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Дан краткий обзор существующих модификаций метода функционального разделе-
ния переменных. Предлагается новый более общий подход для построения точных 
решений нелинейных уравнений математической физики и механики, который осно-
ван на неявных преобразованиях интегрального типа в комбинации с использова-
нием принципа расщепления. Эффективность такого подхода иллюстрируется на 
нелинейных диффузионных уравнениях, которые содержат реакционные и конвек-
тивные члены с переменными коэффициентами. Основное внимание сосредоточено 
на уравнениях достаточно общего вида, которые зависят от двух или трех произ-
вольных функций (подобные нелинейные уравнения представляют наибольшие 
трудности для анализа). Описано много новых точных решений с функциональным 
разделением переменных и решений типа обобщенной бегущей волны. Полученные 
решения могут быть использованы для тестирования различных численных и при-
ближенных аналитических методов математической физики. 
 
Ключевые слова: нелинейные уравнения математической физики, функциональное 
разделение переменных, обобщенное разделение переменных, точные решения, нели-
нейные реакционно-диффузионные уравнения.    
 

Введение. Методы обобщенного и функционального разделения 
переменных (и их различные модификации) относятся к наиболее эф-
фективным методам построения точных решений различных классов 
нелинейных уравнений математической физики и механики (включая 
уравнения с частными производными достаточно общего вида, кото-
рые зависят от произвольных функций). В [1–23] путем применения 
этих методов было получено много точных решений уравнений тео-
рии тепло- и массопереноса, теории волн, нелинейной оптики, гидро-
динамики, газовой динамики и математической биологии. 

Для определенности далее будем рассматривать нелинейные урав-
нения математической физики с двумя независимыми переменными 

 0,=),,,,,,,( ttxtxxtx uuuuutxF  (1) 

где ),(= txuu  — искомая функция. 
Использование методов обобщенного и функционального разде-

ления переменных основано на априорном задании структурного вида 
искомой переменной u , которая зависит от несколько свободных 
функций (конкретный вид этих функций определяется далее путем 
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анализа возникающих функционально-дифференциальных уравне-
ний). Часто (в узком смысле) термин "решение с функциональным раз-
делением переменных" используется при построении точных решений 
вида (см., например, [1–3, 6, 7, 12]) 

),()(=),(= txzzu    

где функции )(z , )(x , )(t  находятся в процессе последующего ис-
следования (иногда функция )(z  задается из априорных соображе-
ний, а функции )(x  и )(t  ищутся [13, 16]). 

Важно отметить, что при функциональном разделении перемен-
ных поиск точных решений вида ))()((= txu   и ))()((= txu    
приводит к одинаковым результатам, поскольку справедливо пред-
ставление ))()((=))()(( 111 txtx   , где )(=)(1

zez  , 

)(ln=)(1 xx  , )(ln=)(1 tt   (здесь, без ограничения общности, счи-
тается, что 0> , 0> ). 

Решения типа обобщенной бегущей волны вида )(= zu  , где 
)()(= txtz    также относят к решениям с функциональным разделе-

нием переменных [12, 16]. 
В [18–20] был описан новый прямой метод построения точных ре-

шений с функциональным разделением переменных, основанный на 
поиске решений в неявной форме 

 ),()()(=)( 21 xtxduu    (2) 

где функции )(u , )(1 x , )(2 x , )(t  определяются методом расщеп-
ления в процессе дальнейшего анализа. Этот метод позволил найти бо-
лее 40 точных решений нелинейных реакционно-диффузионных урав-
нений и уравнений типа Клейна–Гордона с переменными коэффици-
ентами, зависящими от одной или нескольких произвольных функций. 
В [21] было показано, что некоторые из приведенных в [18, 19] реше-
ний нельзя получить с помощью метода неклассических симметрий 
[24–31] (см. также [12, 16]), основанного на использовании условия 
инвариантной поверхности (дифференциальной связи, эквивалентной 
соотношению (2)). 

В общем случае решениями с функциональным разделением пе-
ременных уравнения (1) будем называть решения вида 

 ),,(=),(= txQzzu   (3) 

где искомые функции )(z  и ),( txQ  описываются соответственно пе-
реопределенными системами обыкновенных дифференциальных 
уравнений и уравнений с частными производными. В вырожденных 
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случаях каждая из этих функций может описываться одним уравне-
нием. Представление (3) было использовано в [22, 23] для построения 
точных решений с функциональным разделением переменных некото-
рых классов нелинейных реакционно-диффузионных и конвективно-
диффузионных уравнений. 

В данной работе для построения точных решений нелинейных 
уравнений с частными производными предлагается использовать но-
вый метод, основанный комбинации неявного нелинейного преобра-
зования интегрального типа и обобщенного принципа расщепления. 
Такой подход технически более прост и удобен, чем поиск решения в 
виде (3); он обобщает зависимость (2) и позволяет единообразно нахо-
дить различные решения, не задавая априорно их структуру. 

Функциональное разделение переменных, основанное на не-
линейных преобразованиях и принципе расщепления. Для постро-
ения точных решений уравнения (1) на начальном этапе используем 
нелинейное преобразование вида 

 ,)(= duu   (4) 

где ),(= tx  и )(= u  — функции, которые ищутся в ходе дальней-
шего анализа. После того, как эти функции будут определены, инте-
гральное соотношение (4) будет задавать точное решение рассматри-
ваемого уравнения в неявной форме. 

Дифференцируя (4) по независимым переменным, находим част-
ные производные 

 ,=,=,= 3

2











 uxxx

xx
t

t
x

x uuu


  (5) 

Будем считать, что после подстановки выражений (5) в (1) полу-
ченное уравнение можно преобразовать к билинейному виду: 

 0,=
1=

nn

N

n

  (6) 

где 

 
).,,,,(=

),,,,,,(=
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xxtxnn
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




 (7) 

Для построения точных решений уравнения (6)–(7) используем 
принцип расщепления, описанный ниже. 

Принцип расщепления. Рассматриваем линейные комбинации 
двух наборов элементов }{ j  и }{ j , входящих в (6), которые связаны 

соотношениями 
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где 11  Nl  и 11  Ns . Константы ni  и nj  в (8) выбираются 

так, чтобы билинейное равенство (6) удовлетворялось тождественно 
(это всегда можно сделать, см. далее). Важно отметить, что соотноше-
ния (8) носят чисто алгебраический характер и не связаны с конкрет-
ным видом дифференциальных форм (7). 

После получения соотношений (8) в них подставляются диффе-
ренциальные формы (7), что приводит к системам дифференциальных 
уравнений (часто переопределенным) для искомых функций 

),(= tx  и )(= u , которые входят в (4). 
Замечание 1. Необходимо отдельно рассмотреть также вырожден-

ные случаи, когда, помимо линейных соотношений (8), некоторые 
дифференциальные формы n  или n  равны нулю. 

Замечание 2. Билинейные функционально-дифференциальные 
уравнения, внешне похожие на (6)–(7), возникают при поиске точных 
решений нелинейных уравнений математической физики методами 
обобщенного и функционального разделения переменных с априорно 
заданной структурой решения [12, 16]. Однако в данном случае име-
ется принципиальное отличие: дифференциальные формы n  и n  (7) 

ввиду преобразования (4) зависят от одних и тех же независимых пе-
ременных x  и t  (при использовании методов обобщенного и функци-
онального разделения переменных дифференциальные формы зависят 
от разных независимых переменных). 

Формулы, позволяющие тождественно удовлетворить били-
нейному соотношению (6). 1. Для любых N  билинейному соотноше-
нию (6) можно удовлетворить, если все i  положить пропорциональ-

ными одному и тому же выбранному элементу j  ( ij = ). В резуль-

тате получим 

 
,=

;,1,1,,1,=,=

11111 NNjjjjj

jii

AAAA

NjjiA
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

 


 (9) 

где iA  — произвольные постоянные. В формулах (9) можно сделать 

переобозначения символов nn  . 

2. Для четных N  равенство (6) удовлетворяется, если обращаются 
в нуль изолированные парные суммы 0=jjii  . В этом случае 
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имеем соотношения 

 ),=(0=0,= jiAA jiijjiji    

где ijA  — произвольные постоянные, а индексы i  и j  в совокупности 

принимают все значения от 1 до N . 
3. При 3N  равенство (6) также будет удовлетворяться тожде-

ственно, если задать линейные соотношения 
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где iA  и iB  — произвольные постоянные. В формулах (10) можно сде-

лать переобозначения символов nn   или одновременные парные 

перестановки ji   и ji  . 

Для построения более сложных линейных комбинаций вида (8), 
тождественно удовлетворяющих билинейному соотношению (6) для 
любого N , можно использовать формулы для коэффициентов ni  и 

nj , приведенные в книгах [12, 16] (в разделах, посвященных обоб-

щенному разделению переменных). 
Класс рассматриваемых уравнений. Преобразование к били-

нейному виду. Рассмотрим широкий класс нелинейных уравнений 
диффузии 

 ),()()()(])()([= uhxcuugxbuufxau xxxt   (11) 

которые содержат реакционные и конвективные члены с перемен-
ными коэффициентами. 

Отметим, что точные решения некоторых более простых уравне-
ний, принадлежащих классу (11), можно найти, например, в [7, 10, 12, 
13, 15, 16, 18, 22, 23, 26, 31–44]. 

Используя метод функционального разделения переменных, осно-
ванный на нелинейных преобразованиях и принципе расщепления, по-
лучим некоторые новые точные решения уравнений вида (11), в кото-
рых по крайней мере два функциональных коэффициента )(xa  и )(uf  
будут заданы произвольно (а остальные через них выражаются). Далее 
для краткости аргументы функций, входящих в преобразование (4) и 
уравнение (11), часто будут опускаться. 

Сделав замену (4), подставим производные (5) в (11). После эле-
ментарных преобразований получим 
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При 1=  уравнение (12) совпадает с исходным уравнением (11), 
где =u . Поэтому на данном этапе никакие решения не теряются. 

Введем обозначения: 
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;=,=,=,)(=,=

54321
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В результате уравнение (12) можно представить в билинейной 
виде (6) при 5=N : 

 0.=
5

1=
nn

n

  (14) 

Ниже будут построены точные решения нелинейных уравнений 
вида (11), исходя из соотношений (13), (14), путем использования фор-
мул (9)–(10). 

Решения с функциональным разделением переменных типа 
обобщенной бегущей волны. 

Решение 1. Уравнению (14) можно тождественно удовлетворить, 
если использовать линейные соотношения 
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где k  — произвольная постоянная. Подставляя (13) в (15), приходим 
к уравнениям 
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Общее решение переопределенной системы, состоящей из первых 
трех уравнений (16), имеет вид 

 ,
)(

=),(,=)(,=)( 1
0

000 C
xa

dx
k
b

tctxcxcbxb    (17) 

где )(xa  — произвольная функция, 0b , 0c , 1C  – произвольные посто-

янные. Общее решение системы, состоящей из двух последних урав-
нений (16), записывается так: 

 ,)(=)(,
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2 duuguG
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h 

   (18) 
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где )(uf  и )(ug  — произвольные функции. Из формул (17) и (18) при 

1== 00 cb  получим уравнение 

 ,
)(

)(
)(])()([= 2

uf
CukG

uuguufxau xxxt

  (19) 

которое допускает точное решение типа обобщенной бегущей волны 
в неявной форме 
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Отметим, что уравнение (19) содержит три произвольные функ-
ции )(xa , )(uf , )(ug  и две произвольные постоянные 2C , k . 

Решение 2. Уравнению (14) можно удовлетворить, если положить 
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где 1k , 2k , 3k  — произвольные постоянные. Подставляя (13) в (21), 

имеем 
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Общее решение переопределенной системы, состоящей из первых 
трех уравнений (22), можно представить в виде 
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где )(xa  — произвольная функция, 0c , 1C , 2C  — произвольные посто-

янные. Из двух последних уравнений (22) получим 

 ,=,= 32
1 f

f
g

kk
f
k

h   (24) 

где )(= uff  и )(= ugg  — произвольные функции. 

При 1== 30 kc  формулы (23) и (24) приводят к уравнению 
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которое имеет точное решение типа обобщенной бегущей волны 
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 .
)()(

=)( 2121 C
xa

dx
C

xa
dxx

ktkduuf     

Решение 3. Уравнению (14) можно удовлетворить, если использо-
вать линейные соотношения 

 
0,=,=,=

;=,=

34251

4251




k

k
 (25) 

где k  — произвольная постоянная. Подставляя (13) в (25), получим 

 
0.=)/(,=1,=

;=)(,=

'
u

xxxt

fgkfh

kbac



 
 (26) 

Общее решение переопределенной системы, состоящей из первых 
двух уравнений (26), имеет вид 

 

,exp=)(

,exp=)(

),()(=),(

43

21

C
a

dx
dx

a

b
kCxs

C
a

dx
dx

a

b
kCxc

xstxctx

























 (27) 

где )(= xaa  и )(= xbb  — произвольные функции, 1C , 2C , 3C , 4C  — 

произвольные постоянные. Общее решение системы, состоящей из 
трех последних уравнений (26), дается формулами 

 .=,
1

=,= f
f

hkfg   (28) 

Учитывая соотношения (27) и (28), получим уравнение 

 ,
)(
)(

)()(])()([=
uf
xc

uufxkbuufxau xxxt   (29) 

которое допускает точное решение в неявной форме 

 ).()(=)( xstxcduuf   (30) 

Здесь )(xa , )(xb , )(uf  — произвольные функции, а функции )(xc  и 

)(xs  определены в (27). В частности, при =2C , 0=1C , 1=k  имеем 
уравнение 

 ,
)(

)()(])()([=
uf

uufxbuufxau xxxt

  (31) 
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которое имеет решение 

 .
)()(

)(
exp=)( 43 C

xa

dx
dx

xa

xb
Ctduuf 








    (32) 

Решение 4. Уравнению (14) можно удовлетворить, если положить 

 
,=,=,=

;=0,=
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


k

k
 (33) 

где k  — произвольная постоянная. Подставляя (13) в (33), получим 

 
.=)/(1,==

;=0,=)( 2





hfkgf

kcaba

'
u

xxxxt 
 (34) 

Первые два уравнения (34) допускают решение 

 ,=,
)(

=,)(=),(
2

1 k
ar

c
r

ar

r
bCdxxrttx x 


 

  (35) 

где )(= xaa , )(= xrr  — произвольные функции,  , 1C  — произволь-

ные постоянные. Из последнего уравнения (34) имеем hk u  =3 , 

что дает два решения 

 ,
2

=
1/2

2









   Cduh

k
 (36) 

где )(= uhh  — произвольная функция, 2C  — произвольная постоян-
ная. 

Решение 5. Уравнению (14) можно удовлетворить, если положить 

 
,=0,=

;=,=,=

4235211

32451251




kk

kk
 (37) 

где 1k , 2k ,   — произвольные постоянные. Подставив (13) в (37), 
имеем 

 
  .=/0,=

;=,=)(,=

21

2
21

gkfhfk

akbckac
'
u

xxxxt







 (38) 

Решение первых трех уравнений (38) имеет вид 

 

1,=)(),(=)(

,
)()(

=),(

112

211

xcCxkkxb

C
xa

dx
C

xa

dxx
kttx



 
 (39) 
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где )(xa  — произвольная функция, 1C , 2C  — произвольные постоян-
ные. Решение двух последних уравнений (38) определяется форму-
лами 

     ,=,=
1

3232
1





 CdugkfCdugk

f

fk
h 

 (40) 

где )(= uff , )(= ugg  — произвольные функции, 3C  —произвольная 

постоянная. 
Полагая kk =1 , 1=2k  в (39), (40), приходим к уравнению 

 

,)(=)(),(
)(

)(
)()(])()([= 31 CduuguGuG

uf

ukf
uugCkxuufxau xxxt 


 

   

где )(xa , )(uf , )(ug  — произвольные функции, 1C , 3C , k ,   — про-

извольные постоянные, которое допускает точное решение в неявной 
форме 

,
)()()(

)(
21 C

xa

dx
C

xa

dxx
ktdu

uG

uf
    

Решение 6. Уравнение (14) становится тождеством, если 

 
0,=,=

;=,=,=
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2
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2
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kkk

kkk
 (41) 

где 1k , 2k , 3k  — произвольные постоянные. Подставляя (13) в (41), по-

лучим 

 
  0.=/1,=

;=,=,=)(

3
2
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3
2
2

2
1

gkfkfkh

kbkacka
'
u

txtxxx

 


 (42) 

Решения первых трех уравнений (42) можно представить в виде 

 ,
2

=)(,=)(,=),(
1

2

2

3
12 a

a

k
k

xca
k

k
xbC

a

dx
kttx x 

  (43) 

где )(= xaa  — произвольная постоянная, 1C ,   — произвольные по-
стоянные. Решение двух последних уравнений (42) определяется вы-
ражениями 

 ,=,1
1

= 1
1

2
2

3 h

f
kh

k

k

k
g u 




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


  (44) 

где )(= uff  и )(= uhh  — произвольные функции. 
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Полагая 1== 31 kk , 1/=2k , CC =2  в (43), (44), приходим к 

уравнению 

 ),(
)(

)(

2

1
)]([)(])()([= uh

xa

xa
uuhxauufxau x

xuxxt


   (45) 

которое содержит три произвольные функции )(xa , )(uf , )(uh  и 
имеет точное решение 

 .
)(

=
)(

)(
C

xa

dx
tdu

uh

uf
    (46) 

Решение 7. Уравнению (14) можно удовлетворить, если использо-
вать линейные соотношения 

 
,=,=

;=,=,=

5322114

53422411




kk

kk
 (47) 

где 1k , 2k  — произвольные постоянные. Подставив (13) в (47), прихо-
дим к уравнениям 

 
.=)/(,=
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2
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
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hffkkg
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'
u

xxxxxt




 (48) 

Решения первых трех уравнений (48) имеют вид 

 

,
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=)(,
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=)(

,
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=),(

2
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2
1

22
2
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2
1
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xak

Cxk
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Cxk
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Cdx
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k
ttx










 




 (49) 

где )(xa  — произвольная функция, 1C , 2C ,   — произвольные посто-
янные. Последние два уравнения (48) дают два решения 

   ,)()(2)(=)(),(=)(
1/2

321


  Cduuhufufuufkkug   (50) 

где )(= uff  и )(= uhh  — произвольные функции, 3C  — произволь-

ная постоянная. 
Полагая в (49) и (50) sC =1 , 1=1 k , kk =2 , k=  получим урав-

нение 

 ),(
)(
)(

)]([
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])()([=
2

uh
xa
sx

uufk
sx

xa
uufxau xxxt





  (51) 
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где )(xa , )(uf , )(uh  — произвольные функции, k , s  — произволь-
ные постоянные, которое допускает точные решения 

   ,
)(

=)()(2)( 2

1/2

3 Cdx
xa

sx
ktduCduuhufuf 


 


 (52) 

где 2C , 3C  — произвольные постоянные. 

В частном случае 1= k , 1=)(uf , 0=s  уравнение (51) переходит 
в уравнение 

 ),(
)(

])([=
2

uh
xa

x
uxau xxt   

которое рассматривалось в [18]. Полагая в (51) 0=)(uh , 0=3C , 0=s  

и переобозначая )(xa  на )(xxa , получим уравнение 

 ,)]()[(])()([= xxxt uufkxauufxxau   

которое имеет решения 

 .
)(

=)( 2C
xa

dx
ktduuf    

Решение 8. Уравнению (14) можно удовлетворить, если взять 
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где 1k , 2k  — произвольные постоянные. Подставив (13) в (53), прихо-
дим к уравнениям 
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В частном случае 0== 21 kk  решение системы (54) приводит к 
уравнению 
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
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где )(xa , )(uf  — произвольные функции,  ,   — произвольные по-
стоянные, которое допускает два точных решения 
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u
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Решение 9. Уравнению (14) можно удовлетворить, если использо-
вать линейные соотношения 
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534322511
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где 1k , 2k , 3k  — произвольные постоянные. Подставив (13) в (55), при-

ходим к уравнениям 
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Решения первых трех уравнений (56) описываются формулами 
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где )(xa  — произвольная функция, 1C , 2C  — произвольные постоян-
ные. Решения двух последних уравнений (56) имеют вид 
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где )(uf , )(ug  — произвольные функции, 3C  — произвольная посто-

янная. 
В частности, полагая в (57)–(58) nxxa =)( , 0== 21 CC , mC =3 , 

kk =1 , nk 1=2 , 1=3k , приходим к уравнению 
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uuxguufxu xxx

n
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
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Решение 10. Уравнению (14) можно удовлетворить, если взять 
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где 1k , 2k  — произвольные постоянные. Подставив (13) в (59), прихо-
дим к уравнениям 
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Первые три уравнения (60) допускают два решения, которые опи-
сываются формулами 

 1,=)(,
2
1

=)(,=),( 211 xcakakxbC
a

dx
ttx x   (61) 

где )(= xaa  — произвольная функция, 1C  — произвольная постоянная 
(в обеих формулах одновременно берутся верхние или нижние знаки). 
Из последнего уравнения (60) получим 2/= kfg  , а предпоследнее 
уравнение, которое служит для определения функции  , преобразу-
ется к уравнению Абеля второго рода 

 ./=0,=1
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1  ffhf
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k
u 
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
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Полагая в (61) и (62) kk =1 , 1=2k  приходим к уравнению 
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2

1
)(])()([= uhuufxaxakuufxau xxxxt 



   

которое имеет два точных решения, допускающих представление в не-
явной форме 

 ,
)(

=
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)(
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xa

dx
tdu

u

uf
    

где функция )(= u  описывается уравнением Абеля 

 0.=)()()]([1 uhufukfu     

Точные решения уравнений Абеля для различных функций )(uf  
и )(uh  можно найти в [45]. 

Другие решения с функциональным разделением перемен-
ных, полученные путем использования уравнения (12). 

Решение 11. Положим 1=== cba  в (12), а затем сделаем замену 

 ,= tx    (63) 

где   и   — свободные параметры. В результате получим 
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1. Частное решение уравнения (64) ищем в виде 

 ,=,= 21 fCeC xt     (65) 

где 1C , 2C  — произвольные постоянные. Имеем 

 0,=)( 2  hggf   

что приводит к определяющей системе уравнений 

 0.=0,=2  hggf   (66) 

Решения этих уравнений с учетом второго равенства (65) опреде-
ляются формулами 
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Таким образом приходим к уравнению 
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которое зависит от произвольной функции )(= uff  и допускает точ-
ное решение в неявной форме 

 .=)( 21 CeCtxduuf xt     (69) 

Полагая в (68) и (69)  =/ ,  =)/( ,  = , приходим к 
уравнению более компактного вида 
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uufuufu xxxt

   (70) 

которое имеет точное решение 
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 (71) 

2. При 0g  уравнение (64) имеет стационарное частное решение 

 ,=,2=,= 2 fk
f

hCkx    (72) 

где )(= uff  — произвольная функция, C , k  — произвольные посто-
янные, которое приводит к уравнению [16] 

 ,
)(

2])([=
uf

kuufu xxt

  (73) 



А.Д. Полянин 

80 

допускающему решение в неявном виде Ctxkxduuf  2=)( . 

3. При 0g  и 0=  уравнение (64) имеет другое стационарное 
частное решение 

 ,)(=,=,=),(ln= 21 duufF
F

f

f

F
hCxC    (74) 

которое также приводит к уравнению, рассмотренному в [16]. 
Решение 12. В (12) положим f= , а затем сделаем замену 

 ,
)(

=
xa

dx
kt    (75) 

где  , k  — свободные параметры. Имеем 

 0.=)( cfhg
a

b
kgbfa xxxt    (76) 

1. Ищем стационарное решение )(= x  уравнения (76). В ре-
зультате получим 

 

,
)(

=)(),(=)(

1,=)(),(=)(,
)(

=)( 21

uf
kuhufug

xcxaxbCdx
xa

e
Cx

x









 (77) 

где 1C , 2C ,   — произвольные постоянные. Учитывая соотношение 
(75) и обозначая  k= , получим уравнение 

 ,
)(

)()(])()([=
uf

uufxauufxau xxxt

   

которое допускает точное решение 

 .
)()(

=)( 21 Cdx
xa

e
C

xa
dx

tduuf
x

 



  

2. Частное решение уравнения (76) ищем в виде 

 ).(= xe t   (78) 

В результате приходим к уравнениям 

 
0.=

0,=)(

cfhg
a

b
k

gbfa xxx








 (79) 
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При const=g  получим const=f  и const=h , что соответствует 
линейному уравнению. Поэтому далее считаем, что const=g . 

Первому уравнению (79) можно удовлетворить, если положить 

 ,=0,=0,=)( AfBgBbAba xxxx    (80) 

где A , B  — произвольные постоянные ( 0=A ). В первые два уравне-
ния (80) входят три функции )(= xaa , )(= xbb , )(= x , одну из ко-
торых можно считать произвольной. 

Считая в (80) заданной )(= x , находим 

 ,=,
1

= 1
xx B

bCdx
B

A
a




 






 

   (81) 

Если считать заданной )(= xbb , то решения первых двух уравне-
ний (80) имеют вид 

 

,
)(

exp=)(

,
)(

exp
)(

exp)(=)(
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


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









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


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
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xb

dx

B
Cx

Cdx
xb

dx

B
A

xb

dx

B
xbxa





 (82) 

где 1C , 2C  — произвольные постоянные 0)=( 2 C . 
В частности, при 1=B , 1=)(xb  из (82) получим 

 ,=)(,=)( 21
xx eCxeC

A
xa  


  

а при 1=B , xxb =)(  имеем 

 .=)(,
1

=)( 2
1

1
2  


xCxxCx

A
xa 


 

Последнему уравнению (79) можно удовлетворить в двух случаях, 
которые рассмотрены ниже. 

2.1. При 0=  решение последнего уравнения (79) определяется 
формулами 

 ,
)(

=)(,
)(
)(

=)(
uf

B
Auh

xa
xb

kxc   (83) 

при выводе которых учтено последнее соотношение в (80). Таким об-
разом, уравнение 
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 ,
)()(

)(
)]()[(])()([= 










uf

B
A

xa

xb
kuuAfBxbuufxau xxxt  

где )(xb  и )(uf  — произвольные функции, а функция )(= xaa  выра-
жается через )(= xbb  первой формулой в (82), допускает точное реше-
ние 

 .
)(

exp
)(

=)( 2 







  xb

dx

B
eC

xa

dx
kduuf t   

2.2. При 0=k  решение последнего уравнения (79) определяется 
формулами 

 .
)(

=)(1,=)(
uf

uhxc


 (84) 

В результате приходим к уравнению 

 ,
)(

)]()[(])()([=
uf

uuAfBxbuufxau xxxt

  

где )(xb  и )(uf  — произвольные функции, а функция )(= xaa  выра-
жается через )(= xbb  согласно (82), которое имеет решение 

 .
)(

exp=)( 2 







  xb

dx

B
eCtduuf t    

Решение 13. Уравнению (14) можно удовлетворить, если поло-
жить i  4)3,2,1,=(i  пропорциональными 5 . В результате получим 

 
0.=

,=,=,=,=

544332211

544533522511




kkkk

kkkk
 (85) 

Подставив (13) в (85), приходим к уравнениям 

 
0.=)/(

;=,=,=)(,=

4321

43
2

21





hgkfkfkk

ckbckackack

'
u

xxxxt




 (86) 

Рассмотрим два случая. 
1. Простейшее решение первых четырех уравнений (86) 

2
432141 =0,=,=),(1,=)(=)(=)( kkkCxktktxxcxbxa   

приводит к решению типа бегущей волны исходного реакционно-диф-
фузионного уравнения вида (11) (это очевидное решение здесь обсуж-
даться не будет). 
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2. Первые четыре уравнения (86) допускают также другое реше-
ние 

 
.=,=,ln=),(

1,=)(,=)(,=)(

24
2
23121

2

kkkkCxktktx

xcxxbxxa


 (87) 

Полагая 1= kk , 1=2k  в (87) и используя последнее уравнение в 
(86), приходим к уравнению реакционно-диффузионного типа 

 ),()(])([= 2 uhuuxguufxu xxxt   (88) 

где 

   ,
)(

)(
=)(,)()()(

)(

)(
=)(

u

uf
uuugufk

uf

u
uh '

u 


  (89) 

а )(= uff , )(= ugg , )(= u  — произвольные функции, которое до-
пускает инвариантное точное решение 

 .ln=
)(
)(

1Cxktdu
u
uf    (90) 

Отметим, что инвариантное решение (90) уравнения (88) можно 
получить стандартным способом в виде )(= zUu , где xktz ln=   (в 
этом случае соотношение (89) между f , g , h  и   не используется). 
Функция )(zU  описывается обыкновенным дифференциальным урав-
нением 

 0.=)(])()([])([ UhUkUgUfUUf '
z

'
z

'
z   

Дальнейшие обобщения и модификации, основанные на ис-
пользовании эквивалентных уравнений. Другие точные решения 
уравнения (1) можно получить, если вместо преобразованного уравне-
ния (6)–(7) рассматривать эквивалентные дифференциальные уравне-
ния, которые сводятся к (6)–(7) на множестве функций, удовлетворя-
ющих соотношению (4). Укажем здесь два класса таких уравнений, ко-
торые будут использованы далее. 

1. Можно использовать уравнения вида 

,)(=),(/=
~

),(=
~

0,=
~~

1=

duuZZnnnnnnnn

N

n

    (91) 

которые в силу (4) (т. е. Z= ) эквивалентны уравнению (6)–(7) для 
любых функций )(n . 

2. Также можно использовать уравнение 
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 0,=
1=

nn

N

n

Z    (92) 

которое также эквивалентно уравнению (6)–(7). Здесь   может быть 
константой или любой функций, зависящей как от x  и t , так и от   и 
  (и их производных). 

Использование принципа расщепления к уравнениям (91) и (92) в 
случае общего положения будет приводить к другим точным реше-
ниям исходного уравнения (1), чем использование этого принципа к 
уравнению (6). 

Учитывая изложенные соображения, получим новые точные ре-
шения уравнения (1). Для этого вместо (6)–(7) будем использовать эк-
вивалентные дифференциальные уравнения, которые сводятся к (6)–
(7) на множестве функций, удовлетворяющих соотношению (4). 

Решения с функциональным разделением переменных, полу-
ченные путем использования эквивалентных уравнений. 

Решение 14. Вернемся к классу реакционно-диффузионных урав-
нений вида (11). Сделав замену (4), вместо уравнения (12) рассмотрим 
более сложное уравнение 

 0,=)( 2 


 chgb
f

afaee x

'

u

xxxt
Z 








   (93) 

где duZ =  и   — произвольная постоянная. Уравнения (12) и (93) 

эквивалентны, поскольку в силу преобразования (4) имеет место соот-
ношение Z= . 

Уравнение (93) можно представить в билинейной форме (14), где 

 
.=,=,)/(=,=,=

;=,=,=,)(=,=
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xxxxt
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
 (94) 

Как и ранее, уравнению (14) можно удовлетворить, используя со-
отношения (15). Подставляя (94) в (15), приходим к уравнениям 

 
,=)/(,=
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kgfeh

bkaace

'
u

Z

xxxxt
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
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


 (95) 

которые при 0=  совпадают с (16). Общее решение переопределен-
ной системы, состоящей из первых трех уравнений (95), имеет вид 
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 (96) 

где )(xa  — произвольная функция, 0b , 1C , 2C , k ,   — произвольные 

постоянные. Общее решение системы, состоящей из двух последних 
уравнений (95), записывается так: 

  ,)(=)(,)(exp
)(

1
=)(,

)(

)(
=)(

2

duuguGduu
u

uh
CukG

uf
u 







 (97) 

где )(uf , )(ug  — произвольные функции. 
Решение 15. Уравнению (14) можно удовлетворить также с помо-

щью соотношений (21). Подставляя (94) в (21), получим уравнения 
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 (98) 

Общее решение переопределенной системы, состоящей из первых 
трех уравнений (98), имеет вид 
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 (99) 

где )(xc  — произвольная функция (отличная от константы), 1C , 2C , 
  — произвольные постоянные. Решения двух последних уравнений 
(98) описываются формулами 

   ),(=)(,)()()(exp
)(

1
=)( 321 ufuugkufkduufk

uf
uh     (100) 

где )(= uff , )(= ugg  — произвольные функции. 
Решение 16. Как и ранее, уравнению (14) можно удовлетворить с 

помощью соотношений (25). Подставляя (94) в (25), приходим к урав-
нениям 
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Решение переопределенной системы, состоящей из первых двух 
уравнений (101), имеет вид 

 

,exp)(ln
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=),(
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 (102) 

где )(= xaa  и )(= xbb  — произвольные функции, 1C , 2C , 3C , k ,   — 

произвольные постоянные. Решение системы, состоящей из трех по-
следних уравнений (101), дается формулами 

   ,=,exp
1

=,= mfdufm
mf

hkfg    (103) 

где 0=m  — произвольная постоянная. 
Решение 17. Подставив (94) в (85), приходим к уравнениям 
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Рассмотрим два случая. 
1. Первые четыре уравнения системы (104) допускают решение 

для функциональных коэффициентов экспоненциального вида 
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Используя последнее уравнение в (104), приходим к уравнению 
реакционно-диффузионного типа 
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где 
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а )(= uff , )(= ugg , )(= u  — произвольные функции, которое до-
пускает инвариантное точное решение 
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Отметим, что инвариантное решение (108) уравнения (106) можно 

представить в стандартной форме )(= zUu , где xtz ln
1

=


 (в этом 

случае соотношение (107) между f , g , h  и   не используется). 
Функция )(zU  описывается обыкновенным дифференциальным урав-
нением 
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2. Первые четыре уравнения системы (104) допускают также ре-
шение для функциональных коэффициентов степенного вида 
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Используя последнее уравнение в (104), приходим к уравнению 
реакционно-диффузионного типа 
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где 
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а )(= uff , )(= ugg , )(= u  — произвольные функции, которое до-
пускает инвариантное точное решение 
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Автомодельное решение (112) уравнения (110) можно искать в 
стандартном виде )(= zUu , где 2)1/(= nxtz  (в этом случае соотноше-
ние (111) между f , g , h  и   не используется). Функция )(zU  опи-
сывается обыкновенным дифференциальным уравнением 

 ).()(])([=
2

1 21 UgzUUgzUUfzzU
n

n'
z

n'
z

'
z

n'
z

 
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Решение 18. Уравнению (14) можно удовлетворить, если поло-
жить i  5)4,3,1,=(i  пропорциональными 2 . В результате получим 
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Подставив (94) в (113), приходим к уравнениям 
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 (114) 

Рассмотрим два случая. 
1. Первые четыре уравнения системы (114) допускают решение 

для функциональных коэффициентов экспоненциального вида 

 
.=1,===

;=1,=,=)(=)(=)(

2431 







kkkk

uZeuhuguf u

 (115) 

В результате приходим к уравнению реакционно-диффузионного 
типа 

 ,=,)()(])([=   u
x

u
xx

u
t excuexbuexau  (116) 

которое имеет точное решение с аддитивным разделением пере-
менных 

 ),(ln
1

= xtu 


  (117) 

где функция )(= x  описывается обыкновенным дифференциаль-
ным уравнением 

 .)()(])([=
1  


excexbexa xxx   (118) 

Уравнения (116) и (118) содержат три произвольные функции 
)(xa , )(xb , )(xc . 

Отметим, что уравнение (118) подстановкой  e=  сводится к 
линейному обыкновенному дифференциальному уравнению второго 
порядка 

 0.=1)()(])([   xcxbxa xxx  

2. Первые четыре уравнения системы (114) допускают также ре-
шение для функциональных коэффициентов степенного вида 

 
1.=1,===,=

,ln=,1/=)(,=)(,=)(,=)(

2431

1
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

nkkkkn

uZuuuuhuuguuf nnn
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 (119) 
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В этом случае решение последнего уравнения в (114) определя-
ется формулой )(ln)(1/= xtn   , где функция )(= x  удовлетво-
ряет ОДУ 

 0.=)(1)()(
1 2 cbanae
n xxxx

n    (120) 

В результате получим уравнение реакционно-диффузионного 
типа 

 ,)()(])([= 1 n
x

n
xx

n
t uxcuuxbuuxau  (121) 

точное решение которого можно представить в виде произведения 
функций двух аргументов )(= 1/ xtu n , где функция  ex =)(  описы-
вается ОДУ 

 0.=
1

)()(])([ 1 
n

xcxbxa n
x

n
xx

n    

Решение 19. Вернемся к классу реакционно-диффузионных урав-
нений вида (11). Сделав замену (4), вместо уравнения (12) рассмотрим 
более сложное уравнение 

 0,=)( 2

Z
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f
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
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где duZ = . Уравнения (12) и (122) эквивалентны, поскольку в силу 

преобразования (4) имеет место соотношение Z= . 
Уравнение (122) можно представить в билинейной форме (14), где 
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 (123) 

Уравнению (14) можно удовлетворить, если использовать соотно-
шения (21). Подставляя (123) в (21), имеем 

 
1 2
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1 2 3
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f h Z k k f k g
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 




 
 (124) 

где 1k , 2k , 3k  — произвольные постоянные. Пусть )(= xaa , = ( ),f f u  

)(= ugg  — произвольные функции. Тогда решения уравнений (124) 
описываются формулами 
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 (125) 

где   — произвольная постоянная, а функция )(= x  — решение 

линейного ОДУ второго порядка  )/(=)( 12 kka xx  . В частном слу-

чае const=)(xa , 0=3k  формулы (125) приводят к нелинейному реак-

ционно-диффузионному уравнению и его решению, которые рассмат-
ривались в [16]. 

Решение 20. Рассмотрим теперь уравнение 

 0,=)( 2 


 chgb
f

afaZ x

'

u

xxxt 







  (126) 

где const= , которое в силу (4) ( Z= ) эквивалентно уравнению 
(12). 

Уравнение (126) инвариантно относительно преобразования 

 ,= 1
teC    (127) 

где 1C  — произвольная постоянная. 
1. Нетрудно проверить, что при постоянных a , b , c , которые без 

ограничения общности можно считать равными 1, уравнение (126) 
имеет частное решение 

 ,=,=,=,= 2 fduf
f

hfgeC xt 

  


  (128) 

где )(= uff  — произвольная функция, 2C ,  ,   — произвольные 
постоянные. Учитывая (127), получим уравнение 
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uufuufu xxxt 
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которое имеет точное решение в неявном виде 

 .=)( 21
xtt eCeCduuf    (130) 

Полагая  = , уравнение (129) можно записать в более ком-
пактной форме 
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При этом его решение принимает вид xtt eCeCduuf   )(
21=)( . 

2. Ищем стационарное частное решение )(= x  уравнения (126). 
Этому уравнению можно удовлетворить, если положить 
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где 1k , 2k , 3k  — произвольные постоянные. Решение первых трех 

уравнений (131) при 0=21 kk  можно представить в виде 
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где 2C , 3C  — произвольные постоянные. Решение системы, состоя-

щей из двух последних уравнений (131), записывается так: 
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где )(= uff , )(= ugg  — произвольные функции, 4C  — произволь-
ная постоянная. 

Полагая в формулах (132), (133) kC 1/=2 , 0== 43 CC , kk =1 , 

1== 32 kk ,  k=  приходим к уравнению 
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Это уравнение при 0=k  допускает точное решение 

 ,=,=
)(

1
 CCx
k

Cedu
u
uf ktk   (135) 

при построении которого учитывалась инвариантность уравнения 
(126) относительно преобразования (127). 

Замечание 3. Описанный метод позволяет получить также другие 
точные решения уравнения (11), которые здесь не рассматриваются. 

Замечание 4. Этот метод может применяться для построения точ-
ных решений нелинейных обыкновенных дифференциальных уравне-
ний с переменными коэффициентами. 

Краткие выводы. Описан новый метод построения точных реше-
ний нелинейных уравнений математической физики, который основан 



А.Д. Полянин 

92 

на нелинейных преобразованиях интегрального типа в комбинации с 
использованием принципа расщепления. Эффективность метода ил-
люстрируется на нелинейных уравнениях реакционно-диффузионного 
типа с переменными коэффициентами, которые зависят от двух или 
трех произвольных функций. Получен ряд новых точных решений с 
функциональным разделением переменных и решений типа обобщен-
ной бегущей волны. Важно отметить, что подавляющее большинство 
построенных решений являются неинвариантными (т. е. не могут быть 
получены с помощью классического группового анализа дифференци-
альных уравнений [46]). 

Работа выполнена по теме государственного задания (№ госрегистра-
ции AAAA-A17-117021310385-6) и при частичной финансовой поддержке 
Российского фонда фундаментальных исследований (проект № 18-29-
03228). 
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A brief review of existing modifications of the method of functional separation of variables 
is given. A new more general approach is proposed for construction of ex-act solutions of 
nonlinear equations of mathematical physics and mechanics, which is based on implicit 
transformations of integral type in combination using the split-ting principle. The effec-
tiveness of this approach is illustrated on nonlinear diffusion equations that contain reac-
tion and convective terms with variable coefficients. The focus is on equations of a fairly 
general form that depend on two or three arbitrary functions (such nonlinear equations 
are the most difficult to analyze). Many new exact solutions with functional separation of 
variables and generalized traveling wave type solutions are described. The obtained solu-
tions can be used to test various numerical and approximate analytical methods of mathe-
matical physics 
 
Keywords: nonlinear equations of mathematical physics, functional separation of varia-
bles, generalized separation of variables, exact solutions, nonlinear reaction-diffusion 
equations 
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