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В статье исследуются два подхода к расчету электрических цепей в условиях неопре-

деленности в исходных данных или влияния случайных воздействий, шумов различной 

природы. Первый подход основан на применении интервальных и двусторонних мето-

дов и является в некоторой степени примером робастных методов. Второй подход 

использует стохастическое уравнение Фоккера-Планка и является наиболее инфор-

мативным. Хотя применение уравнения Фоккера-Планка ограничено некоторыми 

условиями (случайные воздействия имеют характер белых шумов или подчинены гаус-

совому закону распределения). Этот метод имеет широкую область применимости. 

В свою очередь существуют различные методы решения данного дифференциального 

уравнения. В статье рассмотрено решение соответствующей задачи при помощи 

метода конечных разностей.  

Приведены примеры моделирования конкретных электрических и электронных цепей. 

 

Ключевые слова: электрические цепи, параметры, характеристики, погрешности, 

возмущения, шумы, приближенные методы, стохастические уравнения  

 

Введение. Параметры и характеристики электронных и электри-

ческих цепей обычно задаются с некоторой погрешностью, обычно не 

превосходящей 10–15%.  Данная проблема особенно важна в теории 

чувствительности и допусков цепей, при проектировании и расчете 

микросхем и различных электротехнических устройств [1–11]. Для ее 

решения, как правило, применяются метод малого параметра (иссле-

дование чувствительности) и метод Монте – Карло. Относительно но-

вым подходом является применение двусторонних и интервальных 

методов [3–6, 9–12]. В [6] описан пример интервального подхода при 

моделировании и исследовании чувствительности аналоговых цепей 

при вариации параметров и констатируется относительная экономич-

ность и точность метода по сравнению с методом Монте-Карло. Не-

определенные параметры цепи представляются как интервалы, с кото-

рыми осуществляется последовательность интервальных операций. 

Разработанные алгоритмы реализованы в SPICE3F5 с использованием 

методов разреженных матриц и протестированы на множестве реаль-

ных аналоговых схем. 

Интервальные и двусторонние методы в основном позволяют 

находить оценки решения с гарантированной точностью и применимы  
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для расчета наихудшего случая. Для получения более точной и деталь-

ной информации применяется статистическое и вероятностное моде-

лирование.  

При воздействии шумов, помех и т.п. дисперсия решения часто 

неограниченно растет со временем. Дополнительным усложнением 

является существенное увеличение размерности задачи, так как соот-

ветствующие погрешности или возмущения являются функциями, а не 

постоянными параметрами. В указанных случаях возможно примене-

ние уравнений вероятностной меры Чепмена – Колмогорова, Фок-

кера–Планка либо имитационное моделирование на основе уравнений 

Ланжевена [1–3].  Считается, что если динамическая система имеет 

большую размерность  2N  , то решение уравнения Фоккера – 

Планка найти практически невозможно [1–3]. При этом моделируе-

мый процесс должен быть   по   меньшей   мере   марковским, что 

предполагает некоторые ограничения на   источники   шума. Если слу-

чайные воздействия независимые, то процесс марковский и приме-

нимо   уравнение Чепмена-Колмогорова.   Если шум гауссов, то   про-

цесс является   диффузионным, и допустимо использование уравнения 

Фоккера – Планка. Возможно, по указанным причинам в литературе 

имеется недостаточно примеров численного моделирования много-

мерных радиотехнических и электронных систем на основе рассмат-

риваемых вероятностных уравнений.  

Имитационное моделирование является более употребительным и 

особенно эффективно, если процесс является эргодическим. При соот-

ветствующих требованиях к источникам шума имитационный и веро-

ятностный методы должны давать эквивалентные результаты [1-3].  

В статье осуществляется сравнение рассмотренных подходов на 

ряде примеров электрических и электронных цепей. 

Расчет цепи выпрямителя с учетом погрешности ее характе-

ристик и параметров. Рассмотрим электрическую цепь выпрямителя, 

схема (рис.1). 

 
Рис. 1. Схема цепи 
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Система уравнений состояния рассматриваемой цепи может быть 
записана в виде: 

 
   0 0 1 1 0 0 1 1

1 1

, ,

0,

C
D

C

Cdud
i r i r U i E t i i r

dt dt

i r u


     

 

  (1) 

где 0 Ft t  ,  0i  ⸺ потокосцепление катушки со стальным маг-

нитопроводом; C ⸺ емкость; 
0r  и 1r  ⸺ сопротивления; 0i  и 1i  ⸺ токи 

в соответствующих ветвях; 
Cu  ⸺ напряжение на конденсаторе;  E t  

⸺ периодическая ЭДС:    0 0sinmE t E t   , где mE  ⸺ амплитуда; 

0  ⸺ циклическая частота;  0  ⸺ начальная фаза;  0DU i  ⸺ падение 

напряжения на диоде с прямым сопротивлением прR   и обратным обр .R  

Нелинейная зависимость потокосцепления от тока выражается 

формулой [8]:    1/2 1/2

1 2 2 .i k k arctg ik    Следовательно, дифференци-

альная индуктивность равна:    2

0 1 2/ 1 .L i k k i   Параметры и харак-

теристики схемы замещения электрической цепи заданы с некоторыми 

относительными погрешностями: 

              

              

0 0 0 1 1 1

1 1 1 2 2 2

1 ε ; 1 ε ; 1 ε ;

1 ε ; 1 ε ; 1 ε ,m m m

r M r r r M r r С M С С

E M E E k M k k k M k k

     

     
  

где  M   ⸺ известное среднее значение параметра  ; 

 
               

       

0 0 0 1 0 1 0 0

1 0 1 2 0 2

ε ε ; ε ε ; ε ε , ε ε ;

ε ε ; ε ε ;

m mr r r r С С E E

k k k k

   

 
  

 0   ⸺ заданное значение относительной погрешности параметра . 

Погрешностью параметров ВАХ диода пренебрежем.  

При замыкании такой цепи наблюдается явление, называемое 

броском тока, величина которого может представлять практический 

интерес. Требуется осуществить расчет переходного процесса в рас-

сматриваемой цепи после замыкания ключа с учетом погрешности ис-

ходных данных задачи. 

Система уравнений состояния цепи в нормальной форме имеет 

вид  

        1 2 1 0 2 1/ , , 1,2; 0, ; 0 0 0, , ,i i Fdx dt f x t i t t x x x i x i         (2) 
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          1 1 0 2 1 0 2 0 11 1 2 1/ , / .f E x r x r L f L Crx x x xt       (3) 

Расчет интервальной цепи осуществлялся при помощи двусторон-

него метода на основе принципа максимума Понтрягина, детально 

описанного и исследованного в [11]. При помощи принципа макси-

мума отыскивается минимальное и максимальное значения решения в 

заданные моменты времени для всех допустимых значений парамет-

ров задачи (1)–(3). Краевая задача принципа максимума решается ите-

рационно на основе конечно-разностной аппроксимации (1)–(2) высо-

кого порядка точности [11].Существенно, что погрешность парамет-

ров и характеристик цепей в рассматриваемом методе предполагается 

интервальной и функциональной: известны только границы измене-

ния параметров, в каждый момент времени параметр может принимать 

любое значение из допустимой области. Для применимости принципа 

максимума дополнительно предполагается, что коэффициенты задачи 

должны быть кусочно-непрерывными функциями. 

Результаты вычислений двусторонних оценок тока 0 ( )i t   представ-

лены на рис. 1. В расчетах было принято: ( ) 75 Bmm E  , 
0( ) 0,15mE  , 

0 100   , 0 0  , 
0( ) 1 Омm r  , 

0 0( ) 0,05r  , 
1( ) 1 Омm r  , 0 1( ) 0,05,r 

1( ) 0,1 Гнm k  , 
0 1( ) 0k  , 

2( ) 0,25m k  , 0 2( ) 0,05k  , 4( ) 10 Фm C  , 

0( ) 0,05C  , 0,05 cFt  , пр 0,1 ОмR  , обр 100 ОмR  , количество ите-

раций ⸺ 10, количество разбиений отрезка интегрирования 500т . 

Время вычислений около 1 мин. 

Рис. 2 показывает, что несмотря на относительно небольшую по-

грешность параметров и характеристик цепи (5–15%) расхождение 

нижней и верхней оценок решения весьма значительно и составляет 

до 100%. При увеличении отношения обратного и прямого сопротив-

лений диода для обеспечения одной и той же точности расчета требу-

ется соответствующее уменьшение шага интегрирования.  

На рис. 3 показаны двусторонние оценки для i0(t) при отсутствии 

в цепи диода (иллюстрация больших вариаций решения при броске 

тока при включении нелинейной индуктивности). 

Основной вклад вносит погрешность ЭДС, о чем можно заклю-

чить из рассмотрения рис. 3 и 4. 

Вблизи первого максимума тока чувствительность решения за-

дачи к возмущениям в исходных данных наибольшая. 

Понятно, что при отмеченных больших вариациях нижней и верх-

ней границ решения, применение метода малого параметра необосно-

ванно.  

Если предполагается, что коэффициент задачи неопределенный, 

но постоянный, не зависит от времени, то границы полосы возможных 

решений значительно сужаются.  
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Рис. 2. Графики верхней (1) и нижней (2) оценок точного решения и их по-

грешности (3) для электрической цепи выпрямителя 

 

 
Рис. 3. Графики верхней (1) и нижней (2) оценок тока в цепи дросселя 
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Рис. 4. Верхняя (1) и нижняя (2) оценки тока в цепи дросселя и  

их погрешность (3) при точном значении ЭДС 

 

Интервальные и двусторонние методы [9–12], в принципе, приме-

нимы и для вычисления границ решения при воздействии помех и шу-

мов с ограниченной дисперсией, так как позволяют находить полосу 

возможных решений с некоторой доверительной вероятностью. Недо-

статком данных методов является несколько завышенный характер 

оценок решения. По этой причине применение уравнения Фоккера–

Планка в таких задачах может быть предпочтительней. 

Моделирование случайного процесса в электрической цепи 
при помощи уравнения Фоккера-Планка. Для корректности ис-
пользования данного уравнения требуется, чтобы шумы имели харак-
тер белого шума. Тем не менее, допустимо его применение для нахож-
дения приближенного решения и в случае гауссовых шумов с ограни-
ченной дисперсией [1–3]. Также существуют ограничения по постоян-
ной времени случайных процессов. Предположим, что уравнения со-
стояния цепи имеют вид системы ОДУ: 

      , , , 0,
dx

f x t g x t t t
dt
      (4) 

где  1, ,
T

Nx x x  ,  1  , , ,
T

Nf f f    1  , , ,
T

N     
, 1

N

jk j k
g g


    ,    t   

⸺ статистически независимые нормированные источники нормально- 
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ного белого шума,  ,g x t  ⸺ его интенсивность,   0,t   

     t t u u    , где угловые скобки обозначают среднее по множе-

ству наблюдений,  u  ⸺ дельта-функция. Рассмотрим также соответ-

ствующую систему ОДУ при отсутствии шумов:  
0

0 ,
dx

f x t
dt

 ,

 0 0 0

1 , ,
T

Nx x x  .  Процесс  x t  является векторным диффузионным 

случайным процессом, для которого имеет место вероятностное урав-
нение Фоккера–Планка [1–3]: 

    
2

1 , 1

,  0 ,, 
N N

N

j jk

j j kj j k

p
A p B p t x R

t x x x 

  
   

   
    (5) 

где A   ⸺  вектор сноса, B  ⸺ матрица диффузии вероятности: 

  
1

1
, ,  ,  

2

N

j j jk ji ki

i

A f x t B g g


     

 ,p x t  ⸺ плотность вероятности с условием нормировки:    

  , 1.
NR

p x t dx   

Начальное условие для уравнения (5):    0  ,0p x p x ; часто ис-

пользуется условие     0 0p x x x  ; на бесконечности плотность ве-

роятности считается равной нулю.  В математическом отношении рас-
сматриваемая задача относится к задаче Коши в пространстве для не-
стационарного уравнения диффузии с переменными коэффициентами 
в движущейся среде. 

Аналогичное (5) уравнение имеет место для плотности вероятно-

сти переходов  0 0, ; ,v x t x t . Если интервальный подход, рассмотрен-

ный в предыдущем пункте, позволяет найти только полосу всевозмож-
ных решений, то уравнение (5) содержит в себе более детальную ин-
формацию о статистических свойствах их распределения.  

Если шумы или помехи относительно малы, то полоса решений не 

очень широка и для рассматриваемой в статье задачи целесообразно 

сделать замену переменных в уравнении (5), при помощи перехода к 

движущейся системе координат с центром в точке  0x t , прибли-

женно соответствующей тренду процесса (середине полосы): 
0.y x x    Такое преобразование позволяет многократно  уменьшить  
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размер рассматриваемой области, что очень важно при численном ре-
шении. После замены переменных (5) запишется в виде:  

    
2

1 , 1

ˆ ,
N N

j jk

j j kj j k

p
A p B p

t y y y 

  
 

   
    (6) 

где    0 0ˆ , ,A f y x t f x t   , 0ˆ ( , );B B y x t       0

0,0 0p y p y x  . 

Для задачи (1)–(3) 2N  , выражения координат вектора сноса 
даны в (3), матрицы интенсивности шума и диффузии имеют только 

один отличный от нуля элемент:    1

11 1 0 1 1sing d L x t  , 2

11 110,5 ;B g  то 

есть решаемое уравнение переноса и диффузии вероятности является 

вырожденным по одной переменной ⸺ 2x . Предполагается, что имеет 

место помеха в питающем напряжении, аппроксимируемая белым шу-

мом, 1d  ⸺ коэффициент ширины шума (в расчете 0,02).  

Конечно-разностный метод. Для численного решения уравнения 
переноса и диффузии вероятности применялись различные конечно-
разностные схемы с дискретизацией по времени и пространству – как 
явные, так и неявные, первого и второго порядка точности по всем ко-
ординатам. Положительно зарекомендовал себя неявный конечно-раз-
ностный метод на основе метода Гира с перенормировкой на каждом 
шаге, характеризующийся высокой устойчивостью:  
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где  

 
   

 

, 1 2 , , 1 2

11, , 11 1 2 1 1 2 2

, , , , , , 1,2;ˆ ˆ

ˆ ,ˆ , , , , ;

k k

i j i j k l i j l i j k

k

i j i j k i k

p p y y t A A y y t l

B B y y t y ih y jh t k

  

    
  

 u  ⸺ единичная функция, равная 0 при отрицательном и 1 при по-

ложительном аргументе. 
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На границе сеточной области решение считается равным нулю. 
Размер расчетной области выбирался из условия корректности дан-
ного краевого условия. На каждом шаге по времени система конечно-
разностных уравнений решалась с высокой точностью итерационным 
методом Зейделя. 

Исследование позволяет предположить, что улучшение вычисли-
тельных качеств конечно-разностного метода можно достичь при по-
мощи применения разностных формул более высокого порядка точно-
сти и метода матричной прогонки. 

Тестовая задача. В качестве тестовой рассматривалась линеари-
зованная задача для переходного процесса в цепи дросселя (1)–(3). Ее 
аналитическое решение находилось методом преобразования Лапласа 
и имеет вид: 

 
 

 
 
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 
 
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2 2

1

0
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1
,   , 0,5 ,  ( )

sin , sin ,

75  ,   100 ,  0,02.

,

t

au

t
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m

a dE t u
x t Ae u du A
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d arctg a d r L dL r r a
Cr a d

E t u
x t e u du E t E d t t

LC r

E В d

 

 
   




       




     



    





  

Данное решение представляет собой нестационарный случайный 

процесс, каждое сечение которого распределено по двумерному нор-

мальному закону: 

  

        

  

2
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σ
, ,
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r

x x t
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r

    
   
   
   

   
  
    

 
  (7) 

Его статистические характеристики имеют вид: 
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       
 

   

           

1 2

t

0 2 2

1

0

min ,

0 0 2

1 1 2 2 1 1 2 2 1 1 1 2 2

0

t

0 0 2

1 2 1 2 1 1 2

0

,  , , σ  ,   1,2;

, , ,

, , ,

j j j j j j

t t
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 

 
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   

        

          
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1
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a t u

a t u
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r t

t t

K t u AL e t u u

K t u LC r e t u sin u



 




    

    

  

Результаты моделирования для тестовой задачи. Задача (5)–(6) 

решалась на интервале времени от 0 до 0,02 с. В расчетах было при-

нято: 75  ,  mE В 0 100 ,    
0 1 Ом,r   0,1 Гн,L  32 10  ФC   , количе-

ство разбиений области интегрирования: по времени – 100n , по ко-

ординатам 1,x  2 ;x  
1 2 50n n   (область изменения координат: 

max 1 2 max, 0,1y y y y    ). Время вычислений около 2 мин (решение 

сеточных уравнений вычислялось практически точно).  

На рис. 5 представлены графики в относительных координатах для 

приближенного тренда случайного процесса    2

0 0

1 ,  x t x t  (масштаб по 

вертикальной оси: 1 o.e. 5 A ), а также среднеквадратического откло-

нения  1σ t  и его конечно-разностной оценки  1σ
h t   (масштаб по вер-

тикальной оси: 1 o.e. 0,05 A ). Масштаб по горизонтальной оси: 1 

o.e. 20  мс. 

 

Рис. 5. Графики решения: 1 ⸺  1x t , 2 ⸺  2x t , 3 ⸺ 1σ t , 4 ⸺  1σ
h t  
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На рис. 6 и 7 изображены графики плотности случайного процесса 

(вверху конечно-разностное решение  1 2, ,hp x x t , внизу – плотность 

двумерного нормального распределения  1 2,np x x , соответствующая 

формуле (7),  а также среднеквадратического отклонения   1σ t    и его 

конечно-разностной оценки  1σ
h t .  Масштаб по вертикальной оси: 1 

2o.e. 3000 A , по горизонтальной оси: для рис. 5 ⸺ 1 o.e. 0,05 A , для 

рис. 7 ⸺ 1 o.e. 0,025 A . 

Аналогичные вычисления осуществлены для плотности случай-

ного процесса при вдвое меньших шагах интегрирования 

 1 2 100n n  . Время вычислений во втором варианте 15 мин (табл. 1).  

Рассмотрение результатов решения тестовой задачи показывает 
весьма точное совпадение вычисленной и теоретической дисперсии, а 
также удовлетворительное совпадение графиков вычисленной и тео-
ретической плотности распределения вероятностей. 

 

Рис. 6. Плотности случайного процесса (вверху ⸺  1 2, ,hp x x t , внизу ⸺ 1 2,np x x ,

2 fixedx  ) 
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Рис. 7. Плотности случайного процесса (вверху ⸺ 1 2, ,hp x x t , 

 внизу ⸺ 1 2,np x x ,
1 fixedx  ) 

Таблица 1  

Результаты расчета 

№ Величина  1 вариант 2 вариант  

1  0

1 Fx t   -1,89 -1,89 

2  0

2 Fx t   0,90 0,88 

3  1σ Ft   0,014 0,014 

4  2σ Ft   0,0064 0,0064 

5   1σ
h

Ft   0,015 0,015 

6  2σh

Ft   0,0069 0,0066 

7  1 Fy t   0,00 0,00 

8  2 Fy t  0,00 0,00 

9  Fr t   0,82 0,82 

10  h

Fr t   0,73 0,77 
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Результаты решения основной задачи. Основная задача отлича-
ется от тестовой наличием нелинейной индуктивности (см. п. 1) и решалась 
на интервале времени от 0 до 6,9 мс, на котором происходил бросок тока. 
Поскольку в области пика тока производные решения принимают большие 
значения, данная задача относительно трудна для численного решения урав-
нения Фоккера-Планка. 

В расчетах было принято: количество разбиений области интегри-

рования: по времени ⸺ 500n , по координатам 1,x 2 ,x
1 100n  , 1 20n   

(область изменения координат:  
max 1,y y  2 max 5y y  ). Время вычис-

лений около 5 мин (решение сеточных уравнений  вычислялось прак-
тически точно).  

На рис. 8 представлены графики в относительных координатах для 

приближенного тренда случайного процесса    2

0 0

1 ,  x t x t  (масштаб по 

вертикальной оси: 1 o.e. 50 A ), а также конечно-разностной оценки 

среднеквадратического отклонения  1

h t (масштаб по вертикальной 

оси: 1 o.e. 2 A ). Масштаб по горизонтальной оси: 1 o.e. 6,9  мс. Гра-

фик (3) отражает динамику изменения максимального значения плот-

ности (масштаб по вертикальной оси: 1 2o.e. 400 A ). Серия кривых 

(1) соответствует плотности распределения  1 2, ,hp x x t , 2 fixedx  , а 

кривая (2) ⸺ значениям плотности распределения  20, ,hp x t , т.е. мак-

симуму плотности по 1x  (масштабы по вертикальной оси: 1 

2o.e. 8 A , по горизонтальной оси соответственно  ⸺  1 o.e. 5 A  и 1 

o.e. 1 A ). Различие характера графиков плотности объясняется отсут-

ствием диффузии по координате 2 .x  

 

Рис. 8. Графики решения:  

1 ⸺  1 2, ,h

Fp x x t , 
2 fixedx  ; 2 ⸺  20, ,h

Fp x t , 3 ⸺  0,0,hp t , 4 ⸺  0

1x t , 5 ⸺  1

h t  
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Разряд нелинейной емкости при наличии белого шума. Шумы 

конденсаторов (фликкер-шум, электрические и акустические шумы, 

мерцание емкости, пьезоэлектрические шумы), наряду с тепловыми и 

токовыми шумами резисторов являются значительным источником 

внутренних шумов в усилителях и других электронных устройствах. 
Цепь LC-контура с нелинейной емкостью описывается уравнени-

ями: 

 
 

      0
0 2

0, , , 0;

0 0, 0 , ,
1

C C

C C

di dq q
L u i u t

dt dt C q

C
i u u C q

kq

    

  


  

где i  ⸺ ток в цепи; L  ⸺ индуктивность; 
Cu  ⸺ напряжение на конден-

саторе; 
0Cu  ⸺ начальное напряжение на конденсаторе;  C C q  ⸺ ем-

кость, содержащая шумовую компоненту, q  ⸺ заряд конденсатора, 

0 , C k ⸺ некоторые положительные константы. В результате преобра-

зований система уравнений приводится к следующей задаче Коши: 

 
  

   

21 2
2 1 2 1 1

1 01 2 02

, ,

0 , 0 , 0,

dx dx
x x d t x

dt dt

x x x x t

     

  

  

где  1 ,q x t   2 ;i x t  
1 2, ,   constd  ,  t  ⸺ нормированный белый 

шум. 
На рис. 9 представлены результаты моделирования при меньшей 

интенсивности шума 0,1d   и следующих исходных данных: 1 1  , 

2 15  ; 
1 2 50n n  , 5Ft  , 500n ,  

1max 2max 1x x  ; 
01 0x  , 02 1x  . 

Масштаб по вертикали для плотности: 1 2o.e. 31,25 A , по гори-

зонтали ⸺ 1 o.e. 1 A . Масштаб по вертикали для среднеквадратиче-

ского отклонения: 1 o.e. 1,25 A . Значения решения в конечный мо-

мент времени:  1 0,44Fx t  ,  2 0,73Fx t  ,  1 0,015Fx t  , 

 2 0,088Fx t  ,  1 0,14t  ,  2 0,23t  , 0,49;r   

Из рассмотрения результатов следует, что имеют место значитель-
ные дисперсии значений тока, поэтому метод малого параметра непри-
меним. Плотности решения асимметричны, имеют место большие хво-
сты распределения, значительное отличие от нормального распреде-
ления. Также шум относительно трудоемко моделировать методом 
Монте-Карло. По этим причинам моделирование на основе числен-
ного решения уравнения Фоккера-Планка информативно и в ряде слу-
чаев целесообразно перед применением других методов, например, 
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метода моментов. 

 

Рис. 9. Графики решения:  

1 ⸺  1 2, fixed,p x x t , 
2 fixedx  ; 2 ⸺  1 2fixed, ,p x x t , 3 ⸺  0,0,p t , 4 ⸺  1 t ,  

5 ⸺  2 t ; 6 ⸺       1 1 1,x t x t t ; 7 ⸺     2 2x t t  

 
Моделирование цепи автогенератора при наличии белого 

шума. На рис. 10 представлена эквивалентная схема низкочастотного 

радиофизического генератора с источниками шума, где  NG U  ⸺ не-

линейная проводимость с вольтамперной характеристикой 
3

0I G U bU  ; G , C , L  ⸺ постоянные проводимость, емкость и ин-

дуктивность, 
шI  ⸺ эквивалентный шумовой ток, E  ⸺ источник по-

стоянного напряжения. 
Стохастическое дифференциальное уравнение автогенератора 

имеет вид [1]:  

 
     

 

21 2
2 0 1 2 1 1 01

2 02

, 2 , 0 ,

0 , 0,

dx dx
x k x x x D t x x

dt dt

x x t

      

 
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где 1x  ⸺ величина, пропорциональная напряжению U , 0k  ⸺ безраз-

мерный параметр возбуждения, D  ⸺ определяет интенсивность 

шума,  t  ⸺ нормированный белый шум. 

На рис. 11 представлены результаты моделирования при следую-

щих исходных данных: 0,0001D , 0 0,05k  , 
1 2 20n n  , 2Ft   , 

100n ,
1max 2max 0,2x x  ; 

01 0,45x  , 02 0x  . 

 

Рис. 10. Схема автогенератора [1] 

 

 
Рис. 11.  Графики решения: 

1 ⸺  , fixed,
1 2

p x x t ; 2 ⸺  fixed, , ,
1 2

p x x t 3 ⸺  0,0,p t ;  

4 ⸺       1 1 1,x t x t t ; 5 ⸺     2 2x t t ; 

6 ⸺ фазовый портрет полосы решений 

               1 1 1 1 1 2 2 2 2 2,x t t x x t t x t t x x t t         
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Масштаб по вертикали для плотности: 1 2o.e. 200 A , по горизон-

тали ⸺ 1 o.e. 0,2 A,  масштаб по вертикали для    1 2,  x t x t : 1 

o.e. 1 A . Значения решения в конечный момент времени: 

 1 0,45Fx t  ,  2 0,03Fx t  ,  1 0,0008Fx t  ,  2 0,00009Fx t  ,

 1 0,037t  ,  2 0,04t  , 0,03.r   

Моделирование показывает, что дисперсии решения в целом рас-
тут со временем, но ограниченны и постепенно устанавливается ста-
ционарный режим с соответствующей плотностью распределения ве-
роятностей. 

Выводы. Рассмотрен ряд известных методов для решения стоха-
стических задач теории электрических и электронных цепей при по-
мощи интервальных и двусторонних методов, а также уравнения Фок-
кера-Планка.  

Осуществлено сравнительное исследования эффективности рас-
сматриваемых методов, рассмотрено решение некоторых типичных 
задач теории электрических и электронных цепей с неточно задан-
ными и случайными параметрами и характеристиками. 

Полученные результаты могут использоваться в практике расчета 
и проектирования различных электронных и электротехнических 
устройств. 

Благодарность. Выражаем благодарность профессору Некрасову 
С.А. за всестороннюю помощь при подготовке рукописи статьи. 
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Modeling and methods of calculation of electric circuits 

with approximate characteristics 
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The article investigates two approaches to the calculation of electric circuits in the conditions 

of uncertainty in the initial data or the influence of random influences, noise of different na-

ture. The first approach is based on the application of interval and bilateral methods and is 

to some extent an example of robust methods. The second approach uses the stochastic Fok-

ker-Planck equation and is the most informative. Although the application of the Fokker-

Planck equation is limited by some conditions (random effects have the character of white 

noise or are subject to the Gaussian distribution law). This method has a wide scope of ap- 

plicability. In turn, there are various methods for solving this differential equation. The arti 

cle considers the solution of the corresponding problem using the finite difference method.  

Examples of modeling of specific electrical and electronic circuits are given. 

 

Keywords: body electric circuits, parameters, characteristics, errors, perturbations, noise, 

approximate methods, stochastic equations 
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