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Сформулирована задача оптимизации, заключающаяся в обеспечении наибольшего 

времени поддержания давления в наполняемой емкости в диапазоне от максимально 

достигнутого до 70 атм. Построена математическая модель системы, состоящей 

из твердотопливного газогенератора и наполняемой емкости постоянного объема. 

Решение задачи оптимизации выполнено методом Хука-Дживса и генетическим ал-

горитмом с вещественным кодированием. Проведено сравнение полученных резуль-

татов. Разработан программный комплекс, с помощью которого решается си-

стема обыкновенных дифференциальных уравнений, описывающая состояние рас-

сматриваемого объекта. 

 

Ключевые слова: твердотопливный газогенератор, метод Хука-Дживса, генетиче-

ский алгоритм 

 

Введение. В настоящее время в различных системах находят при-

менение твердотопливные газогенераторы, например, в системах ста-

билизации и ориентации космических аппаратов [1], [2], [3], [4].  

В некоторых случаях вместо них используют пневматические си-

стемы с баллонами, наполненными воздухом под высоким давлением, 

поскольку они обладают высокой мощностью на единицу массы. Од-

ним из их важнейших преимуществ над пневматическими системами 

является безопасность транспортировки и эксплуатации, меньшая 

масса, что имеет высокую значимость в различных областях. 

Несмотря на свои недостатки, такие как невозможность остановки 

процесса горения с последующим его возобновлением и низкий коэф-

фициент полезного действия, применение твердотопливных зарядов 

до сих пор остается актуальным [5], [6], [7]. 

В частности, твердотопливные газогенераторы используются в си-

стемах наддува, одной из задач которых является поддержание опре-

деленного давления в наполняемой емкости. Газ, образующийся при 

сгорании заряда, попадает в наполняемую емкость и затем может ис-

пользоваться для совершения работы, поэтому актуальной проблемой 

является, например, поддержание давления в наполняемой емкости в 

течение как можно большего промежутка времени или нагнетание как 

можно большего давления.  

В данной работе решается задача поиска оптимальных физиче-

ских и геометрических параметров системы с целью достижения мак-

симального времени поддержания давления в наполняемой емкости в 
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заданном диапазоне. 

Структура рассматриваемого объекта. Объект состоит из кор-

пуса газогенератора (1), твердотопливного заряда (2), эквивалентного 

дросселя (3), наполняемой емкости постоянного объема (4), дренаж-

ного отверстия (5) и воспламенителя (6). Схема системы наддува пред-

ставлена на рис. 1. 

 

Рис. 1. Схема рассматриваемого объекта 

 

Функционирование начинается в момент подачи команды на вос-

пламенитель газогенератора. Газы, образующиеся при сгорании топ-

лива, поступают в наполняемую емкость и затем дросселируются в 

окружающую среду через дренажное отверстие. 

Твердотопливный заряд. Заряд имеет форму полого цилиндра, 

при этом предполагается, что горение происходит с внутренней и 

внешней цилиндрических, а также с двух торцевых поверхностей (см. 

рис. 2).  

 

Рис. 2. Модельный твердотопливный заряд 

 

В этом случае изменение геометрии заряда во времени в зависи-

мости от величины свода горения e  задается следующим выражением: 
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    0 4 ,внутр внешнS e S e d d     (1) 

где 0S  — начальная площадь поверхности заряда, определяющаяся 

выражением.  

 0 0 0 02 ,внешн внутр торцS S S S      (2) 

где 0

внешнS  — начальная площадь внешней поверхности заряда, 2м ; 

0

внутрS — начальная площадь внутренней поверхности заряда, 2м ;    

0

торцS  — начальная площадь торцевой поверхности заряда, 2м . 

Формула для вычисления текущего объема заряда: 

       2 22 4 .
4

внешн внутр внешн внутрV e h e d d e d d


       (3) 

Постановка задачи. Целью задачи оптимизации является обеспе-

чение наибольшего времени поддержания давления в наполняемой ем-

кости в диапазоне от выбранного до давления на момент сгорания за-

ряда. Графическая интерпретация задачи оптимизации представлена 

на рис. 3. 

 

Рис. 3. Графическая интерпретация задачи оптимизации 

 

Целевая функция задачи оптимизации имеет вид: 

 * ** max ,
U

t t    (4) 

где 
*t  — время достижения указанного давления в наполняемой емко-

сти; 
**t  — момент сгорания топливного заряда; U  — множество до-

пустимых значений варьируемых параметров:  

 внешний диаметр топливного заряда внешнd ; 

 внутренний диаметр топливного заряда внутрd ; 
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 длина топливного заряда h ; 

 начальная величина свободного объема в камере сгорания газо-

генератора W ; 

 диаметр эквивалентного дросселя эквd ; 

 коэффициент расхода эквивалентного дросселя экв ; 

 начальный объем наполняемой емкости емкV ; 

 диаметр дренажного отверстия выхd ; 

 коэффициент расхода дренажного отверстия вых . 

Каждый параметр варьируется в заданном диапазоне. Диапазоны 

изменения варьируемых параметров представлены в табл. 1. 

Таблица 1 

Диапазоны изменения варьируемых параметров 

Параметр Минимальное значение Максимальное значение 

внешнd , мм 24 36 

внутрd , мм 14,4 21,6 

h , мм 88 132 

W , л 0,008 0,012 

эквd , мм 6 9 

экв  0,76 1,14 

емкV , л 1,2 1,8 

выхd , мм 3,36 5,04 

вых  0,68 1,02 

 

Значения 
*t  и 

**t  определяются из численного моделирования 

функционирования исследуемого объекта. Следовательно, для реше-

ния задачи оптимизации необходимо построить математическую мо-

дель системы. 

Математическая модель. Из законов сохранения массы и энер-

гии, а так же с учетом допущений об одномерности термодинамиче-

ских процессов и совершенной модели газа выводится система обык-

новенных дифференциальных уравнений, описывающая состояние 

рассматриваемой системы [8]:  

 

 

    

 

   

;

1 ;

; ;

;

1 ,

v

v

емк емк емк емк

емк емк емк емк емк емк емк

dp dt S u RT kGRT pSu W

dT dt T S uR T T k RTG Wp

dW dt Su de dt u

dp dt kR G T G V

dT dt RT k T G k T G p V

 

 





  

   

 

 

     

  (5) 
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где p  — давление в камере сгорания; S  — площадь поверхности го-

рения;   — плотность топлива; u  — скорость горения топлива;   — 

коэффициент тепловых потерь в камере сгорания; R  — газовая посто-

янная продуктов сгорания; vT  — изохорная температура горения; k  

— коэффициент Пуассона; G  — расход газа из газогенератора; T  — 

температура в камере сгорания; W  — свободный объем в камере сго-

рания; e  — величина свода горения; емкp  — давление в наполняемой 

емкости; емкT  — температура в наполняемой емкости; емк  — коэффи-

циент тепловых потерь в наполняемой емкости; емкG  — расход газа из 

наполняемой емкости; емкV  — объем наполняемой емкости; 

(1 )( )емкT T T       ;T  — температура окружающей среды. 

Расчет массового расхода газа из камеры сгорания газогенератора 

осуществляется по следующим формулам: 

 

0,  если ;

2
,  если ;

1

,  если ,

емк

кр

экв экв емк

кр

экв экв емк

p p

k
G f p p p p

k

p
mf p p

  





 



  







  (6) 

 

 12

,

k
k k

емк емкp p

p p




   
    

   
  (7) 

крp  — критическое давление в камере сгорания, вычисляемое по фор-

муле: 

 
12

;
1

k

k
крp p

k

 
  

 
  (8) 

 

1

12
,

1

k

kk
m

R k



 
  

 
  (9) 

эквf — площадь эквивалентного дросселя. 

Аналогично вычисляется массовый расход газа из наполняемой 

емкости. 

Для термодинамических параметров газа в обеих емкостях имеем 

определяющие соотношения (уравнения состояния совершенного 

газа): 
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;

.емк емк емк

p RT

p RT









  (10) 

Первые четыре уравнения системы (5) описывают внутреннюю 

баллистику газогенератора, пятое и шестое — состояние газа в напол-

няемой емкости. 

Таким образом, на варьируемые параметры помимо ограничений 

в виде области допустимых значений накладывается ограничение, за-

ключающееся в удовлетворении уравнениям системы (6). 

Для формулирования задачи Коши необходимо дополнить си-

стему обыкновенных дифференциальных уравнений (7) начальными 

условиями:  

 

   

   

   

0 1 атм; 0 293,15 K;

0 0,01 л; 0 0 мм;

0 1 атм; 0 293,15 K.емк емк

p T

W e

p T

 

 

 

  (11) 

Численное моделирование функционирования системы. Од-

ним из наиболее распространенных классов численных методов реше-

ния задачи Коши для обыкновенных дифференциальных уравнений и 

их систем являются методы Рунге-Кутты. Для решения системы диф-

ференциальных уравнений (7) используется метод Рунге-Кутты 3-го 

порядка аппроксимации [9]. 

На рис. 4 представлен график зависимости давления в наполняе-

мой емкости от времени. 

 

Рис. 4. Давление в наполняемой емкости  
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Численное решение задачи оптимизации. Решение задачи опти-

мизации выполнено при помощи метода Хука-Дживса[10] с примене-

нием метода штрафных функций для учета ограничений, накладывае-

мых на варьируемые параметры.  

Для решения подобных задач глобального поиска существует ряд 

эффективных методов. Например, алгоритмы на основе метода пси–

преобразования [11], [12] или генетические алгоритмы [13], [14], [15]. 

  В данной работе используется генетический алгоритм с веще-

ственным кодированием.  

Поскольку в качестве одного из методов решения задачи оптими-

зации выбран метод Хука-Дживса, важным вопросом является выяв-

ление многоэкстремальности целевой функции. Для этого были зафик-

сированы результаты при выборе различных начальных приближений, 

представленные в табл. 2. 

Таблица 2 

Результаты решения задачи оптимизации методом  

Хука-Дживса из различных начальных приближений 

Параметр 

Вычислительный экспери-

мент 1 

Вычислительный экспери-

мент 2 

Начальное 

приближение 
Результат  

Начальное 

приближение 
Результат 

Внешний диаметр 

заряда, мм 
27,095 29,255 33,987 35,417 

Внутренний диа-

метр заряда, мм 
17,367 17,363 20,745 20,745 

Длина заряда, мм 93,823 101,743 125,15 130,43 

Начальный сво-

бодный объем в 

камере сгорания, л 

0,008 0,008 0,009 0,009 

Диаметр эквива-

лентного дрос-

селя, мм 

6,622 6,621 8,719 8,719 

Коэффициент рас-

хода эквивалент-

ного дросселя 

0,772 0,772 0,863 0,863 

Объем наполняе-

мой емкости, л 
1,336 1,336 1,132 1,132 

Диаметр дренаж-

ного отверстия, 

мм 

3,813 3,51 4,637 3,965 

Коэффициент рас-

хода дренажного 

отверстия 

0,828 0,828 0,879 0,743 

Значение целевой 

функции, с 
0,054 0,195 0,109 0,382 
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Сравнение результатов. Результаты, полученные при примене-

нии различных методов оптимизации, представлены в табл. 3. 

Таблица 3 

Результаты решения задачи оптимизации 

Параметр 
Исходное 

значение 

Полученное после решения задачи оптимиза-

ции значение 

Метод 

Хука-

Дживса 

Генетический 

алгоритм 

Генетический 

алгоритм + 

метод Хука-

Дживса 

Внешний диа-

метр заряда, мм 
30 35,417 35,592 35,64 

Внутренний 

диаметр заряда, 

мм 

18 20,745 20,286 20,722 

Длина заряда, 

мм 
110 130,43 130,265 130,364 

Начальный сво-

бодный объем в 

камере сгора-

ния, л 

0,01 0,009 0,008 0,01 

Диаметр эквива-

лентного дрос-

селя, мм 

7,5 8,719 7,7 6,835 

Коэффициент 

расхода эквива-

лентного дрос-

селя 

0,95 0,863 0,8 1,1 

Объем наполня-

емой емкости, л 
1,5 1,132 1,546 1,758 

Диаметр дре-

нажного отвер-

стия, мм 

4,2 3,965 3,521 3,374 

Коэффициент 

расхода дренаж-

ного отверстия 

0,85 0,743 0,86 0,717 

Значение целе-

вой функции, с 
0,09 0,382 0,43 0,53856 

 

Применение метода Хука-Дживса позволило увеличить значение 

целевой функции в 3,2 раза, генетического алгоритма — в 3,8 раза. 

Одним из недостатков метода Хука-Дживса является то, что при 

его использовании для решения задачи оптимизации результат зави-

сит от выбора начального приближения, что показано в табл. 1. Для 

устранения этого недостатка часто прибегают к способу гибридизации 

алгоритмов[16]. В данной работе на первом этапе применяется генети-

ческий алгоритм со следующими параметрами: размер популяции – 
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20, количество скрещиваний – 10, количество популяций – 10, что поз-

воляет более точно определить область, в которой находится глобаль-

ный экстремум. На втором этапе полученный результат используется 

в качестве начального приближения при использовании метода Хука-

Дживса. Такой подход позволяет увеличить значение целевой функ-

ции в 5 раз, что более эффективно по сравнению с результатом, полу-

ченным при раздельном использовании методов.  

Программная реализация. С использованием кроссплатформен-

ного фреймворка Qt  разработано приложение с  для решения прямой 

задачи, позволяющее пользователю вводить физические и геометри-

ческие параметры системы. Пользовательский интерфейс приложения 

представлен на рис. 5. 

 

Рис. 5. Интерфейс приложения  

 

В дальнейшей работе предполагается подробное изложение функ-

ционального наполнения разработанного программного комплекса и 

его возможности. 

Выводы. Построена математическая модель функционирования 

системы, состоящей из твердотопливного газогенератора и наполняе-

мой емкости постоянного объема. Методом Хука-Дживса и генетиче-

ским алгоритмом с вещественным кодированием, а также их совмест-

ным использованием решена задача оптимизации параметров твердо-

топливного модельного газогенератора. Проведено сравнение полу-

ченных результатов. Выявлена многоэкстремальность целевой функ-

ции. Применение комбинированной стратегии поиска улучшило зна-

чение целевой функции в 5 раз. 
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Optimization of solid fuel model gas generator design 
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The optimization problem is formulated, which consists in ensuring the maximum time of 

maintaining the pressure in the filled container in the range from the maximum reached to 

70 ATM. A mathematical model of a system consisting of a solid-fuel gas generator and a 

constant-volume filling tank is constructed. The optimization problem was solved by the 

Hook-Jeeves method and a genetic algorithm with real coding. The results were compared. 

A software package has been developed with the help of which a system of ordinary differ-

ential equations describing the state of the object under consideration is solved. 
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