обхода окрестностей               

бифуркационных точек применяется прием «смены подпространства 

внешних параметров».  

Использование метода конечных элементов (МКЭ) при исследо-

вании закритического поведения оболочек связано с рядом трудно-

стей, таких как с отсутствием возможности движения по параметрам 

геометрии, по толщине или по радиусу кривизны. Иначе говоря, ва-

рьирование любыми геометрическими параметрами конструкции по-

влечет за собой многократное перестроение конечно-элементной сет-

ки, что в свою очередь связано со значительными требуемыми вы-

числительными мощностями. 

В частности, МКЭ не позволяет отыскать изолированные реше-

ния на кривой равновесных состояний, а также смоделировать про-

цесс зарождения на упругой характеристике так называемых «пе-

тель» [18, 20]. 

Математическая модель для описания процесса нелинейного 

деформирования осесимметричных оболочек. В статье были ис-

пользованы соотношения теории тонких осесимметричных оболочек, 

модернизированные для последующего применения численного ал-

горитма. При описании геометрии мембраны (оболочки вращения) в 

качестве отсчетной поверхности была использована срединная по-

верхность оболочки (рис. 3а) Точка 0B  на срединной поверхности 

характеризуется двумя координатами: углом  , определяющим по-

ложение меридионального сечения, и дуговой координатой 0S , 

направленной вдоль меридиана. При осесимметричной деформации 

все меридиональные сечения оболочки равноправны и, следователь-

но, существенной является только координата 0S . 

Геометрия меридионального сечения мембраны (осесимметрич-

ной оболочки) (рис. 3б) в исходном недеформированном состоянии 

была задана в параметрическом виде: 

 0 0 0 0 0 0( ), ( )X X S Y Y S  ,  (1) 

где 0S  — независимая координата, которая отсчитывается от предва-

рительно  зафиксированной  точки  меридиана 0A  до текущей точки  

0B  меридиана; ,X Y  — декартовая система координат, в которой ось 

X  направлена по радиусу оболочки, а ось Y  совпадает с осью вра-

щения оболочки; 0 0,X Y  — декартовы координаты текущей точки 

меридиана до деформирования. 
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Обозначим текущий угол наклона касательной к меридиану в не-

деформированном состоянии как 0 . 

Запишем геометрические соотношения: 

 0 0
0 0

0 0

cos , sin
dX dY

dS dS
   . (2) 

 

 
 

а б 

Рис. 3. К выводу основных соотношений осесимметричной оболочки 

а — срединная поверхность оболочки; б — геометрия меридионального 

 сечения мембраны (осесимметричной оболочки) 

 

Параметры, относящиеся к недеформированному состоянию, бу-

дут обозначаться с использованием нижнего индекса "0".    

После деформации точка 0B , принадлежащая срединной поверх-

ности оболочки, переместится в новое пространственное положение 

B , характеризующееся координатами ,X Y  и S , соответственно 

(рис. 3б). Тогда геометрические соотношения для деформированного 

состояния запишутся в виде: 

 cos , sin
dX dY

dS dS
   . (3) 

Перемещения по оси X  – u  и перемещения по оси Y  – v  точки 

B  и угол поворота нормали   определяются  следующими соотно-

шениями: 

 0 0 0, ,u X X v Y Y         . (4) 

Для обозначения величин, соответствующих меридиональному и 

окружному направлениям, используется нижний индекс «1» и «2» 

соответственно. 
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Выражения для главных радиусов кривизны в исходном и де-

формированном состояниях оболочки имеют вид: 

 0 0

10 0 1 20 0 2

sin1 1 1 1 sin
; ; ;

d d

dS dS X X

  

   
    . (5) 

Полные изменения главных кривизн обозначим следующим об-

разом: 

 0 0
1 2

0 0

sinsin
;

dd

dS dS X X

  
     . (6) 

Полное изменение кривизны в меридиональном направлении 

складывается из изменения кривизн вследствие поворота нормали 

(изгиба) и удлинения меридиана: 

compl bend geom    . 

Тогда: 

0 0 0 0

0 0

bend compl geom

d d d dd d

dS dS dS dS dS dS

    
  

   
          

   
. (7) 

Введем обозначение: 

 0
10

dd

dS dS


   . (8) 

Аналогичным образом изменение кривизны в окружном направ-

лении: 

 0
20

sinsin

X X


   . (9) 

Линейная деформация элемента срединной поверхности в мери-

диональном направлении для текущего состояния имеет вид: 

 0
10

0

dS dS

dS



 . (10) 

Линейная деформация элемента срединной поверхности в 

окружном направлении для текущего состояния имеет вид: 

 
 0 0

20

0 0

X u X u

X X

 




   
 


. (11) 

Преобразуем выражение (8) к следующему виду: 
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 0
10

10 0 0

1

(1 )

dd

dS dS






 
   

  
. (12) 

Используя соотношения (1–4), (10), (12), получим следующие 

геометрические соотношения уравнений осесимметричной тонко-

стенной оболочки: 

 

10 0

0

10 0

0

0
10 10

0 0

(1 ) cos cos ;

(1 ) sin sin ;

(1 ) .

du

dS

dv

dS

dd

dS dS

  

  


 


   




   



   


 (13) 

Напряжено-деформированное состояние осесимметричной 

оболочки. Эквидистантная поверхность – поверхность, равноуда-

ленная от срединной поверхности на расстоянии 0 . Расстояние 0  

отсчитывается по направлению внешней нормали к недеформиро-

ванной срединной поверхности. Причем нормальная координата 0  

текущей материальной точки изменяется в следующих пределах: 

 0 0( ) ( ),
2 2

h h
S S    (14) 

где 0( )h S  — толщина оболочки, в общем случае зависящая от дуго-

вой координаты 0S . 

С учетом предположения о тонкостенности оболочки: 

    0 10 20max ( ) min , .h S    (15) 

Примем кинематическую гипотезу Киргофа-Лява, в соответствии 

с которой материальный отрезок нормальный к срединной поверхно-

сти оболочки до деформации и после деформации остается нормаль-

ным к срединной поверхности деформированной оболочки. При этом 

длина этого отрезка не изменяется 0  .  

Тогда для линейных деформаций произвольного элемента в ма-

лой окрестности точки с координатами 0S  и 0  справедливы следу-

ющие соотношения: 

 
1 0 0 10 0 0 10 0

2 0 0 20 0 0 20 0

( , ) ( ) ( ),

( , ) ( ) ( ).

S S S

S S S





    

    

  

  
 (16) 
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Следствием выражений (16) является линейное распределение 

деформаций по толщине оболочки, и то, что деформация эквидистан-

той поверхности будет полностью определена, если будут известны 

мембранные и изгибные деформации срединной поверхности. 

Примем статическую гипотезу Киргофа-Лява, согласно которой 

можно пренебречь нормальными напряжениями 3 , действующими 

на площадках параллельных срединной поверхности оболочки.  

В соответствии с принятой гипотезой, оболочка испытывает 

плоское напряженное состояние. Запишем закон Гука для плоского 

напряженного состояния: 

 1 1 22
( ).

1

E
    


  


 (17) 

Внутренние силы, возникающие в сечениях оболочки, приведем 

к ее срединной поверхности (рис. 4): 

 

2 2
1 1 1 1

2 2

2 2
2 2 2 2

2 2

; ;

; .

h h

h h

h h

h h

N d M d

N d M d

    

    

 

 

  

  

 

 

 (18) 

При интегрировании в формулах (18), в силу тонкостенности 

оболочки, пренебрегаются величины порядка 
i




 по сравнению с 

единицей. Последовательно подставляя в выражение (18) соотноше-

ния (16–17), приходим к следующим выражениям для силовых фак-

торов: 

 
1 1 10 2 20 1 3 10 4 20

2 1 20 2 10 2 3 20 4 10

; ;

; .

N С С M С С

N С С M С С

   

   

       

       
 (19) 

 

Рис. 4. Силовые факторы, действующие  

в срединной поверхности элемента оболочки  
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Постоянные коэффициенты определяются следующим образом: 

 

   

1 22 2

3 3

3 42 2

; ;
1 1

; .
12 1 12 1

E Eh
C C

Eh Eh
C C



 



 

 
 

 
 

 (20) 

Введем следующие обозначения: 

 
 

3

2 2
; .

1 12 1

Eh Eh
B D

 
 

 
 (21) 

где B  — мембранная жесткость оболочки; D  — цилиндрическая 

жесткость оболочки. 

Вывод уравнений равновесия сил и моментов. Меридиональ-

ная 1N  и  поперечная 1Q  — силы, связанные с горизонтальной U  и   

вертикальной V  составляющими внутреннего усилия  при помощи 

матрицы поворота, зависящей от угла   (рис. 5). 

 
1

1

cos sin

sin cos

N U

Q V

 

 

     
    

    
 (22) 

 

Рис. 5. Силы, действующие на элемент срединной поверхности оболочки 

 (к выводу уравнений равновесия осесимметричной оболочки) 

 

Запишем уравнение равновесия сил элемента оболочки. Уравне-

ния равновесия запишем в глобальной системе координат ,X Y . Для 

этого спроектируем все силы, действующие на элемент срединной 

поверхности оболочки, на направления X  и Y  (рис. 5). 
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2

( ) 0;

( ) 2 0.
2

v

u

d X V d q X d dS

d
d X U d N dS q X d dS

 


 

      



        


 (23) 

После преобразования (23) получаем следующие уравнения: 

 

10

0

2
10

0

( )
(1 ) ;

( )
(1 ) .

v

u

d X V
q X

dS

Nd X U
X q

dS X






   




          

 (24) 

Запишем уравнение равновесия моментов всех внешних и внут-

ренних сил, приложенных к элементу оболочки, относительно оси l . 

Для этого векторы моментов необходимо спроектировать на направ-

ление l  (рис. 6б). 

 1 2 1( ) 2 0.
2

d
d M X d M dS Q X d dS


            (25) 

  
а б 

Рис. 6. Моменты, приложенные к элементу оболочки, относительно оси l  

 (к выводу уравнений равновесия момента 

 

Рассматривая рис. 6а, выразим приращение угла d  следующим 

образом: 

 cos .d d     (26) 

Учитывая соотношения (10) и (22), преобразуем уравнение (25) к 

следующему виду: 

 1
10 2

0

( ) cos
(1 ) sin cos 0.

d M X
X M U V

dS X


  

  
         

 
 (27) 
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Принимая во внимание соотношения (3–4), преобразуем уравне-

ния (24) и (27) к следующему виду: 

 

 

 

   

10

0 0

2
10

0 0 0

1
10 1 2

0 0

( ) cos
1 ;

( ) cos
1 ;

( ) cos
1 sin cos ,

v

u

d V
V q

dS X u

Nd U
U q

dS X u X u

d M
M M U V

dS X u








  

  
     

 


 
      

  


 
          
  

 (28) 

где uq  и vq  — интенсивности распределенной нагрузки. 

 
cos sin ;

sin cos .

v n t

u n t

q q q

q q q

 

 

 

  
 (29) 

Двухточечная краевая задача для системы нелинейных диф-

ференциальных уравнений шестого порядка. Соотношения (13), 

(28) образуют основную систему нелинейных дифференциальных 

уравнений. 

Неизвестные, производные которых входят в уравнения, будем 

называть основными неизвестными. Тогда вектор основных неиз-

вестных в текущем сечения оболочки запишется в следующем виде: 

    1, , , , , .
T T

X u v U V M  (30) 

Все остальные неизвестные будем называть вспомогательными. 

Для решения основной системы вспомогательные неизвестные необ-

ходимо выразить через основные неизвестные. 

Используя соотношения (19), (20), получаем следующие форму-

лы для нахождения вспомогательных величин: 

 

 

 

10

0

0 01
10

0 0 0

2

0

3
0 0

2 1

0 0 0

1
cos sin ;

sinsin
;

cos sin ;

sinsin
.

12

u
U V

B X

X uM

D X X u X

u
N U V Eh

X

X uEh
M M

X X u X

   


 

  





  


   

     
  


   



  
       

 (31) 
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Дополняя систему (13), (28) соответствующими краевыми    

условиями сводим проблему исследования потери устойчивости 

мембраны к двухточечной краевой задаче для системы нелинейных 

дифференциальных уравнений шестого порядка в обыкновенных 

производных, которую представим в виде: 

 

 

 

 

0

0

0

1

, , , ;

, 0;

, 0,

dX
F S Z X Q

dS

G X Q

G X Q













 (32) 

где Q  — векторный параметр внешней нагрузки; Z  — вектор вспо-

могательных неизвестных, не входящих под знак производной. 

Переход от многопараметрической задачи к множеству одно-

параметрических задач. Метод дискретного продолжения по па-

раметру. Для исследования сложных многопараметрических процес-

сов деформирования семейство нелинейных краевых задач в обыкно-

венных производных было сведено к многопараметрическому семей-

ству систем нелинейных уравнений вида: 

     1 2, 0.F X X   (33) 

Система (33) порядка m  зависит от вектора «внутренних»  пара-

метров  1X  размерностью 1m  и вектора «внешних» параметров 

 2X  размерностью 1n . В состав вектора  1X  входят параметры, 

характеризующие состояние рассматриваемой системы, прежде все-

го, это обобщенные перемещения и обобщенные внутренние силовые 

факторы. Внешние параметры или по-другому параметры «управле-

ния», входящие в состав вектора  2X  являются переменными, и, как 

правило, связаны с геометрическими размерами конструкции, свой-

ствами материала, условиями закрепления, внешней нагрузкой и т.п.  

Совокупность всех решений (33) можно рассматривать как неко-

торую поверхность (гиперповерхность) равновесных состояний, по-

строенную в евклидовом пространстве размерности 
m nR 

. Построе-

ние такой гиперповерхности является очень трудоемким процессом, 

поэтому, зачастую решение сложной многопараметрической задачи 

сводят к решению семейства однопараметрических задач, каждая из 

которых имеет свой, дискретно изменяющийся параметр. Такой под-

ход позволяет построить сечения поверхности равновесных состоя-

ний, что значительно упрощает исследуемую задачу и дает возмож-
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ность проанализировать влияние «внешних» параметров на характер 

деформирования рассматриваемого элемента. В этом случае вектор 

«внешних» параметров  2X  определяется через один независимый 

скалярный параметр q . 

  2 .X q  (34) 

Для исследования задачи потери устойчивости хлопающей мем-

браны, нагруженной внешним давлением, применялся метод про-

должения по параметру, основная идея которого, заключается в том, 

что любую сложную многопараметрическую задачу можно рассмат-

ривать, как множество однопараметрических задач, каждая из кото-

рых имеет свой, дискретно изменяющийся параметр при фиксиро-

ванных значениях всех остальных внешних параметрах. 

В качестве варьируемого параметра q  может быть взята внешняя 

нагрузка, геометрическая характеристика системы, свойство матери-

ала, условия закрепления и т.п. 

Для дальнейшей алгоритмизации удобно считать параметр q  

равноправным со всеми внутренними параметрами системы, то есть с 

компонентами вектора состояния  X  системы (32).  

Введем расширенный вектор основных неизвестных следующим 

образом: 

     _ , .X extr X q  (35) 

Тогда система (33) для однопараметрического процесса запишет-

ся следующим образом: 

   _ 0.r X extr   (36) 

Двухточечная процедура по схеме «предиктор-корректор». 

При реализации процедуры дискретного продолжения по параметру 

использовалась двухэтапная процедура по схеме «предиктор-

корректор». На этапе «предиктор» на основании предыстории при 

помощи экстраполяции решения осуществляется предсказание 

начального вектора     ,k k k
extrX X q  для нового значения пара-

метра kq . 

Верхний индекс k  соответствует номеру итерации по параметру. 

Для возможности проведения экстраполяции необходимо сохранять 

информацию о ранее полученных решениях.  

Однако исключением является случай начала итерационного 

процесса. В такой ситуации необходим так называемый этап «раз-

гонки». На первом шаге по параметру экстраполяция начального 



Численное моделирование закритического нелинейного деформирования… 

77 

приближения не проводится, а в качестве начального приближения, 

используется некоторое «опорное» решение. Применительно к рас-

сматриваемой задаче деформирования осесимметричной оболочки 

вращения, в качестве «опорного» решения используется тривиальное 

решение, соответствующее нулевой внешней нагрузке. Также в каче-

стве «опорного» решения можно использовать решение задачи в ли-

нейной постановке, либо воспользоваться решением метода конеч-

ных элементов.  

На втором шаге применяется линейная экстраполяция по двум 

точкам. И только потом, получив решение в трех точках равновесной 

кривой, процедура выводится на стандартный режим квадратичной 

экстраполяции. 

На этапе «корректор» происходит уточнение начального при-

ближения  0X  с помощью итерационного метода. В качестве ите-

рационного метода используется метод Ньютона и его модификации. 

Модифицированный метод Ньютона-Рафсона. На этапе «кор-

ректор» итерационным методом Ньютона решается нелинейная двух-

точечная краевая задача, посредством многократного решения задачи 

Коши, и итерационного уточнения начального вектора для системы 

(36). 

Получив на этапе «предиктор» начальное приближение вектора 

основных неизвестных  0
0

k

s
X


 соответствующего текущей величине 

параметра kq , подставляем его в систему нелинейных дифференци-

альных уравнений (32). Решив задачу Коши с приближенным векто-

ром основных неизвестных, получаем некоторую невязку решения 

(36). Так как все дальнейшие выкладки в данном разделе  соответ-

ствуют одному шагу по параметру k , обозначим вектор основных 

неизвестных  0
0

k

s
X


 как  nX , где верхний индекс будет отвечать 

номеру итерации в методе Ньютона.  

При 0n   вектор  nX  имеет следующий вид: 

  
 

 

1

2

3
0

0
40

0
5

0
6

,

x

x

xx
X

xx

x

x

 
 
 
     

    
    

 
 
  

 (37) 
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где 1 2 3, ,x x x  — известные компоненты вектора  0X ; 0 0 0
4 5 6, ,x x x  — 

компоненты, найденные на этапе «предиктор», требующие уточне-

ния. 

После подстановки (37) в систему (32) получим: 

 
 

    
0

0 0, , ,
d X

F s X Q r
ds

   (38) 

где  0r  — вектор невязки нулевого приближения или номинальная 

невязка. 

На рис. 7 приведена геометрическая интерпретация модифици-

рованного метода Ньютона-Рафсона (метода одной касательной).  

В точке начала интегриро-

вания задается начальное при-

ближение вектора основных 

неизвестных  0X , которому 

соответствует вектор невязки 

 0r . Затем поочередно каждой 

неизвестной компонент 

( 4,5,6)ix i    вектора  0X  за-

дается малое приращение (воз-

мущение) ix , тем самым по-

лучаем три новых «возмущен-

ных» вектора решения  0X

. Проведем через точку C  касательную 

к графику исследуемой функции. Точка пересечения касательной с 

осью абсцисс берется в качестве следующего приближения  1X . 

Для нового приближения  1X  все действия аналогичные: определя-

ется новая невязка решения  1r , ей соответствует новая точка на 

кривой, в этой точке проводится касательная, точка пересечения ка-

сательной с осью абсцисс определяет следующее приближение. Ите-

рационный процесс считается сошедшимся, если конечная невязка 

будет меньше некоторого заранее выбранного значения  . 

Определим тангенс угла наклона касательной:  

 tan ,i

j

r

x






 (39) 

 

Рис. 7. Геометрическая интерпретация 

метода Ньютона (метода одной                   

касательной) 



 1r

 0r


 0r

 r

 r С 

ix

 1X  0X
  0X

 X

 X
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где ir  — приращение невязки i -ого неизвестного компонента             

вектора  0X ; jx  — приращение j -ого неизвестного компонента            

вектора  0X . 

Получим выражение для нового приближения  1X  (рис. 7): 

      1 0 ;X X X


    (40) 

 
 
 

 
 0 0

tan
tan

r r
X

X




 

   


. (41) 

Подставив (41) в выражение (40) и обобщив для многомерного 

случая, получим основное рекуррентное соотношение метода Нью-

тона-Рафсона: 

      
1

1 0 ,n n nX X J r


   
 

 (42) 

где  1nX   — вектор решения  1n  -ой итерации;  nX  — вектор 

решения n -ой итерации;  nr  — вектор невязки n -ой итерации;            

0J 
 

 — матрица Якоби, вычисленная в нулевом приближении. 

При численном счете аналогом матрицы Якоби является матрица 

Гато, которая имеет следующий вид: 

 

1 1 1

1 2 3

0 2 2 2

1 2 2

3 3 3

1 2 3

.

r r r

x x x

r r r
J

x x x

r r r

x x x

   
 
   
   

         
   
 
   

 (43) 

Компоненты матрицы Гато вычисляются следующим образом: 

      0 0 .i i j ir r X x r X     (44) 

Отличие модифицированного метода Ньютона-Рафсона (метод 

одной касательной) от классического состоит в том, чтобы вычислять 

матрицу Якоби лишь один раз, в точке начального приближения, а 

затем использовать это значение на каждой последующей итерации. 
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Прием «смены подпространства управляющих параметров». 

Для обхода точек бифуркации или точек ветвления, возникающих 

на кривой равновесных состояний, используется прием численного 

счета, получивший название «прием смены пространства управляю-

щих параметров» [4, 6, 7, 11, 18]. 

Основная идея приема заключается в том, что при подходе к 

окрестности предполагаемой точки бифуркации следует перейти к 

новой системе, для которой на кривой равновесных состояний уже не 

будет никаких бифуркационных точек или точек ветвления (наличие 

предельных точек допускается). Фактически переход к новой системе 

можно интерпретировать как решение задачи с немного измененной 

конфигурацией, которая принадлежит целому семейству подобных 

задач. После прохождения критического участка (окрестности би-

фуркационной точки) можно совершить обратный переход и про-

должить решение задачи с исходной конфигурацией. 

Для возможности реализации описанной процедуры, необходимо 

иметь возможность варьировать как минимум двумя параметрами 

управления. Например, параметрами внешней нагрузки и каким-

нибудь геометрическим параметром оболочки.  

Тогда однопараметрическая система должна быть записана сле-

дующим образом: 

      1 1 2, , 0,extrr X q q r X   (45) 

где     1 1 2, ,extrX X q q  — расширенный вектор;  1X  — вектор 

основных неизвестных, имеет размерность 1m ; 1 2,q q  — два пара-

метра управления. 

Система (44) имеет размерность 2m . 

Исследование закритического поведения шарнирно-опертой 

сферической оболочки. Рассмотрим многопараметрический подход 

и прием «смены подпространства управляющих параметров» на при-

мере исследования закритического поведения сферической оболочки, 

шарнирно опертой по внешнему контуру и нагруженной внешним 

давлением (рис. 8). В таблице 1 приведены исходные данные. 

 

Рис. 8 Схема сферической оболочки, шарнирно опертой по внешнему контуру 
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Таблица 1 

Исходные данные 

Радиус опорной поверхности 2,8a  мм 

Толщина оболочки 0,05h  мм 

Исходный радиус кривизны меридиана 1 32R  мм 

Модуль упругости 413 10E   МПа 

Коэффициент Пуассона 0,3   

Способ закрепления края оболочки Шарнир 

 

Многопараметрический подход использует стратегию последо-

вательного исследования однопараметрических семейств размерно-

сти 
1mR 
, каждая из которых принадлежит многопараметрическому 

семейству задач размерности 
m nR 

. Каждой однопараметрической 

задаче соответствует свой дискретно изменяющийся внешний пара-

метр, при этом остальные  1n   управляющие (внешние) параметры 

имеют фиксированные значения. 

В примере исследование закритического поведения сферической 

оболочки проводилось в пространстве: прогиб оболочки в центре  

 v ,  радиус кривизны  R , внешнее давление  p . Радиус кривизны 

и внешнее давление являются управляющими параметрами, а прогиб 

оболочки в центре — одна из компонент вектора внутренних пара-

метров, характеризующих текущее состояние конструкции. 

На рис. 9 представлена проекция поверхности равновесных со-

стояний в пространство: , ,v R p . Данная поверхность построена с 

использованием метода продолжения по параметру в связке с прие-

мом «смены подпространства управляющих параметров». На рисунке 

видно, что с увеличением радиуса кривизны проекция поверхность 

равновесных состояний усложняется, и при некотором значении па-

раметра кривизны появляется отдельная поверхность изолированных 

решений, которая впоследствии сливается с основной поверхностью. 

Продемонстрируем прием «смены подпространства управляю-

щих параметров», для этого рассмотрим сечения проекции поверхно-

сти равновесных состояний для значений радиуса кривизны R , ле-

жащего в пределах от 32 мм  до 36 мм  (рис. 10).  Траектории 1 соот-

ветствует радиусу кривизны равному 35,5 мм , а траектория 3 соот-

ветствует радиусу кривизны равному 32 мм . Наблюдая за каче-

ственным изменением траекторий при монотонном изменении пара-

метра кривизны, можно предположить, что существует некоторая 

особая точка — точка бифуркации, соответствующая некоторому        

критическому значению параметра кривизны крR  
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 33,5185 33,5188крR  . На рис. 10 сечение, соответствующее кри-

тическому значению параметра кривизны, изображено заштрихован-

ной плоскостью.   

 

 
 

Рис. 9. Проекция поверхности равновесных состояний в пространстве: 

внешнее давление  p ; радиус кривизны  R ; прогиб в центре  v  

 

 
 

Рис. 10 Сечения проекции поверхности равновесных состояний в пространстве: 

внешнее давление  p , радиус кривизны  R ,  прогиб в центре  v  

 

 Приближаясь к критическому значению параметра кривизны 

крR  снизу, траектории, лежащие в плоскости прогиб давление, будут 

иметь вид аналогичный траектории 3, а если приближаться сверху, то 

аналогичный траектории 1.  
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Получить точное значение критического параметра оказывается 

практически невозможным. По мере приближения к окрестности би-

фуркационной точки наблюдается ухудшение сходимости численно-

го решения: может наблюдаться самопроизвольный переход на дру-

гую ветвь решения, либо разворот назад. 

В данной статье в рамках многопараметрического подхода пред-

лагается альтернативная стратегия, позволяющая избежать непосред-

ственного решения задачи ветвления, но при этом получить всю не-

обходимую информации о поведении системы в окрестности бифур-

кационной точки. Иначе говоря, можно обойти особую точку с раз-

ных сторон и построить так называемую картину перестройки. 

С помощью приема  смены подпространства управляющих пара-

метров можно в нужный момент ответвится от траектории 3, соот-

ветствующей  однопараметрической задаче с переменным давлением 

 varp   и фиксированной кривизной  32 ммR  , и начать движе-

ние вдоль  траектории 4 (рис. 10), которая соответствует  другой од-

нопараметрической задаче уже с переменной кривизной  varR  , но 

с фиксированным внешним давлением  0,084 МПаp  . 

Фактически, прием смены подпространства управляющих пара-

метров является переключателем между разными однопараметриче-

скими задачами.   

Достигнув заданного значения параметра радиуса кривизны, 

например, 35,5 ммR  , можно повторно ответвиться от траектории 

4, и таким образом попасть на траекторию 5 (рис. 10), соответствую-

щую изолированному решению и не имеющую никаких общих точек 

с основной траекторией 1. 

Продолжив движение вдоль траектории 4, можно определить 

«глубину» проникновения изолированного решения. Как видно из 

полученных результатов, траектория 4 также имеет предельную точ-

ку (в данном случае 35,8 ммпрR  ). Следовательно, при значениях 

параметра радиуса кривизны больших, чем прR  изолированное реше-

ние, аналогичное траекториям 5 и 6, отсутствует. Для преодоления 

предельной точки на траектории 4 используется прием смены пара-

метра продолжения. 

Продолжая движение по траектории 4, минуя предельную точку, 

можно снова вернуться на исходную траекторию 3. Таким образом, 

осуществляется обход окрестности бифуркационной точки. 

Данный алгоритм был реализован в авторской программе и для 

подтверждения достоверности результатов численного решения рас-

сматриваемая задача была решена с использованием метода конеч-

ных элементов в программном комплексе ANSYS. Результаты автор-
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ской программы с высокой точностью совпали с результатами про-

граммного комплекса ANSYS, что свидетельствует о достоверности 

представленных результатов.  

Выводы. В статье выполнен обзор существующих подходов и 

методик исследования закритического поведения осесимметричных 

сферических оболочек.  

1. Выбрана рациональная математическая модель для описания 

нелинейного деформирования хлопающих симметричных оболочек. 

2. Разработан и реализован в виде авторской программы числен-

ный алгоритм исследования процессов нелинейного деформирования 

многопараметрических систем. В рамках алгоритма была разработана 

методика расчета однопараметрических задач с использованием дис-

кретного метода продолжения по параметру, был реализован прием 

«смены параметра продолжения» для преодоления особых предель-

ных точек кривой равновесных состояний.  
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Numerical simulation the post-buckling nonlinear                     

deformation of axisymmetric membranes  

© S.A. Podkopaev 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The theoretical foundations of nonlinear straining of thin-walled axisymmetric shells are con-
sidered. The operational characteristics of the membranes in various switching devices, valves 
and pressure sensors are presented. The types of non-linear behavior of post-buckling behavior 
of axisymmetric membranes are considered. A mathematical model is presented to describe 
nonlinear straining of axisymmetric membranes, a discrete continuation by parameter method, 
and the “changing the subspace of control parameters” technique. Using the hinged spherical 
shell as an example, a study of post-buckling behavior is performed. A rational mathematical 
model has been selected to describe nonlinear straining of thin-walled axisymmetric shells. A 
numerical algorithm for studying the processes of nonlinear straining of multi-parameter sys-
tems has been developed and implemented as an author program. 

 
Keywords: nonlinear straining, thin-walled axisymmetric shell, membrane, post-buckling behav-
ior, discrete switching, continuation by parameter, change of the subspace of  parameters 
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