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В статье рассматривается метод построения систем дифференциальных уравне-
ний, имеющих заданный набор гладких функций в качестве первых интегралов - гло-
бальных инвариантов. Данный алгоритм позволяет строить как системы детер-
министических дифференциальных уравнений, так и стохастических дифференци-
альных уравнений Ито. Стохастические уравнения могут быть диффузионными (с 
винеровскими возмущениями) или диффузионными со скачками, вызванными скач-
ками пуассоновского процесса. Предложенный алгоритм опирается на предыдущие 
работы автора и не имеет аналогов. Приведено детальное описание алгоритма в 
фазовых пространствах размерности 2 и 3. Представляется MathCad-программа, 
автоматизирующая процесс построения систем детерминистических дифферен-
циальных уравнений и систем стохастических дифференциальных уравнений Ито с 
винеровским процессом. Приведены примеры автоматизированного построения си-
стем дифференциальных уравнений разных типов. Правильность построения си-
стем уравнений проверяется с помощью численного решения полученного уравнения 
и определения значения функции, объявленной первым интегралом, в зависимости 
от решения этой системы (для детерминистических- уравнений) или реализации 
решения (для стохастических уравнений). Решение систем уравнений производится 
классическими методами - Эйлера, Эйлера-Маруямы и с использованием метода 
статистического моделирования Монте-Карло. Решения уравнений и значения 
функции - инварианта представлены графически. Применение представленной тео-
рии и разработанной программы MathCad продемонстрировано на примере постро-
ения программных управлений с вероятностью 1 (PCP1) для стохастической SIR-
модели. Результаты работы могут быть использованы для построения модели ди-
намической системы с инвариантами и дальнейшего исследования таких систем. 
 
Ключевые слова: первый интеграл, система дифференциальных уравнений, стоха-
стические уравнения, алгоритмизация процесса, MathCad  
 

Введение. Модели реальных явлений всегда основываются на 
определённых ограничениях. Для моделей детерминированных 
процессов такие ограничения присутствуют, например, в форме 
закона сохранения. В условиях, когда уравнения, описывающие 
физическую систему, ещё не известны, законы сохранения являются 
эффективным способом её исследования, позволяющим иногда 
установить и сами уравнения. 

Включение в рассмотрение неопределённости существенно 
изменяет подходы к моделированию. Однако и в этом случае 
динамическая система может иметь инварианты [1]. Задача 
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построения уравнений движения по заданным свойствам движения и 
исследование устойчивости этого движения является одной из 
обратных задач динамики. Решение этой задачи состоит в построении 
системы дифференциальных уравнений (ДУ), имеющих данную 
интегральную кривую, и установлении условий устойчивости (в том 
или ином смысле). Традиционно для первой части используется метод, 
предложенный Н. П. Еругиным [2], далее развитый Р. Г. 
Мухарлямовым, И. А. Мухаметзяновым и их учениками. 
Предложенные методы основаны во многом на линеаризации функций 
правой части, что не всегда даёт адекватный результат. В 2001 г. М. И. 
Тлеубергенов при рассмотрении обратных задач подошёл к 
построению систем СДУ Ито, содержащих случайную составляющую 
только в виде винеровского процесса [3]. В 1989 г. В. А. Дубко [4] 
предложил метод построения системы дифференциальных уравнений  
(СДУ) Ито  на основе инварианта - функции, которая должна с 
вероятностью 1 сохранять постоянное значение на любом решении 
строящейся системы СДУ – первого интеграла этой системы 
уравнений. 

Особенность метода построения систем ДУ, предложенного Н. П. 
Еругиным и развитого Р. Г. Мухарлямовым, И. А. Мухаметзяновым и 
их учениками состоит в том, что авторы восстанавливали систему на 
основе локальных первых интегралов (интегральных кривых), 
связанных с конкретными начальными условиями.  

Предлагаемый в работе метод отличен от метода Н. П. Еругина и 
методов, на нём построенных, и не является ни обобщением, ни 
частным случаем описанных выше. В данном методе для построения 
системы ДУ используются глобальные первые интегралы при любых 
начальных условиях и вопрос об устойчивости инварианта снят – его 
значение сохраняется с вероятностью 1, подобно [4]. 

В работах [5–7] был предложен алгоритм построения систем СДУ 
Ито с пуассоновскими скачками (ОСДУ Ито) со свойством сохранения 
с вероятностью 1 инварианта, однако его применение достаточно 
сложно технически в связи с вычислением множества определителей 
векторно–функциональных матриц, связанных с матрицами Якоби. 
Однако данный алгоритм может служить основой для программного 
продукта, позволяющего упростить этот процесс получения системы 
дифференциальных уравнений, подбора функций, обеспечивающих 
удобство моделирования и визуализации полученных результатов. 

Целью статьи является представление алгоритма и программной 
реализации аналитического построения моделей динамических 
систем, как детерминистических, так и стохастических, для которых 
семейство гладких функций определяет множество глобальных 
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первых интегралов строящейся системы дифференциальных 
уравнений. 

Исходные обозначения и предварительные положения. 
Обозначим: =0 0 1{ } = { , , , }n

j j ne e e e
     — ортонормированный базис в 

,n
    0

=1

( , ) ( , )
( , ) =

n

i
i i

u t u t
u t e e

t x

 
 

 x x
x

 
 — обобщенный градиент 

функции ( , ),u t x  nx     — случайное событие; w( )t  — винеровский 
вещественно- значный процесс  (ВП), ( , )t    — пуассоновская мера 
(ПМ), т.е. случайная величина с распределение Пуассона, имеющая 
свойства меры; ( )R   — пространство значений вектора s  . 
Рассматриваемые ниже w( )t  и ( , )t    являются взаимно-
независимыми. 

Рассмотрим задачу Коши для ОСДУ Ито  

, ( )

0

( ) = ( , ( )) ( , ( )) w ( ) ( , ( ), ) ( , ),

(0) = , = 1,..., ,

i i i k k iR
dx t a t t dt b t t d t g t t dt d

i n


    x x x

x x
    (1) 

с условиями: 1,1 1,2 1,2,1
, , , ,( , ) , ( , ) , ( , , ) ,i t x ij t x i t xa t b t g t   x x x    и функция 

( , ) nt y x   — ее решение, зависящее от начального условия. 
Указанные условия являются дополнительными к стандартным 
условиям существования и единственности решения системы (1) [8]. 

Определение [9]. Неслучайную функцию ( , )u t x  будем называть 
первым (детерминированным) интегралом (ПИ) системы ОСДУ (1), 
если она с вероятностью 1 сохраняет постоянной значение для любой 
реализации случайного процесса 0( , , )t x x  являющегося решением 

этой системы: 0 0( , ( , , )) = (0, ).u t t ux x x   

Поскольку первый интеграл динамической системы формально 
зависит от времени, его можно будем считать динамическим 
инвариантом. 

Следует отметить, что ПИ может быть определен только в 
пространстве размерности 2n  , поскольку наибольшее число 
независимых ПИ на единицу меньше размерности пространства [1,4] 
(также этот вывод можно получить, опираясь на второе утверждение 
Теоремы 2, сформулированной ниже). Понятие ПИ системы СДУ 
имеет важное значение, например, для построения модели 
динамической системы, обладающей инвариантами [7, 10] и 
построения программных управлений с вероятностью 1 (PCP1) [5, 6, 
11, 12] и др. 

Применение СДУ к моделированию реальных систем открывает 
перспективу для использования первого интеграла таких уравнений 
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для решения подобных задач, связанных со стохастическими 
системами. 

Для случая только винеровских возмущений (классическое 
уравнение Ито) в [1] исследование свойств ПИ как 
детерминированной функции было связано с установлением 
независимости такой функции от реализаций ( )w t . При добавлении 
пуассоновских возмущений (обобщённое уравнение Ито) такое 
требование приводит к следующим условиям.   

Теорема 1. Пусть случайный процесс ( )tx  является решением 

системы ОСДУ (1). Функция   1,2
,, t xu t x   есть первый интеграл 

системы (1) тогда и только тогда, когда она удовлетворяет условиям:  

 
( , )( , , ) ( , , ) 1

[ ( , ) ( , ) ] = 0
2

ik
i j k

i j

b tu t u t
a t b t

t x x

   
 

  

xx x
x x ; 

 
( , , )

( , ) = 0i k
i

u t
b t

x




x
x  для всех = 1,k m ; 

 для любых s   во всей области определения процессa: 
( , , ) ( , ( , , ), ) = 0u t u t g t   x x x . 

Получение данного результата стало возможным после 
пприменения обобщенной формулы Ито–Вентцеля – специального 
«правила дифферен цирования» для случайной сложной функции [9, 
13]. 

Построение системы стохастических дифференциальных 
уравнений Ито по заданному набору функций. Построение системы 
n  дифференциальных уравнений по известному множеству его 
первых интегралов опирается на векторное произведение в 
пространстве n . В n –мерном пространстве с базисом =1{ }n

j je


 любой 

вектор ,a


 ортогональный множеству векторов 
(1)

,


 , 
( 1)n




, будет 
определяться следующим образом:  

 

1 2
(1) (1) (1)

(1) ( 1) 1 2

( 1) ( 1) ( 1)
1 2

= [ , , ] det , .

n

n n

n n n
n

e e e

a
  

    

  



  

  
  
            

  
    

   


  

Это произведение отлично от нуля в случае, если векторы линейно 

независимы. Введем вместо векторов 
( )j




 обобщённые градиенты 
( , ),jf t x  тогда линейная независимость указанных векторов 
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пространства [0, ] nT   соответствует независимости функций 

( , )jf t x , = 1,j n . 

Построение системы ОСДУ Ито по заданному набору 
функций. Определим вид системы ОСДУ Ито с начальными 
данными, имеющей известный СПИ. 

Теорема 2 [3]. Пусть 0: n x   , 2n  , 1,2
,( , ) t xu t x  , 0( , )x t x  — 

решение ОСДУ Ито:  

( )

0

( ) = ( , ( )) ( , ( )) ( ) ( , ( ), ) ( , )

(0) = , 0.

R
d t A t t dt B t t d t g t t dt d

t


   



x x x w x

x x
 (2)  

Пусть ( , )if t x , = 1, 1,j n   и ( , ( , )),p t x = 1, 2,p n  — произвольные 

функции из 1,1
,t x  и 1,1,1

, ,t x  , независимые с функцией ( , ),u t x  и пусть 

( , )H t x — матрица вида  

0 1

1

1 1 1

1

1 1 1

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , ) =

( , ) ( , ) ( , )

n

n

n
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n

e e e

u t u t u t

t x x

f t f t f t
H t

t x x

f t f t f t

t x x
  

 
    

   
    
   
 
 
   
 

   

x x x

x x x
x

x x x

  





   



. 

Если ( , )u t x  является СПИ системы (2), тогда:  

1. матрица ( , )B t x  состоит из столбцов ( , ) = ( , )k ik iB t b t ex x


 = 1, ,k m  

вида  ( , ) ( , ) det ( , ) ,k ooB t q t M t x x x  где ( , )M t x  — минор, соответ-

ствующий элементу ,0nf  матрицы ( , )H t x ;  

2. ( , )A t x  имеет вид: 
( , )1

( , ) ( , ) [ ] ( , ) ,
2

k
k

B t
A t R t B t

     

x
x x x

x
 где 

( , )R t x  — матрица–столбец, компоненты ( , )ir t x , =1,i n , которой 

определяются следующим образом: 1
0( , ) det ( , ) = ( , ) ;i iC t H t e r t e  x x x
 

( , )C t x — алгебраическое дополнение элемента 0e


 матрицы ( , ),H t x

det ( , ) 0C t x  и 
( , )

[ ]kB t


x

x
 — матрица Якоби для векторной функции 

( , )kB t x ;  
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3. коэффициент ( , , ) = ( , , )i ig t g t e x x


 при пуассоновской мере 

определяется представлением, ( , , ) = ( , , )g t t  x y x x  где ( , , )t y x  — 
решение системы дифференциальных уравнений, построенных на 
основе векторного произведения 

1 2

1 2

1 1 1

1 2

2 2 2

1 2

( , ( , )) ( , ( , )) ( , ( , ))
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

 

удовлетворяющее начальному условию ( , ,0) = .ty x x  
Доказательство теоремы приведено в [7].  
В силу того, что часто используется моделирование в двух- и 

трехмерном фазовом пространстве, рассмотрим применение этой 
теоремы в пространствах такой размерности. Данный процесс может 
быть алгоритмизирован. 

Описание алгоритма в 2 . Набор исходных данных: функция 
( , )u t x  — первый интеграл; дополнительная функция ( , )h t x линейно 

независимая с ( , )u t x  и произвольная функция 0 ( , )q t x . В 2  положим 
*= ( , )x yx . 

Построение системы обыкновенных ДУ (без случайных 
возмущений). Вычисление векторного произведения на основе 
частных производных функций  ( , )u t x  ( , )h t x  в соответствии с 
теоремой 2  

0 1 2

0 0 1 1 2 2

( , , ) ( , , ) ( , , )
det =

( , , ) ( , , ) ( , , )

= ( , , ) ( , , ) ( , , ) .

e e e

u t x y u t x y u t x y

t x y

h t x y h t x y h t x y

t x y

t x y e t x y e t x y e  

 
 
 
   
    
   
    

 

  

  

                                   (3) 

Определение алгебраических дополнений элементов первой 
строки определителя (3) и компонент вектора – коэффициента при dt :  
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1 2
1 2

1 1

( , , ) ( , , )
( , , ) = , ( , , ) = .

( , , ) ( , , )

a t x y a t x y
A t x y A t x y

C t x y C t x y
 

Векторная форма коэффициента при детерминистического 
уравнения:  

1

2

( , ( ), ( ))
( , ( ), ( )) = .

( , ( ), ( ))

A t x t y t
A t x t y t

A t x t y t

 
 
 

 

Вывод результата ОДУ: Система обыкновенных 
дифференциальных уравнений с первым интегралом ( , , )u t x y , 
дополнительной функцией ( , , )h t x y  и произвольной функцией 

0 ( , , )q t x y  (без случайных воздействий:  

 

( )

= ( , ( ), ( )).
( )

dx t

dt A t x t y t
dy t

dt

 
 
 
 
  

 

Построение системы СДУ Ито с винеровскими возмущениями. 
Cистема строится с использованием предыдущего шага. 

Построение векторного произведения на основе частных 
производных функции ( , )u t x : 

1 2
1

2

( , , )
( , , ) = det = .( , , ) ( , , )

( , , )

e e
d t x y

D t x y u t x y u t x y
d t x y

x y

 
           

 

 

Определяем компоненты вектора 1( , , )B t x y  — столбца матрицы 

при винеровской составляющей: 

1
1 0

2

( , , )
В ( , , ) = ( , , ) ( , , ) = .

( , , )

b t x y
t x y q t x y D t x y

b t x y

 
 
 

 

Определяем стохастическую добавку в коэффициент сноса:  

1 1

1 1

2 22 2

( , , ) ( , , )

( , , ) ( , , )
( , , ) = = .

( , , ) ( , , )( , , ) ( , , )

b t x y b t x y

b t x y p t x yx y
HP t x y

b t x y p t x yb t x y b t x y

x y

  
                  
   

 

Определение компонент коэффициента сноса – коэффициента при
dt :  
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1
01 1

2
02 2

( , , )
( , , ) = ( , , )

2
( , , )

( , , ) = ( , , ) .
2

p t x y
A t x y A t x y

p t x y
A t x y A t x y




 

Коэффициент сноса: 01
0

02

( , ( ), ( ))
( , ( ), ( )) =

( , ( ), ( ))

A t x t y t
A t x t y t

A t x t y t

 
 
 

. 

Коэффициент при винеровской составляющей для скалярного ВП:  

1В( , ( ), ( )) = В ( , ( ), ( ))t x t y t t x t y t  

Вывод результата СДУ1: Вывод результата СДУ1: система 
стохастических уравнений Ито с одномерным винеровским процессом 
w( )t , имеющая первый интеграл ( , ( ), ( ))u t x t y t , с дополнительной 

функцией ( , , )h t x y  и произвольной функцией 0 ( , , )q t x y :  

0

( )
= ( , ( ), ( )) В( , ( ), ( )) w( ).

( )

dx t
A t x t y t dt t x t y t t

dy t

 
  

 
 

Коэффициент при винеровской составляющей для двумерного ВП  

*
1 2w( ) = (w ( ), w ( ))t t t :  

1 1

2 2

( , ( ), ( )) ( , ( ), ( ))
ВВ( , ( ), ( )) =

( , ( ), ( )) ( , ( ), ( ))

b t x t y t b t x t y t
t x t y t

b t x t y t b t x t y t

 
 
 

. 

Вывод результата СДУ2: система стохастических уравнений Ито 
с двумерным винеровским процессом, имеющая первый интеграл 

( , , )u t x y , с дополнительной функцией ( , , )h t x y  и произвольной 

функцией 0 ( , , )q t x y :  

1
0

2

w ( )( )
= ( , ( ), ( )) ВВ( , ( ), ( )) .

w ( )( )

tdx t
A t x t y t dt t x t y t

tdy t

  
    

   
 

Построение системы ОСДУ Ито. К сожалению, полностью 
автоматизировать процесс построения системы СДУ Ито с 
винеровскими возмущениями и пуассоновскими скачками 
невозможно, поскольку требуется решить систему уравнений с 
частными производными вида, неизвестного заранее. Кроме того, не 
всегда построенная на основании теоремы 2 система будет иметь 
решение в явном виде, а именно явный вид решения указанной выше 
системы позволяет определить коэффициент для слагаемого при ПМ. 
В некоторых случаях описанную проблему можно решить за счет 
подбора дополнительных и произвольной функций. 
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В случае, когда матрица 1

2

( , , , )
( , , , ) =

( , , , )

g t x y
g t x y

g t x y





 
 
 

  определена, 

то она вводится дополнительно. Тогда в алгоритм добавляется 
следующий шаг.  

Вывод результата СДУ1P: система стохастических уравнений Ито 
со скалярным винеровским процессом w( )t  и пуассоновской 
составляющей, имеющая первый интеграл ( , , )u t x y , с дополнительной 

функцией ( , , )h t x y  и произвольными функциями 0 ( , , )q t x y и 1( , , )q t x y  

(последняя функция вводится из соображений удобства 
моделирования):  

0

( )

( )
= ( , ( ), ( )) В( , ( ), ( )) w( )

( )

( , , , ) ( , ).
R

dx t
A t x t y t dt t x t y t t

dy t

g t x y dt d


  

 
   

 

 
 

Для двумерного ВП результат аналогичен предыдущему. 
Описание алгоритма в 3 . Отличием от алгоритма в случае 2  

является набор исходных функций и возможность учета трехмерного 
винеровского процесса. Введение исходных данных: функции          

( , )iu t x  — первого интеграла, дополнительной функции ( , )jh t x ,   

линейно независимых с ( , )iu t x  и произвольной функции 0 ( , )q t x , 

3.i j   Процесс построения систе-мы ДУ аналогичен ранее 

изложенному. 
Программная реализация построения системы ДУ в 2 и 3 . 

Программа построения системы дифференциальных уравнений на 
основе инвариантов в 2 и 3  реализована в MathCad. Для построения 
системы дифференциальных уравнений входными данными являются: 
функции ( , )iu t x  — инвариант (ПИ), дополнительные функции ( , )jh t x  

и произвольная функция 0 ( , )q t x . Общее число инвариантов и 

дополнительных функций равно размерности фазового пространства 
( = 2,3)n . В результате получаем систему обыкновенных ДУ (без 
стохастической части), систему СДУ Ито с винеровским процессом – 
скалярным и двумерным. Для решения системы детерминистических 
и стохастических ДУ используются известные метод Эйлера и 
стохастический метод Эйлера соответственно [14].  В силу того, что 
вспомогательная система ДУ, построенная согласно п.3 Теоремы 2, 
может быть любого вида, нет возможности ее численного решения 
«универсальным» методом, поэтому построение системы СДУ с пуас-
соновскими скачками программно не реализуется, т.е. может решаться 
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только непосредственно. Кроме того, система не всегда имеет решение 
в явном виде. Если вспомогательная система ДУ имеет решение в яв-
ном виде, то возможно построение системы СДУ со скачками и далее 
находится ее численное решение с помощью метода Монте-Карло. 
Поскольку целью программной реализации является аналитическое 
построение системы ДУ, а численное решение построенных систем 
уравнений используется только для демонстрации правильности 
метода построения, то вопросы сходимости и т. п. не 
рассматриваются. 

Классический метод Эйлера. Пусть дана задача Коши для 
системы уравнений первого порядка:   

=0 0

( )
= ( , ), ( ) | = ,t

dx t
f t x x t x

dt
 

где функция f  определена на некоторой области [0, ] nT  . 
Решение ищется на интервале изменения параметра t : [0, ]t T . На 

этом интервале введем узлы: 10 < < < =Nt t T , N  — число точек 

разбиения, зависит от шага разбиения. Численное решение в узлах it , 

которое обозначим через ix , определяется по формуле:  

1 1 1= ( , ), = 1,2,3, , ,i i i ix x hf t x i N     

где 1= i ih t t   — шаг разбиения. 

Метод Эйлера - Маруямы. Рассмотрим задачу Коши для 
системы стохастических дифференциальных уравнений Ито  

=0 0( ) = ( , ( )) ( , ( )) w( ), ( ) | = .tdx t A t x t dt B t x t d t x t x  

Численное решение определяется по формуле:  

1 1 1 1 1= ( , ) ( , ) , = 1,2,3, , ,i i i i i i ix x hA t x hB t x i N        

где 1= i ih t t   — шаг разбиения, i  — значение случайной величины, 

имеющей нормальное распределение (0,1)   . 
Стохастический метод Эйлера для уравнения со скачками. 

Численное решение задачи Коши для системы СДУ Ито со скачками  

( )

=0 0

( ) = ( , ( )) ( , ( )) w( ) ( , ( ), ) ( , ),

( ) | = .

R

t

dx t A t x t dt B t x t d t g t x t dt d

x t x


      

определяется по формуле: 

1 1 1 1 1 1= ( , ) ( , ) , = 1,2,3, , ,i i i i i i i ix x hA t x hB t x i N           
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где 1= i ih t t   — шаг разбиения, i  — значение случайной величины, 

имеющей нормальное распределение (0,1)   , i  — слагаемое, 

определяющее величину случайного скачка в момент времени it , 

разыгрываемое, например, по методу Монте–Карло: 

1 1 1 1 1
1

( , , ), < ;
=

0, иначе,
i i i i i

i

g t x r 
     







 

1ir  — значение случайной величины, равномерно распределённой на 

промежутке (0,1) .  Число 1i   также может быть случайным, любой 

природы, в том числе равномерно распределённым. 
Примеры построения моделей динамических систем с 

инвариантами. Построение систем ДУ производится MathCad-
программой. Будем фиксировать только результаты. 

Пусть функция ( , , ) = t tu t x y e e x y    интерпретируется как 
первый интеграл (инвариант) при начальном условии 

(0) = 0, (0) = 1,x y дополнительная функция 2( , , ) =h t x y y x t   и 
( , , ) =q t x y x  — произвольная. 

Система без возмущений. Строим систему детерминистических 
уравнений, для которой функция ( , , ) = t tu t x y e e x y    — первый 
интеграл. Система уравнений имеет вид:  

( ) 1 ( ) 2 ( )( ) 1
= , = .

2 ( ) 1 2 ( ) 1

t t t tdx t e e dy t x t e e

dt x t dt x t

    


 
              (4) 

Результаты численного моделирования решения системы 
уравнений (4) методом Эйлера приведены на рис. 1. Указанная 
функция является инвариантом для данной системы уравнений и 
сохраняет значение 1. 

Возмущения в виде одномерного винеровского процесса. 
Построенная на основе функций ( , , )u t x y  и ( , , )h t x y  система СДУ 
имеет вид:  

1 ( )
( ) = ( ) ( ),

2 ( ) 1 2

2 ( )( ) 1 ( )
( ) = ( ) ( ).

2 ( ) 1 2

t t

t t

e e x t
dx t dt x t dw t

x t

x t e e x t
dy t dt x t dw t

x t





   
     


        

               (5) 

Результаты численного моделирования решения системы 
уравнений (5) методом Эйлера приведены на рис. 2. Использованный 
метод применяется к линейным уравнениям, а стохастическое 
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уравнение (5) нелинейное, то возникающие погрешности отразились 
на значениях одной из данных функций – дополнительной функции. 
При любых реализациях решения СДУ функция 

( , ( ), ( )) = ( ) ( )t tu t x t y t e e x t y t    сохраняет постоянное значение, 
равное 1.  

 

Рис. 1. Численное моделирование решения системы уравнений (4) и значений 
функции ( , ( ), ( ))u t x t y t  в MathCad 

 

 

Рис. 2. Реализация численного моделирования решения системы уравнений 
(5) и значений функции ( , ( ), ( ))u t x t y t  в MathCad 

 
Диффузионный процесс со скачками. Используется уже 

построенная система (5). Обозначим: *= ( , )x yx  и *
1 2= ( , )z zz . 

Коэффициент ( , , )g t x  при ПМ определяется равенством 
( , , ) = ( , , )g t t x x  z z , где ( , , )t z x  — решение системы ДУ из 

теоремы 2, удовлетворяющее начальному условию ( , , 0) =tz x x . Для 
построения ОСДУ необходимо получить явное решение 
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соответствующей системы ОДУ в аналитическом виде. Приведем 
полностью процесс получения этого решения. В соответствии с 
утверждением теоремы 2 определим частные производные функции 

( , )u t z :  

1 2

( , ) ( , )
= 1, = 1.

u t u t

z z

 


 
z z

 

Теперь строим систему ДУ:  

1

2

( , , )

1( , , )
= .

( , , ) 1

z t

t

z t







 
             
  

x

z x

x
 

Её решение составляют функции 1 1( , , ) = ( ),z t C  x x

2 2( , , ) = ( )z t C  x x . Начальное условие =0( , , ) | =t z x x  определяет 

функции 1( ) =C xx  и 2 ( ) = .C yx  Тогда 1( , , ) = ,z t x  x  

2 ( , , ) = .z t y  x  С учетом ( , , ) = ( , , ) ,g t z t x x  z  получаем: 
*( , , , ) = ( , )g t x y      Соответственно, диффузионная система со 

скачками имеет вид:  

( )

( )

1 ( )
( ) = ( ) ( ) ( , ),

2 ( ) 1 2

2 ( )( ) 1 ( )
( ) = ( ) ( ) ( , ).

2 ( ) 1 2

t t

R

t t

R

e e x t
dx t dt x t dw t dt d

x t

x t e e x t
dy t dt x t dw t dt d

x t





 

 





   
      


         




  (6) 

Результаты численного моделирования решения уравнения (6) 
представлены на рис. 3. На любых траекториях решения уравнения (6) 
функция ( , ( ), ( )) = ( ) ( )t tu t x t y t e e x t y t    является первым 
интегралом данной системы. 

Применение: управляемая SIR-модель. Построение системы 
дифференциальных уравнений с заданным первым интегралом дает 
возможность определения управлений в динамической системе.  

Определение. Программным управлением с вероятностью 1    
(PCP1 – Programmed Control with Probability 1) будем называть такое 
управление в стохастической системе, которое с вероятностью, равной 
1, обеспечивает сохранение постоянного значения для заданных 
функций, зависящих от положения системы в любой момент времени. 

Рассмотрим применение PCP1 и изложенной ранее теории. 
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Рис. 3. Численное моделирование решения системы уравнений (6) и значений 
функции ( , ( ), ( ))u t x t y t  в MathCad 

 
Распространение инфекционных заболеваний представляет собой 

сложное явление с множеством взаимодействующих факторов. 
Ключевая роль математической эпидемиологии заключается в 
создании моделей распространения патогенов. Эти модели служат в 
качестве математической основы для понимания сложной динамики 
распространения заболевания. Основа таких моделей – модель SIR 
(Susceptible – Infected – Removed), предложенная в 1927 г. У. 
Кермаком и А. МакКендриком. В дальнейшем на её основе было 
построено множество моделей для различных заболеваний, например, 
в [16]. 

Введем обозначения: ( )S t  — доля здоровых, но восприимчивых к 
инфекции людей; ( )I t  — доля инфицированный (больных), 
распространяющих инфекцию людей; ( )R t  — доля обладающих 
иммунитетом к болезни (изначально невосприимчивых,а также 
переболевших);   — интенсивность заражения,   — интенсивность 
выздоровления. Соответственно, классическая SIR-модель имеет вид:  

( )
= ( ) ( )

( )
= ( ) ( ) ( )

( )
= ( ) ( ),

dS t
S t I t

dt
dI t

S t I t I t
dt

dR t
S t I t

dt



 



 

 




                                     (7) 

Будем считать, что при этом общая численность людей – величина 
постоянная:  
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( ) ( ) ( ) = 1.S t I t R t                                             (8) 

В классическую модель внесём сильные возмущения в виде 
непрерывного, вызванного одномерным винеровским процессом, и 
скачкообразного, сопоставленного с пуассоновским: 

1

1

2( )

1

( ) = ( ) ( ) ( , ( ), ( ), ( )) w( ),

( ) = ( ( ) ( ) ( )) ( , ( ), ( ), ( )) w( )

( , ( ), ( ), ( ), ) ( , ),

( ) = ( ) ( ) ( , ( ), ( ), ( )) w( )

R

dS t S t I t dt b t S t I t R t d t

dI t S t I t I t dt b t S t I t R t d t

g t S t I t R t dt d

dR t S t I t dt b t S t I t R t d t




 

  



 
   
 
 


 (9) 

Предположим, что коэффициенты этих уравнений могут быть 
установлены на основе экспериментальных данных и известны. Для 
того, чтобы выполнялось требование (8), внесем управления PCP1 в 
уравнения (9): 

1

1 1

2

2 2

2( )

( ) = ( ( ) ( ) ( , ( ), ( ), ( )))

( ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))) w( )

( ) = ( ( ) ( ) ( ) ( , ( ), ( ), ( )))

( ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))) w( )

( ( ,
R

dS t S t I t s t S t I t R t dt

b t S t I t R t t S t I t R t d t

dI t S t I t I t s t S t I t R t dt

b t S t I t R t t S t I t R t d t

g t





 


  
 

  
  

  1

3

3 3

,

( ), ( ), ( ), ) ( , ( ), ( ), ( ))) ( , )

( ) = ( ( ) ( ) ( , ( ), ( ), ( )))

( ( , ( ), ( ), ( )) ( , ( ), ( ), ( ))) w( )

S t I t R t t S t I t R t dt d

dR t S t I t s t S t I t R t dt

b t S t I t R t t S t I t R t d t

   










 

  


 

  (10) 

Таким образом, нужно определить PCP1 для системы (10), чтобы 
функция  

( , ( ), ( ), ( )) = ( ) ( ) ( ) 1u t S t I t R t S t I t R t                         (11) 

будет всегда принимать значение 0, т.е. была первым интегралом. 
Положим: первый интеграл — функция ( , , , ) = 1u t x y z x y z   , 

дополнительные функции — ( , , , ) = 2 tv t x y z e x   и ( , , , ) =h t x y z y , 
произвольная функция — ( , , , ) =q t x y z x . Соответственно, начальные 
условия: (0) = 1x , (0) = 0y , (0) = 0z . Построенная система 
дифференциальных уравнений имеет вид:  

( )

( ) 2 0 0

( ) = 0 ( ) w( ) ( ) ( , )

( ) 2 ( ) ( )

t

R
t

dx t e

dy t dt x t d t x t dt d

dz t e x t x t


  






      
             
              

       (12) 
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Результат моделирования решения построенной системы без 
скачков – на рис. 4, при наличии скачков – на рис. 5.   

 

Рис. 4. Численное моделирование решения системы уравнений (12) без 
скачков и значений функции ( , ( ), ( ))u t x t y t  в MathCad 

 

 

Рис. 5. Численное моделирование решения системы уравнений (12) со 
скачками и значений функции ( , ( ), ( ))u t x t y t  в MathCad 

 
Как видим, в системе (12), в отличие от (9), присутствует 

скачкообразная компонента.  Поэтому необходимо ввести фиктивно 
скачкообразную компоненту с управлением 2 ( , ( ), ( ), ( ))t S t I t R t  в 

последнее уравнение системы (10). Теперь можно определить 
управления ( , ( ), ( ), ( ))),is t S t I t R t i 1, 2,3,  из сопостравления 

коэффициентов систем (10) и (12):  
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
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 

  

Выводы. Рассмотренный метод построения систем по известному 
набору первых интегралов позволяет строить системы как для 
детерминистическмх, так и стохастических дифференциальных 
уравнений Ито. Алгоритмичность предложенного метода позволила 
упростить процесс построения системы дифференциальных 
уравнений с заданными инвариантами с помощью компьютерной 
программы, реализованной средствами MathCad. Представленная 
программа позволяет проверить валидность построенной системы, 
кроме того, позволяет менять не только набор функций – инвариантов 
системы, но и подбирать дополнительные и произвольные функции 
для удобства моделирования.  

Работа выполнена в рамках проекта №24С/2019 Хабаровского краевого 
фонда поддержки научных исследований.  
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Modeling of a differential equations system  
with dynamical invariants 
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This article is devoted to the construction method of differential equations system with 
smooth functions as invariants. This method allows us to construct both deterministic dif-
ferential equations system and Ito’s stochastic differential equations system. These sto-
chastic differential equations are diffusion equations or jump-diffusion ones. The algo-
rithm under consideration is based on the author’s previous research and has no parallel. 
We study the realization of the algorithm in R2 and in R3 in detail. We represent a MathCad-
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program for construction of every type of differential equations system described above. 
We also show some examples of differential equations system with the given invariant con-
structed automatically be the computer program. Relevance of our research is guaranteed 
by numerical solution of the created system of differential equations. These systems are 
solved using well-known numerical techniques: Euler method, Euler-Murayama method 
and Monte-Carlo procedure. The numerical solution of a system of differential equations 
and the corresponding values of the invariant function are represented in diagram form. 
Programmed control with probability 1 for a stochastic SIR-model is an application of the 
presented theory and the MathCad-program. Results of this research can be used to con-
struct models of dynamical systems with invariant and to further explore these systems. 
 
Keywords: first integral, differential equations system, stochastic differential equation, al-
gorithmization for computer, MathCad. 
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