
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование
вязкоупругости полиуретана при умеренно высоких скоростях
деформирования. Математическое моделирование и численные
методы, 2014, №3 (3), c. 39-54

Источник: https://mmcm.bmstu.ru/articles/20/

Параметры загрузки:

IP: 216.73.216.101

09.01.2026 02:12:54



Моделирование вязкоупругости полиуретана при умеренно высоких скоростях… 

39 

УДК 539.3 

Моделирование вязкоупругости полиуретана 
при умеренно высоких скоростях деформирования 
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1 МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
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Представлена математическая модель вязкоупругого поведения полиуретана 
СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей 
деформирования, не превышающих значения 10−1. Для определения вязкой состав-
ляющей деформации применена реологическая модель Бергстрема – Бойс. Связь 
напряжения с упругой составляющей деформации описана с помощью потенциала 
Арруды – Бойс. Для определения параметров модели использовались эксперимен-
тальные диаграммы сжатия полиуретана, полученные на машине Instron Electro-
puls 1000 при различных скоростях деформирования. Приведены значения пара-
метров модели, найденные путем минимизации функции отклонений расчетных 
величин от результатов эксперимента. Показано, что в рассмотренном диапа-
зоне деформаций и их скоростей модель позволяет описать поведение полиурета-
на с достаточной для практических целей точностью. Модель предназначена для 
расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, бу-
феров и других конструкций, испытывающих динамические нагрузки. 
 
Ключевые слова: полиуретан, вязкоупругость, математическая модель Берг-
стрема – Бойс, упругий потенциал Арруды – Бойс, диаграмма сжатия, скорость 
деформации, гистерезис, определение параметров модели. 

 
Введение. При анализе работы полиуретановых деталей аморти-

заторов, поглощающих аппаратов, буферов и других конструкций, 
испытывающих динамические нагрузки, важное значение приобрета-
ет учет зависимости механических свойств полиуретана от режима 
нагружения, в частности скорости нагружения. Для расчета таких де-
талей должна привлекаться теория вязкоупругих деформаций эла-
стомеров [1, 2]. Среди формулировок законов вязкоупругости для ре-
зиноподобных материалов весьма популярным у специалистов 
является предложение Бергстрема – Бойс [3]. Исследования [3–5] по-
казывают, что модель Бергстрема – Бойс позволяет достаточно точно 
описать экспериментальные данные для резины, включая гистерезис 
при циклическом нагружении и зависимость диаграмм материала от 
скорости деформирования. Применимость этой модели к полиурета-
ну для процессов с низкими скоростями деформирования изучалась в 
работе [6], где сделан вывод о ее хорошей предсказательной способ-
ности. В настоящей статье анализируется применение модели Берг-
стрема – Бойс для описания вязкоупругого поведения полиуретана 
СКУ-ПФЛ-100 при умеренно высоких скоростях деформирования. 
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Числовые значения параметров модели определяются по результатам 
испытаний образцов на сжатие с различными скоростями нагружения. 

Математическая модель вяз-
коупругости полиуретана. Соглас-
но [3], поведение вязкоупругого ма-
териала подобно поведению услов- 
ной механической системы (рис. 1), 
состоящей из двух параллельно со-
единенных звеньев A, B разной при-
роды. Упругое звено A определяет 
поведение при медленном статиче-
ском нагружении, когда демпфер 
вязкоупругого звена B не сопротив-

ляется деформации и не воспринимает напряжения. В случае конечной 
скорости деформации работают оба звена системы, причем сопротивле-
ние демпфера зависит от скорости деформации. При очень быстром ди-
намическом (мгновенном) нагружении демпфер «запирается», в нем не 
происходит деформации и напряжение распределяется между упругими 
элементами звеньев A и B. В этом случае реакция системы является 
упругой, однако жесткость повышается по сравнению с медленным 
упругим деформированием. 

Выбор потенциала для упругих элементов звеньев, а также закона 
изменения вязких деформаций демпфера определяет поведение модели. 

При параллельном соединении структур (звеньев) их деформации 
одинаковы: 

,A B F F F                                            (1) 

здесь F  — градиент вектора места (градиент деформации). 
Напряжения в материале складываются из откликов структур 

(звеньев): 

.A B σ σ σ                                            (2) 

Статическая составляющая напряжения Aσ  определяется соот-
ношениями гиперупругости на основе выражения для удельной энер-
гии деформации материала 

21
1 22 ( 1) ( , ),A A

C CW k J W I I                         (3) 

где k  — модуль объемного сжатия; detJ  F  — мера объемной де-

формации; 1 2( , )A
C CW I I  — энергия изохорической деформации; 

1CI tr C ,  21
2 12 :C CI I C C  — соответственно первый и второй 

инварианты тензора меры изохорической деформации т2/3 .J C F F  

 

Рис. 1. Условная модель вязкоупруго-
го материала 
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В соответствии с выражением (3) второй тензор напряжений 

Пиолы-Кирхгофа 2
A

A W



S

C
 имеет вид [7] 

   1 21 1 1
1 1 21 23 3( 1) 2 2 ,A A A
C C CkJ J I I I          S C I C I C C    (4) 

где 2 3
1

1
;

A
A /

С

W
J

I
 

 


 4 3
2

2
;

A
A /

С

W
J

I
 

 


 т ;C F F  1 ;CI tr C  2CI 

 1 2
12 CI : . C C  

Переходя к истинным напряжениям Коши по формуле 
т1A AJ σ F S F , можно получить 

1 1
11 2 2( 1) 2 ( ) 2 ( ),A A A A
Сk J J I dev J dev        σ I B BB          (5) 

где тB FF  — тензор меры деформации Фингера [7], символ dev  
обозначает девиатор тензора. 

Конкретизируем вид функции удельной энергии деформации по-
лиуретана. Как известно, для эластомеров предложено большое чис-
ло вариантов определения этой функции, выбор сложен. Весьма 
успешным, способным описать экспериментальные данные при раз-
личных видах напряженного состояния, признается потенциал Арру-
ды – Бойс [8] для цепочечной модели эластомера 

sh
ln ,A A

A
chain

lock

W C
    
  

                              (6) 

где AC  — коэффициент, пропорциональный начальному значению 

модуля сдвига эластомера; 1 3chain СI /   — кратность усреднен-

ного удлинения макромолекулярной цепи эластомера; A
lock  — пре-

дельное удлинение молекулярной цепи; 1( )A
chain lockL /     — 

функция, обратная к функции Ланжевена 1( ) ( )L cth .     
Модель материала Арруды – Бойс включена в конечно-элементные 

комплексы ANSYS, ABAQUS, MARC, что способствует ее популяр- 
ности. 

Воспользуемся потенциалом (6) для определения напряжений. 
При этом учтем, что для обратной к функции Ланжевена существуют 
различные аппроксимации [9,10]; в настоящей работе применим про-
стейшую из них:  

2
1

2

3
( ) ,

1
A

chain lock
x

L x x x / .
x

  
     
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При потенциале (6) соотношения упругости принимают вид 
1

1
( 1) dev

1

AA
A

A

chain lock

chain lock

L ( / )G
k J

J L ( / )





 
  

 
σ I B ,               (7) 

где 1(1 )
3

A
A A

A lock
lock

C
G L / 


 — постоянная материала, имеющая зна-

чение начального модуля сдвига; 2 3/J B B  — тензор меры Финге-
ра для изохорической деформации. 

Закон упругости Арруды – Бойс (7) содержит параметры ,AG  

,A
lock  ,k  определяемые экспериментально. 

Определение динамической составляющей напряжения Bσ  осно-
вывается на принципе мультипликативного разложения градиента 
полной деформации на упругую eF  и вязкую vF  части 

e vF F F                                              (8) 

с последующей формулировкой закона течения для скоростей вязких 
деформаций. 

Пользуясь представлением (8) и составляя выражение для про-
странственного градиента скорости [2, 7], можно получить следую-
щее кинетическое уравнение: 

1 11
e e e v e

   F F F F F D F  ,                             (9) 

где vD  — тензор скоростей вязких деформаций. 
Тензор vD  выражается по закону течения через девиатор напря-

жений 

3
dev ,

2
Bv

v
v





D σ


                                   (10) 

где ,v  v  — интенсивности скоростей деформаций и напряжений в 
вязкой среде. 

Для установления зависимости ( , )v v v chainf     в работе [3] ис-

пользована физическая концепция движения макромолекул эласто-
мера в так называемом полимерном расплаве [11]. Исходя из этой 
концепции и привлекая результаты обширных экспериментов на ре-
зинах различных марок, Бергстрем и Бойс предложили следующую 
аппроксимацию закона: 

0
,

( 1 )B

m
v

v n
v chain

A
 

   
                                 (11)  
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где A , m , n  — параметры закона деформирования; 0  — малая по-
стоянная деформация, добавляемая, чтобы описать скорость ползуче-
сти при нулевой деформации. 

Заметим, что соотношение (11) — это уравнение теории упроч-
нения [12], записанное для полимерных цепочек. Используем это со-
отношение для расчета полиуретана. 

Из кинетического уравнения (9) с учетом закона течения (10), 
(11) можно выразить скорость упругой деформации 

1
1

0

3 ( )
dev

2 ( 1 )

B
B

B

m
v

e e en
v chain

A
.


 

 
   

F F F F F σ                     (12) 

Если предположить, что градиент деформации F  и его скорость 
F  фиксируются в ходе эксперимента и являются известными функ-
циями времени, то соотношение (12) можно рассматривать как диф-
ференциальное уравнение относительно градиента упругой деформа-
ции eF . При этом динамическая составляющая напряжения Bσ  

выражается через тензор e .F  

Примем, что напряжение Bσ  подчиняется тому же закону упру-
гости Арруды-Бойс, что и напряжение Aσ  равновесного состояния 

1

1

( )
( 1) dev

(1 )

BB
B

B

B
e chain lock

e eB
e e chain lock

L /G
k J .

J L /





 
  

 
σ I B           (13) 

Интегрирование дифференциального уравнения (12) должно вы-
полняться с начальным условием 

0e t
. F I                                             (14) 

Одноосное напряженное состояние. Для определения числовых 
значений параметров модели, как правило, используются результаты 
испытаний материала при одноосном напряженном состоянии. Де-
формации материала при одноосном растяжении-сжатии характери-
зуется значениями кратностей удлинения-укорочения в продольном и 
поперечном направлениях, обозначаемых ниже 1  и 2  соответ-
ственно. Для этого состояния составим матрицы из компонент тензо-

ров ,B  ,B  dev :B  

 

2
1

2
2

2
2

0 0

B 0 0 ,

0 0

 
 

  
 

  

   

 
 

 

4 3
1 2

2 3
1 2

2 3
1 2

0 0

B 0 0 ,

0 0

/

/

/





  
 
        
   
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   
2
3

4 3 2 3 1
1 2 1 2 3

1
3

0 0

devB 0 0

0 0

/ /
.


 
              
  

              (15) 

Из соотношений упругости (7) с учетом определений (15) можно 
получить выражение для действующего напряжения растяжения-
сжатия 

4 3 2 31
1 1

1 1
2 2

( )
σ

(1 )

AA
A

A

/ /
chain lock

chain lock

L /G
.

J L /





                    
          (16) 

При использовании формулы (16) следует считать, что кратность 
удлинения в поперечном направлении 2  является величиной, зави-
симой от кратности удлинения в продольном направлении 1,  и 

определяется через 1,  исходя из условия 2 3σ σ 0A A .   Такой подход 

к определению 2  предполагает известным значение модуля объем-
ного сжатия материала. К сожалению, этот параметр для эластоме-
ров, в частности полиуретанов, редко известен с достаточной точно-
стью. Однако при одноосном напряженном состоянии малая 
объемная сжимаемость материала практически не влияет на податли-
вость образца. Поэтому при описании экспериментальных диаграмм 
растяжения-сжатия будем рассматривать полиуретан как несжимае-
мый материал, полагая, что объемная деформация отсутствует, т.е. 

2
1 2 1J .     Подставляя 1 2

2 1
/    в соотношение упругости (16), 

получим 

 
1

2 1
1 1 11

( )
σ ,

(1 )

AA
A

A

chain lock

chain lock

L /G

L /






 
  
 

                  (17) 

где  2 11
1 13 2chain .      

Закон упругости (17) является двухпараметрическим.  
Для определения динамической составляющей напряжения 1σ

B  

используем тот же закон упругости (17), в котором полная кратность 
удлинения материала 1  заменена на кратность упругого удлинения 

1
B
e  ветви В (см. рис. 1) и параметры имеют новые значения ,BG  

B
lock .  

В случае одноосного напряженного состояния уравнение (12) 
приводится к виду 
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11 1
1

1 1 0

σ
sign (σ ).

1

B B
B

B
B

m
e

n
e v chain

A
 

     


                    (18) 

Путем численного интегрирования уравнения (18), дополненного 
соотношениями упругости 11σ ( ),A   1 1σ ( ),BB

e  можно воспроизводить 

диаграммы растяжения-сжатия материала. 
Если испытания образцов проводятся с заданным законом нагру-

жения, то условное напряжение в материале (отношение нагрузки на 
образец к начальной площади его поперечного сечения) является из-
вестной функцией времени. В несжимаемом материале при одноос-
ном напряженном состоянии истинное напряжение 1  и условное 
напряжение 1

  связаны соотношением  

1 1 1 .                                             (19) 

Подставляя в (19) 1 11 1 1( ) ( )A B B
e       и дифференцируя полу-

ченное уравнение по времени, находим 

1 1
1 1 11 1 1

1 1

A B

B
B
e

e

. 
   

               
                     (20) 

При установленных связях 11σ ( ),A   1 1σ ( )BB
e  система дифферен-

циальных уравнений (18), (20) может быть численно проинтегриро-
вана по времени. Таким образом, для заданного закона нагружения 

1 ( )t  определяются кратности удлинений 1,  1
B
e  как функции вре-

мени. 
Результаты испытаний образцов полиуретана СКУ-ПФЛ-100 

на сжатие. Для анализа работы полиуретановых элементов аморти-
заторов важное значение имеют исследования зависимости механи-
ческих свойств полиуретана от скорости нагружения. Авторами про-
ведена серия испытаний образцов полиуретана СКУ-ПФЛ-100 при 
низких скоростях деформирования на машине Zwick 100 (статиче-
ские испытания) и при умеренно высоких скоростях деформирования 
на машине Instron Electropuls 1000 (динамические испытания). В ис-
пытаниях использовались короткие цилиндрические образцы с отно-
шением высоты к диаметру 1,6. 

В статических испытаниях для получения стабильных характери-
стик осуществлялось циклическое нагружение. Форма цикла нагру-
жения была треугольная, т.е. нагрузка и разгрузка происходили с по-
стоянными, причем равными скоростями. Фаза отдыха между 
циклами нагрузка-разгрузка отсутствовала. Средняя скорость дефор-
мирования составляла 0,0022 с–1. Установление диаграммы сжатия 
наблюдалось фактически после двух-трех циклов. 
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На рис. 2 приведены диаграммы пяти циклов сжатия в координа-
тах «условное напряжение – относительное укорочение».  

 

Рис. 2. Диаграммы сжатия полиуретана СКУ-ПФЛ-100 
на первых пяти циклах 

 
Для каждого цикла определены значения удельной накопленной, 

возвращенной и рассеянной энергии, а также коэффициент механи-
ческих потерь (относительный гистерезис) (табл. 1). Как можно ви-
деть, уже начиная со второго цикла, энергетические характеристики 
циклов различаются весьма незначительно, что свидетельствует об 
установлении процесса деформирования. 

Таблица 1 

Энергетические характеристики циклов нагружения 

Цикл 
нагружения 

Накопленная 
энергия, Дж/см3 

Возвращенная 
энергия, Дж/см3 

Рассеянная 
энергия, Дж/см3 

Относительный 
гистерезис 

1 3,353 2,490 0,863 0,26 
2 3,097 2,469 0,628 0,20 
3 3,061 2,459 0,602 0,20 
4 3,041 2,452 0,589 0,19 
5 3,028 2,447 0,581 0,19 

 
По диаграммам сжатия (см. рис. 2) определены значения началь-

ного модуля упругости полиуретана при медленном деформировании. 
При третьем-пятом циклах нагружения начальный модуль упругости 
составляет 20...30 МПа для диапазона относительных укорочений 
0...10 %. 

В динамических испытаниях образцы подвергались периодиче-
ской импульсной нагрузке. Во всех испытаниях номинальное значе-
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ние максимальной сжимающей силы составляло 1 кН (максимальная 
сила для машины Instron ElectroPuls 1000). В использованных образ-
цах диаметром 9,7 мм такая сила вызывает напряжение 13,5 МПа. 
Скорость нагружения изменялась от 1 кН/с (от 13,5 МПа/с) до  
50 кН/с (до 677 МПа/с). В табл. 2 приведены основные параметры 
динамических испытаний.  

Таблица 2 

Параметры динамических испытаний на машине 
Instron ElectroPuls 1000 

Испы-
тание 

Номинальная 
скорость 

нагружения, 
кН/с 

(МПа/с) 

Средняя ско-
рость дефор-
мирования, с

-1 

Номиналь-
ная макси-
мальная 

нагрузка, кН

Время вы-
держки под 
нагрузкой, с

Время вы-
держки по-
сле разгрузки 
в цикле, с 

Коли-
чество 
циклов 

1 1    (13,5) 0,29 

1 

0,1 10 10 
2 10  (135) 2,26 

0,01 1 6 3 35  (474) 6,01 
4 50  (677) 8,61 
 
В качестве примера одного из реализованных испытаний на рис. 3 

представлены графики изменения сжимающей силы и относительного 
укорочения образца в течение одного цикла нагружения со скоростью 
10 кН/с, записанные в процессе испытания. 

 

Рис. 3. Графики изменения во времени силы сжатия (1) и отно-
сительного укорочения (2) в течение одного цикла нагружения 

образца 
 
На рис. 4 приведены диаграммы динамического сжатия с различ-

ными скоростями. Диаграммы соответствуют установившемуся со-
стоянию, когда каждый последующий цикл нагружения практически 
повторяет предыдущий. 
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Рис. 4. Диаграммы сжатия полиуретана СКУ-ПФЛ-100 
при различных скоростях нагружения и разгрузки, МПа/с: 

1 — 13,5; 2  — 135; 3 — 474; 4 — 677 

 
Из диаграмм следует, что с увеличением скорости нагружения 

возрастает как начальный модуль упругости, так и среднее значение 
модуля во всем интервале деформаций. В табл. 3 приведены характе-
ристики гистерезисных потерь. 

Таблица 3 

Характеристики гистерезисных петель, полученных 
при динамических испытаниях 

Испы-
тание 

Средняя 
скорость 

деформиро-
вания, с-1 

Достигнутое 
условное 

напряжение, 
МПа 

Относитель-
ное укороче-

ние, % 

Накоплен-
ная энергия, 
Дж/см3 

Поглощен-
ная энергия, 
Дж/см3 

Относи-
тельный 
гистерезис 

1 0,29 13,4 30,5 1,913 0,698 0,37 

2 2,26 12,6 26,4 1,689 0,808 0,48 

3 6,01 12,4 25,0 1,647 0,876 0,53 

4 8,61 13,4 25,0 1,788 0,924 0,52 

 
Можно видеть, что с ростом скорости нагружения в рассмотрен-

ном диапазоне наблюдается некоторый рост относительного гистере-
зиса. Минимальное значение гистерезиса наблюдается при статиче-
ском нагружении (см. табл. 1). Полученные результаты испытаний 
использованы для определения значений параметров модели Берг-
стрема – Бойс. 

Результаты моделирования. Значения параметров ,AG  A
lock  

модели Арруды – Бойс (17) подбирались по кривой статического 
нагружения, показанной на рис. 2. Относительные укорочения огра-
ничивались значением 35 %. Для поиска указанных параметров ис-
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пользовался алгоритм минимизации функции отклонений расчетных 
величин 11 ( )   от результатов эксперимента методом Нелдера – Ми-

да. Независимо от этого для повышения достоверности осуществлял-
ся поиск значений с помощью встроенных средств программы  
ANSYS. В результате независимых решений установлены весьма 
широкие диапазоны значений параметров 4,3 5,5AG    МПа, 

1,5 2,9A
lock .    Конкретные значения ,AG  A

lock  зависят от способа 

формирования минимизируемой функции отклонений: числа и рас-
положения точек сравнения расчетных и экспериментальных данных, 
выбора разных весовых коэффициентов для областей малых и боль-
ших деформаций. 

На рис. 5 показаны расчетные и экспериментальная статические 
диаграммы сжатия полиуретана. Расчеты выполнены при четырех 
комбинациях параметров ,AG  A

lock .  В целом полученные результаты 

свидетельствуют о применимости модели Арруды – Бойс для анализа 
упругих деформаций полиуретана. Однако диаграммы на рис. 5 поз-
воляют увидеть и некоторый дефект модели. На начальном участке 
нагружения, где согласно результатам испытаний наблюдается сни-
жение жесткости полиуретана, расчетные кривые уклоняются от экс-
периментальных. 

 
Рис. 5. Результат описания экспериментальной диаграммы 

сжатия полиуретана (кривая 1)  при помощи модели  
Арруды – Бойс: 

2 – 5, 3AG   МПа, 2, 5;A
lock   3 — 5, 3AG   МПа, 2, 9;A

lock   

 4 — 4, 3AG   МПа, 2, 5;A
lock   5  — 4, 3AG   МПа,  

2, 9A
lock   
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Задача калибровки вязкоупругой модели Бергстрема – Бойс, со-

стоящая в нахождении шести параметров: ,BG  ,B
lock  ,A  ,m  ,n  0 ,  

существенно сложнее, чем подбор коэффициентов для соотношения 
упругости (17). Эта задача требует отдельного рассмотрения, в 
настоящей статье ограничимся представлением некоторых получен-
ных результатов. 

Для каждого динамического режима испытаний, указанного в 
табл. 2, 3, параметры модели подбирались отдельно. Выбранные зна-
чения приведены в табл. 4. 

Таблица 4 

Параметры модели Бергстрема – Бойс и рассчитанные значения 
относительного гистерезиса 

Испытание ,BG  МПа B
lock  A, МПа - m с-1 m n 0  

Расчетное значение 
относительного 
гистерезиса 

1 4,8 7,0 0,007 2 0,3 10 -6 0,27

2 8,8 7,0 0,04 2 0,3 10 -6 0,40 

3 11,0 7,0 0,09 2 0,3 10 -6 0,45 
4 11,8 7,0 0,1 2 0,3 10 -6 0,46 

 
Для оценки точности моделирования при подобранных параметрах 

восстановлены диаграммы установившегося циклического сжатия по-
лиуретана путем интегрирования уравнений (18), (20). На рис. 6 сопо-
ставлены расчетные и экспериментальные гистерезисные петли при 
сжатии с различными скоростями нагружения и разгрузки. 

 

Рис. 6 (начало). Сравнение расчетных и экспериментальных диаграмм сжатия по-
лиуретана при различных скоростях нагружения: 

а − 13,5 МПа/с;   б − 135 МПа/с 
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Рис. 6 (окончание). Сравнение расчетных и 
экспериментальных диаграмм сжатия по-
лиуретана при различных скоростях нагру- 

жения: 
в − 677 МПа/с 

 
Как можно видеть, формы гистерезисных петель весьма заметно 

различаются, наибольшие отличия между расчетом и экспериментом 
наблюдаются в кривых разгрузки. Вместе с тем величина рассеяния 
энергии, предсказываемая с помощью модели, хорошо соответствует 
эксперименту. Показателем этого служит близость эксперименталь-
ных и расчетных значений гистерезиса, приведенных в последних 
столбцах таблиц 3 и 4. 

Заключение. Реологическая модель, предложенная Бергстремом и 
Бойс, позволяет описать поведение полиуретана при сжатии в 
рассмотренном диапазоне деформаций и их скоростей с достаточной 
для практических целей точностью. Для отдельного динамического 
режима удается определить параметры модели, обеспечивающие при-
ближенное согласование с экспериментом. При изменении режима 
нагружения параметры приходится переопределять. Процедура 
определения единого набора значений параметров модели, пригодных 
для описания экспериментальных данных при разных скоростях 
нагружения, требует дополнительного исследования. 
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Modeling polyurethane viscoelasticity 
at moderately high strain rates 
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1 Bauman Moscow State Technical University, Moscow, 105005, Russia 
2 TSNIISM, Khotkovo-town, Moscow Region, 141350, Russia 

 
The article presents a mathematical model of the viscoelastic behavior of polyurethane 
SKU-PFL-100 for strain range of 0...30 % and moderately high strain rates up to 10–1. 
To determine the viscous component of the deformation Bergstrom – Boyce rheological 
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model has been applied. Relationship between stress and the elastic component of defor-
mation is described by an Arruda – Boyce potential. We determined the model parame-
ters using experimental compression diagrams of polyurethane obtained from Instron 
Electropuls 1000 machine at different strain rates. The model parameter values obtained 
by minimizing a function of the calculated value deviations from the experimental results 
are given. It is shown that in the considered range of deformations and strain rates model 
allows describing the polyurethane behavior with sufficient accuracy for practical pur-
poses. The model is designed for calculating polyurethane shock-absorber parts, cush-
ions, buffers and other structures subjected to dynamic loading. 
 
Keywords: polyurethane, viscoelasticity, Bergstrom–Boyce mathematical model, Arruda–
Boyce elastic potential, compression diagrams, strain rate, determination of model pa-
rameters. 
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