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Рассмотрен импульсный точечный источник в нижнем слое стратифицированной 
жидкости. Получено выражение для возмущения ее свободной поверхности. Пока-
зано, что на поверхности жидкости возникают две волны, связанные с наличием  
в ней скачка плотности. Приведены примеры численных расчетов для реальных 
морских условий. Импульсный точечный источник представляет собой модель 
элементарного возмущения толщи жидкой среды, допускающую полное матема-
тическое исследование в рамках приближения малых волн. Такое приближение 
вполне оправдано в случаях моделирования реальных источников возмущений, 
находящихся на значительных глубинах, поскольку эти источники передают на 
морскую поверхность очень слабый сигнал. Основной проблемой в таких случаях 
является выделение этого сигнала из фоновых помех, например ветрового волне-
ния. Решение проблемы должно опираться на результаты математического мо-
делирования возмущений морской поверхности разными источниками в толще 
морской среды. Более сложные модели могут быть построены при рассмотрении 
реальных возмущений морской среды как некоторых суперпозиций модельных эле-
ментарных возмущений от точечных импульсных источников. Кроме того, полное 
математическое решение задачи о точечном импульсном источнике дает пред-
ставление о порядках величин возмущений морской поверхности, что создает основу 
для получения различных оценок возможных возмущений и поэтому представляет 
значительный интерес при разработке требований к аппаратуре дистанционного 
зондирования морской поверхности.  
 
Ключевые слова: двухслойная жидкость, точечный источник, волны на поверх- 
ности жидкости 

 
Введение. Процессы различной природы, протекающие в толще 

морской среды, представляют значительный интерес с точки зрения 
практического освоения океана. Однако при проведении мониторин-
га морской среды с помощью радиолокационных и оптических 
средств, размещенных на авиационных или космических носителях, 
явления, происходящие в водной толще на значительной глубине, 
недоступны для непосредственного наблюдения. О таких явлениях  
с той или иной степенью достоверности можно судить только по не-
которым признакам на морской поверхности [1]. В связи с этим важ-
но изучение волн на морской поверхности, вызывающих локализо-
ванные в водной среде источники возмущений различной природы, 
например, обтекаемые морским течением неровности дна, крупно-
масштабные вихревые структуры, подвижные участки дна и т. д. 



В.Н. Носов, А.С. Савин 

114 

При построении математической модели источники возмущений 
можно рассматривать как неоднородности гидродинамических по-
лей, локализованные в относительно небольших областях, в которых 
характерные значения соответствующих полевых величин (напри-
мер, скорости, завихренности или давления) заметно отличаются от 
фоновых. Один из наиболее эффективных способов моделирования 
неоднородностей в жидкой среде состоит в их замене эквивалентной 
системой гидродинамических особенностей (источников, стоков, 
вихрей, мультиполей) [2, 3]. При таком подходе расчет поверхност-
ных волн, порождаемых некоторой неоднородностью в морской сре-
де, может быть основан на определении элементарных волн от каж-
дой из моделирующих эту неоднородность гидродинамических 
особенностей. В частности, если рассматриваемая неоднородность 
вызывает волны небольшой амплитуды, то они представляют собой 
суперпозицию элементарных волн. Таким образом, задача о генера-
ции волн на поверхности жидкости уединенной гидродинамической 
особенностью становится базовой в рамках названного подхода. 

Точечная гидродинамическая особенность характеризуется не-
большим числом параметров, например точечный источник полно-
стью задается своими координатами и интенсивностью, т. е. объемом 
выбрасываемой в единицу времени жидкости. С этим связано удоб-
ство использования уединенной гидродинамической особенности  
в качестве простого модельного источника возмущений жидкой сре-
ды при проведении численных расчетов для оценки параметров волн, 
возникающих на поверхности жидкости, в зависимости от тех или 
иных гидрофизических условий. 

Существенную роль при передаче возмущений от источника  
в морской толще на свободную поверхность может играть стратифи-
кация водной среды. В реальных условиях открытого моря скачкооб-
разные изменения плотности воды с глубиной связаны, прежде всего, 
с наличием сезонного и главного термоклинов. При возмущении 
морской среды на границе слоев жидкости с разными плотностями 
возникают внутренние волны, амплитуда которых может исчисляться 
десятками метров. Генерация волн в стратифицированной среде 
представляет как теоретический, так и практический интерес. Основ-
ные подходы к решению задач генерации отражены в работах [4�6]. 
Волновые движения стратифицированной жидкости, воздействуя на 
морскую поверхность, приводят к образованию длинных волн, кото-
рые можно рассматривать как вторичное проявление источника воз-
мущений через посредство вызываемых им внутренних волн. Такой 
эффект продуцирует различные волновые режимы на свободной по-
верхности в зависимости от стратификации водной среды и парамет-
ров источника возмущений. При этом в одних гидрофизических  



Численное моделирование возмущения свободной поверхности� 

115 

ситуациях источники возмущений в толще стратифицированной мор-
ской среды могут вызывать весьма заметные волны на поверхности 
жидкости, а в других � практически никак не проявляться [7].  
В этой связи имеет значение влияние стратификации водной среды 
на заметность поверхностных возмущений. Достоверные оценки 
можно получить путем точного математического решения модельной 
задачи о возмущении жидкой среды, например точечным импульс-
ным источником. Вопросы, близкие к обсуждаемым в настоящей ста-
тье, рассмотрены Л.В. Черкесовым в работе [8]. Изложено решение 
задачи об импульсном возмущении двухслойной жидкости, а также 
описана генерация волн при мгновенном подъеме участка дна.  

Постановка задачи и основные соотношения. Рассмотрим тя-
желую двухслойную жидкость со свободной поверхностью. Обозна-
чим плотность жидкости в верхнем слое через ρ1, в нижнем � через 
ρ2. Будем считать, что ρ1 < ρ2, т. е. жидкость находится в состоянии 
устойчивого равновесия. Пусть в нижнем слое жидкости локализо- 
ван неподвижный точечный источник переменной интенсивности 

 .Q Q t  Направим ось z  вверх и проведем ее через рассматривае-

мый источник. Если жидкость не ограничена по горизонтали, а ее те-
чение вызвано исключительно источником, то задача обладает ци-
линдрической симметрией. Иными словами, ни одна из величин, 
характеризующих поле гидродинамических возмущений от источни-
ка, не зависит от полярного угла α, отсчитываемого от любой фикси-
рованной прямой, лежащей в горизонтальной плоскости. В силу это-
го обстоятельства естественно будет ввести цилиндрическую систему 
координат (r, α, z). 

Пусть в невозмущенном состоянии свободная поверхность жидко-
сти совпадает с плоскостью 0,z  граница раздела жидких слоев �  

с плоскостью , z H  а источник находится в точке  0,0, .h  Если  

в некоторый момент времени источник начинает свою работу, то под 
его воздействием на свободной поверхности жидкости и на границе 
раздела жидких слоев возникают волны. При достаточно большом 
удалении источника от границы раздела слоев жидкости эти волны 
имеют амплитуды намного меньше их длин. В рамках этого допуще-
ния, именуемого приближением малых волн, поле скорости жидкости 
является потенциальным в каждом слое [9]. Точнее, в нижнем слое это 
поле потенциально распространяется всюду, кроме точки локализации 
источника. 

Будем искать потенциал скорости 2  для нижнего слоя жидко-
сти в виде суммы 

     2 0Ф , , Ф , , φ , , . r z t r z t r z t                             (1) 
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Здесь потенциал скорости течения, создаваемого рассматриваемым 
источником в безграничной однородной жидкости [2, 3], определяет-
ся по формуле 

   
 

0 22
Ф , , ;

4π
 

 

Q t
r z t

r z h
                               (2) 

φ (r, z, t) � волновой потенциал, обусловленный наличием границы 
раздела верхнего и нижнего слоев жидкости и связанными с ней воз-
мущениями волнового характера. 

Волновой потенциал φ представляет собой гармоническую в 
нижнем слое жидкости функцию, удовлетворяющую уравнению 
Лапласа. С учетом независимости функции φ от полярного угла α 
уравнение Лапласа принимает вид 

2 2

2 2

φ 1 φ φ
0.

  
  

 r rr z
                                   (3) 

Потенциал скорости 1  верхнего слоя жидкости имеет исключи-

тельно волновой характер, обладает цилиндрической симметрией  
и, следовательно, удовлетворяет уравнению Лапласа в виде (3). Для 
случая бесконечно глубокой жидкости должно выполняться условие 
затухания волновых возмущений с глубиной [10]. Поэтому уравнение 
Лапласа для потенциала скорости нижнего слоя жидкости следует 
решать при условии 

   2 , , 0; .  r z t z                             (4) 

В рамках рассматриваемого приближения малых волн граничные 
условия на свободной поверхности жидкости имеют вид [9, 10] 

1 1Ф Ф
0; ; 0,

  
   

  
S

gS z
t z t

                           (5) 

где g � ускорение свободного падения; S  � отклонение свободной 
поверхности жидкости от ее невозмущенного положения 0.z  

Исключив из равенств (5) величину ,S  получим одно граничное 
условие для потенциала скорости верхнего слоя жидкости [9, 10] 

2
1 1

2

Ф Ф
0;  0.

 
  


g z

zt
                                  (6) 

На границе раздела жидких слоев принимают кинематическое 
условие равенства нормальных составляющих скорости в верхнем и 
нижнем слоях жидкости и динамическое условие непрерывности 
давления. В приближении малых волн эти условия имеют вид [9, 10]: 
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1 2Ф Ф
,  ;

 
  

 
z H

z z
                                     (7) 

2 2
1 1 2 2

1 22 2

Ф Ф Ф Ф
ρ ρ ,  .
      

               
g g z H

z zt t
            (8) 

Общее решение задачи. Применив преобразование Ханкеля ну-
левого порядка [11] 

     0
0

ρ, , φ , , ρ ,


 F z t r z t J r rdr  

где 0J � функция Бесселя нулевого порядка (к обеим частям урав-

нения (3)), получим обыкновенное дифференциальное уравнение 
2ρ 0 zzF F  с общим решением 

         ρ, , ρ, exp ρ ρ, exp ρ .  F z t A t z B t z               (9) 

Воспользовавшись обратным преобразованием Ханкеля [11] 

     0
0

φ , , ρ, , ρ ρ ρ,


 r z t F z t J r d  

находим из выражения (9) общий вид волнового потенциала ско- 
рости в нижнем слое жидкости 

           0
0

φ , , ρ, exp ρ ρ, exp ρ ρ ρ ρ.


    r z t A t z B t z J r d       (10) 

С учетом условия (4) следует принять А (, t) = 0. Применение 
аналогичного приема к определению потенциала скорости в верхнем 
слое жидкости приводит к выражению 

       1 0
0

Ф , , ρ, exp ρ ρ ρ ρ.


 r z t C t z J r d                    (11) 

С помощью известного интегрального соотношения [12] предста-
вим сингулярную часть потенциала скорости в нижнем слое жидкос- 
ти (2) в виде 

       0 0
0

Ф , , exp ρ ρ ρ.
4π



   
Q t

r z t z h J r d             (12) 

Подстановка общих выражений для потенциалов скорости в жид-
ких слоях (1), (10) � (12) в граничные условия (6) � (8) приводит  
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к системе интегральных равенств, из которых следует система диф-
ференциальных уравнений для определения неизвестных функций  
B (ρ, t), C (ρ, t), D (ρ, t). Пусть в момент времени t = 0 точечный ис-
точник, локализованный в изначально покоящейся жидкости, мгно-
венно выбрасывает жидкость объемом V  и прекращает дальнейшую 
работу. В этом случае интенсивность источника может быть задана в 
виде Q (t) = Vδ (t), где δ (t) � дельта-функция. При названных усло-
виях функции B (ρ, t), C (ρ, t), D (ρ, t) и их производные по времени 
имеют нулевые значения при любом t < 0. Решение системы диффе-
ренциальных уравнений для функций B (ρ, t), C (ρ, t), D (ρ, t), удовле-
творяющее таким начальным условиям, может быть найдено с помо-
щью преобразования Лапласа [11]. Подстановка полученных таким 
путем выражений для функций B (ρ, t), C (ρ, t), D (ρ, t) в равенства 
(10), (11) с учетом соотношений (1), (2) приводит к формулам для по-
тенциалов скорости течений в верхнем и нижнем слоях жидкости. 
Мы не рассматриваем эти выражения ввиду их громоздкости. 

Волна, возникающая на свободной поверхности жидкости, опи-
сывается амплитудой  , .S S r t  

Из первого граничного условия (5) следует, что 

1Ф1
;  0.


  


S z

g z
                                     (13) 

Воспользовавшись найденной в результате решения системы 
дифференциальных уравнений для функций B (ρ, t), C (ρ, t), D (ρ, t) 
формулой для потенциала скорости течения в верхнем слое жидкос- 
ти, представим равенство (13) в виде 

     1 2, , , . S r t S r t S r t                            (14) 

Таким образом, на поверхности двухслойной жидкости возникает 
суперпозиция двух волн 

       1 0
0

, ρ cos ρ ρ ρ ρ;


 S r t U t g J r d                    (15) 

         2
2 0

0

1
, ω ρ ρ cos ω ρ ρ ρ;



  S r t U t J r d
g

             (16) 

 
   
   

1 ρ exp ρ
ρ ;

2π 1 2δ 1 ρ

   
 

th H hV
U

th H
                      (17) 

     
 

1 δ ρ ρ
ω ρ .

1 δ ρ





gth H

th H
                                (18) 
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Полученные решения описывают модельные элементарные воз-
мущения от точечного импульсного источника. Более сложные моде-
ли могут быть построены при рассмотрении реальных возмущений 
морской среды как некоторых суперпозиций модельных элементар-
ных возмущений от точечных импульсных источников. Такой подход 
показал свою эффективность при рассмотрении не только поверх-
ностных и внутренних волн, но и волн, возникающих в жидкости  
с упругими границами [13�15]. На основе аппарата обобщенных функ-
ций и получаемых с его помощью фундаментальных решений могут 
разрабатываться как модели глобальных океанских процессов [16], так 
и локальных взаимодействий морской среды с искусственными объ-
ектами [17, 18]. Заметим, что рассматриваемый подход может иметь 
приложения к внутренним задачам гидродинамики, связанным с ис-
кусственными объектами весьма небольших масштабов по сравне-
нию с океанскими [19].  

Численное решение. В дальнейших расчетах примем H = 50 м.  
В реальных морских условиях типичное значение плотности воды  
в верхнем слое ρ1 = 1022 кг/м3. Плотность воды в нижнем слое имеет 
характерные значения 3 3

21023 кг/м ρ 1029 к .г/м   Таким плотно-

стям соответствуют значения параметра δ = 1 2   в границах 

0,993 δ 0,999.   Наиболее заметно эффекты, обусловленные наличи-
ем жидких слоев с разными плотностями, проявляются при суще-
ственном различии этих плотностей. Поэтому рассмотрим случай 
сильной стратификации морской среды, соответствующий значению 
параметра δ = 0,993. Пусть источник находится на глубине h =100 м и 
выбрасывает в момент времени 0 0t  жидкость объемом V = 100 м3. 

Полное возмущение свободной поверхности жидкости, которое 
описывается выражением (14), представляет собой суперпозицию 
двух волн. В результате проведения численных расчетов выяснилось, 
что генерируемая рассматриваемым источником поверхностная (ба-
ротропная) волна 1,S  амплитуда которой определяется формулами 

(15), (17), практически не зависит от толщины верхнего слоя жидко-
сти. При ее изменении в пределах 30�70 м амплитуда волны 1S  ме-

няется примерно на 0,1 %. Это можно объяснить тем, что даже при 
сильной стратификации морской среды значение отношения плотно-
стей жидких слоев δ близко к единице. Поэтому волна 1S  с большой 

точностью соответствует волне, распространяющейся в однородной 
жидкости. Профили волны  1 1 ,S S r t  в разные моменты времени 

приведены на рис. 1. На рис. 2 показаны профили внутренней (баро-
клинной) волны  2 2 , ,S S r t  амплитуду которой рассчитывают по 

формулам (16)� (18). 
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Рис. 1. Профили волны S1 = S1 (r, t): 
1 � t = 0 с; 2 � t = 3 с; 3 � t = 6 с 

 

Рис. 2. Профили волны S2 = S2 (r, t): 
1 � t = 0 с; 2 � t = 100 с; 3 � t = 200 с 

 
Из графиков, приведенных на рис. 1 и 2, следует, что амплитуда 

волны 2S  имеет существенно больший характерный временной пе-

риод, чем амплитуда волны S1. При рассмотренных гидрофизических 
условиях волна 1S  в начальной стадии имеет максимальную ампли-

туду около 10�3 м и характерную длину 100 м. Для волны 2S  макси-

мальная амплитуда составляет 10�6 м, длина � около 100 м. Замет-
ность волны на морской поверхности можно характеризовать ее 
наклоном, т. е. отношением характерных значений амплитуды и дли-
ны. Проведенные расчеты показывают, что волна 1S  имеет наклон 

10�5, а волна 2S  � наклон 10�8. Характерный период колебаний то-

чек свободной поверхности жидкости, обусловленный волной 1,S  со-

ставляет 1 с, волной 2S  � 100 с.  
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Заключение. Импульсный источник, локализованный в нижнем 
слое жидкости, генерирует на поверхности жидкости две кольцевые 
расходящиеся волны. В реальных морских условиях волна 1S  слабо 

зависит от соотношения плотностей жидких слоев и практически 
совпадает с волной, возникающей под действием источника в одно-
родной жидкости. Волна 2S  связана исключительно со стратифика-

цией и в однородной среде не образуется, ее можно рассматривать 
как поверхностное проявление внутренней волны. В рассмотренных 
гидрофизических условиях волна 2S  проявляется существенно сла-

бее как по амплитуде, так и по наклону по сравнению с волной 1.S  
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Numerical simulation of perturbation of two-layer liquid 
free surface by a point source localized in the lower layer 
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1Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of 
Sciences, Moscow, 119991, Russia 

2Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The paper considers a pulse point source in the lower layer of stratified fluid. An expres-
sion for the perturbation of its free surface is obtained. It is shown that two waves arise 
on the surface of the liquid, associated with the presence of a density jump in it. Exam-
ples of numerical calculations for real sea conditions are shown. The pulse point source 
is a model of elementary perturbation of the liquid medium depth, allowing a complete 
mathematical study in the framework of the approximation of small waves. This approxi-
mation is quite justified in cases of simulating real disturbance sources located at con-
siderable depths, since these sources transmit a very weak signal to the sea surface. The 
main problem in such cases is the isolation of this signal from background noise, such as 
wind waves. The solution of the problem should be based on the results of mathematical 
modeling of sea surface disturbances by different sources in the depth of the marine envi-
ronment. More complex models can be designed by considering real disturbances of the 
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marine environment as some superpositions of model elementary disturbances from point 
pulse sources. Furthermore, a complete mathematical solution to the problem of a point 
pulse source gives an idea of the orders of the sea surface disturbance magnitudes, which 
creates the basis for obtaining various estimates of possible disturbances and therefore is 
of considerable interest in the development of requirements for sea surface remote sens-
ing equipment. 
 
Keywords: liquid, point source, waves on the surface of the liquid 
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