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Рассмотрена модель эффективных определяющих соотношений трансверсально-

изотропного несжимаемого композита с конечными деформациями. Модель от-

носится к так называемомому классу универсальных моделей, связывающих сразу 

несколько пар энергетических тензоров напряжений и деформаций. Предложен 

метод разделения связанных задач микро- и макроскопического деформирования 

композитов с конечными деформациями, которые возникают при использовании 

метода асимптотического осреднения (МАО) периодических структур. Метод 

основан на применении модели эффективных определяющих соотношений в каче-

стве аппроксимационной зависимости результатов численного моделирования 

диаграмм деформирования композитов, полученных с помощью точного метода 

МАО. Для нахождения упругих констант модели трансверсально-изотропного 

композита применяется метод минимизации отклонения аппроксимационных диа-

грамм деформирования от диаграмм, полученных методом МАО, для серии стан-

дартных задач деформирования при конечных деформациях. Задачи минимизации 

решались с помощью метода Нелдера—Мида. Представлены результаты числен-

ного моделирования предложенным методом для нелинейно-упругих слоистых 

композитов, показавших хорошую точность аппроксимации, которая достигает-

ся благодаря предложенному методу разделения связанных задач микро- и макро- 

скопического деформирования.  

 

Ключевые слова: слоистые композиты, несжимаемые среды, трансверсально-

изотропная среда, конечные деформации, метод асимптотического осреднения, 

универсальные модели упругих сред, энергетические пары тензоров  

 

Введение. В настоящее время существует много работ, посвя-

щенных моделированию эффективных механических характеристик 

композиционных материалов [1–11]. Для практических целей боль-

шое значение имеет задача определения эффективных упругих ха-

рактеристик композитов на основе информации о микроструктуре  

и свойствах, входящих в него фаз. Методов решения этой задачи су-

ществует довольно много [5, 12–13], однако большинство из них не-

применимо для композитов с конечными деформациями, поскольку в 

этом случае задача обладает существенной нелинейностью. 

Для расчета эффективных характеристик композитов наиболее пер-

спективен метод гомогенизации (метод асимптотического осреднения), 

предложенный Н.С. Бахваловым, Г.П. Панасенко, A. Bensoussan,  

J.L. Lions, G. Papanicalaou [2], Э. Санчес-Паленсия [4]. Метод асимпто-
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тического осреднения достаточно хорошо развит в настоящее время  

и успешно численно реализован для разных задач механики, но глав-

ным образом для линейных задач. 

В работах [14–16] этот метод был применен для расчета нелинейно-

упругих свойств слоистых композитов с конечными деформациями. 

Был предложен метод расчета диаграмм деформирования слоистых 

композитов с конечными деформациями на основе асимптотической 

теории осреднения нелинейно-упругих композитов с периодической 

структурой для случая конечных деформаций, а также с учетом несжи-

маемости материалов слоев.  

Несжимаемыми средами с конечными деформациями являются 

практически все резиноподобные материалы [17–21]. Несжимаемые 

материалы некорректно рассматривать как предельный случай слабой 

сжимаемости, поэтому для таких материалов используются специаль-

ные модели и особая постановка задачи теории упругости с дополни-

тельным условием несжимаемости. Полученные задачи требуют спе-

циальных методов решения.  

Для решения задач макроскопического деформирования элемен-

тов конструкций из композитов с конечными деформациями необхо-

димо применять определяющие соотношения для композитов с уче-

том возможной анизотропии. Непосредственное использование 

метода асимптотического осреднения для построения определяющих 

соотношениий затруднительно, поскольку он основан на решении 

специальных задач микроскопического деформирования на ячейках 

периодичности (ЯП). В линейном случае задачи микро- и макроско-

пического деформирования разделяются, но для конечных деформа-

ций эти задачи связаны. Расчеты макроскопического деформирова-

ния, например, методом конечных элементов, когда в каждом узле 

сетки приходится решать задачу на ячейке периодичности, приводят 

к очень большим объемам вычислений.  

Цель настоящей работы — разработать метод, который позволит 

разъединить задачи макро- и микроскопического деформирования не-

линейно-упругих композитов и значительно уменьшить количество 

вычислений. 

Модель трансверсально-изотропных несжимаемых сред с ко-
нечными деформациями. Поскольку решение локальных задач на 

ЯП, особенно для случая композитов с конечными деформациями, 

требует больших объемов вычислений, перейдем от точного решения 

этих задач в каждом конкретном случае нагружения ЯП системой 

осредненных напряжений к построению аналитически эффективных 

определяющих соотношений для композита в целом. Константы, 

входящие в эти определяющие соотношения, будем находить с по-

мощью аппроксимации диаграмм деформирования композитов для 

частных задач деформирования, при этом сами диаграммы деформи-
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рования рассчитываются при ограниченном числе вариантов реше-

ний задач на ЯП композита. 

Предлагаемый метод фактически представляет собой численный 

эксперимент, в котором вместо нахождения диаграмм деформирова-

ния экспериментальным путем используется численное решение за-

дач на ЯП. В дальнейшем как в численном, так и в реальном физиче-

ском эксперименте подбирают наиболее удачный аналитический 

вариант определяющих соотношений, которые наилучшим образом 

описывают максимальное число диаграмм деформирования в стан-

дартном верификационном наборе экспериментов. 

Рассмотрим нелинейно-упругий слоистый композиционный ма-

териал (НСКМ), который в отсчетной конфигурации 
0

,K  характери-

зуемой декартовым базисом ,αe  представляет собой систему перио-

дически повторяющихся слоев, ортогональных оси 3.Oe  Введем  

в качестве лагранжевых координат iX  декартовы координаты 
0

k
x   

в базисе ,αe  т. е. 
0

,=i iX x  и зададим закон движения композита  

в виде ( ),=k k ix x X  где k
x  — декартовы координаты материальных 

точек в актуальной конфигурации .K  Введем α α= k
kQr e  (локальные 

векторы базиса в ),K  где / α
α = ∂ ∂k k

Q x X  — якобиевая матрица,  

а также = ⊗ k
kF r e  (градиент деформации), где ⊗  — знак тензорного 

произведения. Для градиента деформации имеет место полярное раз-

ложение [22] ,=F UO  где U  — левый тензор искажений, а O  — 

тензор поворота. Введем энергетические меры деформации [22]: 

( )
III1

,
III

−=
−

n
n

n
G U  I, II, IV,V.=n                           (1) 

Этим мерам соответствуют энергетические тензоры напряжений 
( )( )

4 1 ,−= ⋅⋅
nn

T E T  где 

( )
4

n

E  — тензоры энергетической эквивалентности 

[22], зависящие только от ,F  а T  — тензор истинных напряжений 

Коши. 

Поскольку в отсчетной конфигурации свойства НСКМ не изме-

няются при поворотах в плоскости, ортогональной к 3,Oe  то НСКМ 

можно считать трансверсально-изотропной средой. Более точное 

определение анизотропных сред с конечными деформациями дано  

в работе [22].  

Все фазы НСКМ (слои) будем считать несжимаемыми, тогда сам 

композит также является несжимаемой средой [16]. Применим для 
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построения аналитических определяющих соотношений НСКМ уни-

версальные модели несжимаемых трансверсально-изотропных сред, 

общая теория которых сформулирована в работе [22]. Наиболее об-

щая форма записи этих универсальных моделей в тензорной форме 

для так называмых моделей класса Bn имеет следущий вид [22]: 

( ) ( )
1

( )
;

III

− ∂ψ= − + ρ
− ∂

�n n

n

p

n
T G

G

 I, II, IV, V,=n                        (2) 

здесь 
( )n

T  — энергетический тензор напряжений; n — номер модели  

в классе Bn; p — гидростатическое давление; ρ
�

 — осредненная плот-

ность композита (константа); 
( )

1−
n

G  — тензор, обратный к тензору  

2-го ранга;
( )n

G  — энергетическая мера деформации (тензор 2-го ран-

га); ψ  — свободная энергия Гельмгольца, являющаяся функцией ин-

вариантов тензора 
( )n

G  относительно группы симметрий трансвер-

сально-изотропной среды, 

( ) ( )

1 4( ( ), ..., ( )).ψ = ψ
n n

I IG G                                    (3) 

Для трансверсально-изотропной среды симметричные тензоры  

2-го ранга имеют пять инвариантов, однако в силу условия несжи- 

маемости  

det 1.=F                                                (4) 

Один из инвариантов 
( )

( )
n

kI G  может быть выражен через четыре 

других варианта, поэтому для несжимаемой трансверсально-изотроп- 

ной среды имеет место представление (3). В качестве инвариантов 
( )

( )
n

kI G  выберем следующие [22]: 

( ) ( )
2

1 3( ) ( ) ,= − ⋅⋅
n n

I G E e G  
( ) ( )

2
2 3( ) ,= ⋅⋅

n n

I G e G  

( ) ( ) ( )
2 2

1 3 3( ) ( ) ,
   

= − ⋅⋅   
   

n n n

I G E e G e G  
( ) ( )

2 2 2
4 2 3( ) 2 .= ⋅⋅ − −

n n

I I IG G E          (5) 

Подставляя эти выражения в (2), получаем 

4( ) ( )
1

1

,
III

−
γ γ

γ=
= − + ϕ

− ∑
n np

n
GT G I                                 (6) 
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где 
( )

/ ( );γ γϕ = ∂ψ ∂
n

I G  
( ) ( )

( ) /γ γ= ∂ ∂
n n

IGI G G  — тензоры производной [19], 

которые имеют вид 

2
1 3 ;= −GI E e  2

2 3 ;=GI e  ( )
( )

3 1 1 2 2

1
;

2
= ⊗ + ⊗ ⋅⋅

n

GI O O O O G              (7) 

( )( ) ( )
2 2

4 1 1 2 2 3 32 2 ,= − ⊗ + ⊗ − ⊗ ⋅⋅
n

GI Δ O O O O e e G  

где 1 2 3 3 2;= ⊗ + ⊗O e e e e  2 1 3 3 1 ;= ⊗ + ⊗O e e e e  Δ  — единичный тен-

зор 4-го ранга. 

После нахождения энергетического тензора напряжений опреде-

ляют тензоры напряжений Коши T  и Пиолы — Кирхгофа 1 .−=P F T  

Определяющее соотношение (3) для свободной энергии Гельм-

гольца зададим в аналитической форме в виде 

( )( 12

0 11 1 1

1

2
ρψ = ρψ + − +
� � n

l I s ( ) ( )1 2
12 1 1 2 22 − − +n n
l I s I s ( ) )22

22 2 2− +n
l I s  

( ) ( )3 42

33 3 3 44 4 4 ,+ − + −n n
l I s l I s                             (8) 

где 0ψ  — начальное значение (константа) потенциала ;ψ  11l 12l 22l 33l 44l  

и 1n 2n 3n 4n  — упругие константы; sγ — начальные значения инва- 

риантов  

1
( ),

III
γ γ=

−
s I

n
E  1, ..., 4.γ =                              (9) 

Производные 
(n)

/ ( )γ γϕ = ∂ψ ∂I G  для потенциала (8) имеют вид 

( ) ( ) ( )1 1 22 1 1

1 1 11 1 1 1 12 1 1 2 2 ,
− −ϕ = − + − −n n n

n l I s n l I s I s  

( ) ( ) ( )2 1 22 1 1

2 2 22 2 2 2 12 1 1 2 2 ,
− −ϕ = − + − −n n n

n l I s n l I s I s          (10) 

( ) 3 1

3 3 33 3 3 ,
−ϕ = − n

n l I s  ( ) 4 1

4 4 44 4 4 .
−ϕ = − n

n l I s  

Методика нахождения параметров модели трансверсально-

изотропной среды. С помощью метода асимптотического осредне-

ния для НСКМ удается построить определяющие соотношения (2), 

исходя из таковых для отдельных слоев. Однако эти соотношения не 

имеют явного аналитического выражения, их рассчитывают в виде 

численного алгоритма решения локальной задачи на ЯП. Такой спо-

соб является очень точным с математической точки зрения, но при-
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водит к большим затратам на вычисление напряжений 
( )n

T  по гра- 

диенту деформации .F  

Рассмотрим иной метод построения диаграмм деформирования, 

когда соотношения (2) заданы в виде явных аналитических соотно-

шений (5), (8), а входящие в эти соотношения константы НСКМ  

11l 12l 22l 33l 44l  и 1n 2n 3n 4n  находим из условия наилучшей аппрок-

симации кривых деформирования ( ),=T FF  полученных с помощью 

прямого численного решения задачи на ЯП для некоторых стандарт-

ных задач макроскопического деформирования, в которых реализу-

ется однородное напряженно-деформированное состояние с T  и ,F  

не зависящими от координат. Численный метод решения локальной 

задачи на ЯП для несжимаемого НСКМ, предложенный в работе [16], 

был использован в данной работе. 

В качестве стандартных задач макроскопического деформирова-

ния рассмотрим класс задач трехосновного растяжения-сжатия пла-

стины в форме параллелепипеда, грани которого параллельны осям 

координат .αOe  Закон движения пластины при таких движениях 

имеет вид 

, ,α α α α
α= =

�

x k X x X                                  (11) 

где ( )αk t  — неизвестные функции времени. 

Градиент деформации для движения (10) имеет вид =F  
3

2

1

,α α
α=

= =∑ k e U  а условие несжимаемости (4) — 1 2 3 1.=k k k  

Энергетические меры деформаций и обратные к ним тензоры 

можно выразить явно 

3( )
III III 2

1

1 1
;

III III

− −
α α

α=
= =

− − ∑
n

n n
k

n n
G U e                      (12) 

( ) ( ) ( )
3( )

III1 2

III
1

1
III III .

− −−
α−

α= α
= − = − ∑

n
n

n
n n

k
G U e                 (13) 

Заметим, что ненулевыми будут только диагональные компонен-

ты меры деформаций. Подставляя (13) в (7), находим выражения для 

инвариантов 

( )( ) ( )
III III

1 11 22 1 2

1
;

III

− −= + = +
−

n n
n n

I G G k k
n

 
( )

III
2 33 3

1
;

III

−= =
−

n
n

I G k
n

 3 0;=I  
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( ) ( )( )( ) ( )
2 III 2 III2 2

4 11 22 1 2

1
.

III

− −= + = +
−

n n
n n

I G G k k
n

 

Подставляя (4) и (5) в (6) и (7), находим, что энергетические тен-

зоры напряжений также будут иметь диагональный вид 

3( ) ( )
2

1

;αα α
α=

=∑
n n

TT e                                      (14) 

( ) ( )( )
( III) III III4

1 1 2 2 3 1 1 2 2 .
III

− − − −
αα α α α α α α

ϕ= − + ϕ δ + δ + ϕ δ + δ + δ
−

n
n n n

T pk k k
n

 

(15) 

Тензор напряжений Коши будет диагонален: 

3
2

1

;αα α
α=

=∑TT e                                         (16) 

( )
III ;−

αα α αα=
n

n
T k T                                      (17) 

III III
III 4 1 4 2

1 1 1 2 2 3 .
III III

− −
−

αα α α α α
    ϕ ϕ= − + ϕ + δ + ϕ + δ + ϕ δ        − −    

n n
n k k

T p k
n n

 (18) 

Одноосное растяжение композита перпендикулярно оси транс- 

версальной изотропии. Рассмотрим случай растяжения пластины 

перпендикулярно оси 3.Oe  Для определенности положим, что растя-

жение осуществляется вдоль оси 1.Оe  При таком нагружении 11 0,≠T  

22 0,=T  33 0.=T  Тогда уравнения (18) принимают следующий вид: 

( )

( )

( )

III III4
11 1 1 1

III III4
2 1 2

III
3 2

1 2 3

;
III

0 ;
III

0 ;

1.

− −

− −

−

 ϕ = − + ϕ +  − 
 ϕ  = − + ϕ +  − 
 = − + ϕ


=

n n

n n

n

T p k k
n

p k k
n

p k

k k k

               (19) 

Исключая из этой системы p  и выражая 3k  из условий несжи- 

маемости, получим 

III
3 2;−= ϕn

p k  

III III
III 4 2

2 2 1

1 2

1
.

III

− −
−    ϕϕ = ϕ +    −   

n n
n k

k
k k n

                      (20) 
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Последнее соотношение позволяет выразить ( )2 2 1=k k k  и 3 =k  

( )3 1 ,= k k  что дает возможность построить зависимость напряжения 

( )11 1T k  от 1:k  

( ) ( ) ( )III III III4
11 1 3 1 2 1 1 1 .

III

− − −ϕ = − ϕ + ϕ + − 

n n n
T k k k k k

n
         (21) 

В этой зависимости присутствуют семь неизвестных констант: 

11 12 22 44, , , ,l l l l 1 2 4, , .n n n  Их поиск осущестляем путем сравнения 

аппроксимационной диаграммы деформирования (21) и эксперимен-

тальной диаграммы 
( ) ( )11 1 ,
э

T k  полученной в результате решения ло-

кальных задач МАО, возникающих при одноосном растяжении СКМ, 

соответствующем рассматриваемому. Методика решения этой задачи 

изложена в [16]. Однако поскольку число упругих констант слишком 

велико, для наилучшего описания диаграмм деформирования при 

разных видах нагружения используем одновременно несколько экс-

периментов для нахождения этих констант. 

Одноосное растяжение композита вдоль оси трансверсальной 

изотропии. Рассмотрим случай растяжения вдоль оси 3.Oe  При та-

ком нагружении 11 0,=T  22 0,=T  33 0.≠T  Тогда уравнения (18) при-

водят к  

( )

( )

( )

III III4
1 1 1

III III4
2 1 2

III
33 3 2

1 2 3

0 ;
III

0 ;
III

;

1.

− −

− −

−

 ϕ = − + ϕ +  − 
 ϕ  = − + ϕ +  − 
 = − + ϕ


=

n n

n n

n

p k k
n

p k k
n

T p k

k k k

                 (22) 

Исключая из этой системы p  и выражая 2k  из условий несжи- 

маемости, получим 

( )III III4
1 1 1 ;

III

− −ϕ = ϕ + − 

n n
p k k

n
                         (23) 

( ) ( ) ( ) III
IIIIII 4 1 3III4

1 1 1 1 3 1

1/
1/ .

III III

−
−− −

 ϕϕ   ϕ + = ϕ +   − −   

n
nn n k k

k k k k
n n

    (24) 
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Последнее соотношение позволяет выразить ( )1 1 3=k k k  и 2 =k  

( )2 3 ,= k k  тогда получаем зависимость ( )33 3 ,T k  т. е. диаграмму попе-

реченого деформирования НСКМ  

( ) III III III4
33 3 1 1 1 3 2.

III

− − −ϕ = − ϕ + + ϕ − 

n n n
T k k k k

n
               (25) 

В этой зависимости также присутствуют семь неизвестных кон-

стант: 11 12 22 44, , , ,l l l l 1 2 4, , .n n n  Их поиск осуществляем путем сравне-

ния с экспериментальной диаграммой деформирования 
( ) ( )33 1 ,
э

T k  

полученной в результате решения локальных задач МАО, возникаю-

щих при поперечном одноосном растяжении НСКМ. 

Двухосное растяжение вдоль направлений, перпендикуляр-

ных оси трансверсальной изотропии. Задача формулируется анало-

гично одноосному растяжению. Отличие заключается в том, что 

условие свободного края будет выполняться только на одной грани 

НСКМ 11 0,≠T  22 0,≠T  33 0.=T  Тогда уравнения (18) приводят к  

( )

( )

( )

III III4
11 1 1 1

III III4
22 2 1 2

III
3 2

1 2 3

;
III

;
III

0 ;

1.

− −

− −

−

 ϕ = − + ϕ +  − 
 ϕ  = − + ϕ +  − 
 = − + ϕ


=

n n

n n

n

T p k k
n

T p k k
n

p k

k k k

               (26) 

Исключив p  из этой системы, получим  

( ) ( )

( ) ( )

III III III4
11 3 2 1 1 1

III III III4
22 3 2 2 1 2

;
III

.
III

− − −

− − −

 ϕ = − ϕ + ϕ +  −  


ϕ  = − ϕ + ϕ +  − 

n n n

n n n

T k k k
n

T k k k
n

           (27) 

Поскольку 3k  зависит от 1k  и 2k  (из условий несжимаемости), то 

11,T  22T тоже будут функциями 1k  и 2k . В результате численного реше-

ния системы уравнений (27) находим ( )11 11 1 2, ,=T T k k  ( )22 22 1 2, .=T T k k  

Аналогично решается задача о двухосном растяжении по направ-

лениям 1Oe  и 3,Oe  в результате которой находим две функции  

( ) ( )11 11 1 2 33 33 1 2, , , .= =T T k k T T k k                         (28) 
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Формулировка задачи поиска параметров модели. Объединим 

теперь полученные решения четырех задач: (21), (25), (27) и (28). Из 

решения соотвествующих локальных задач МАО имеем четыре серии 

кривых, соответствующих одноосному и двухосному растяжению: 

( ) ( )11 11 1 ;= э
T T k  

( ) ( )33 33 3= э
T T k ; 

( ) ( )
( ) ( )

11 11 1 2

22 22 1 2

, ;

, ;

 =


=

э

э

T T k k

T T k k
                                      (29) 

( ) ( )
( ) ( )

11 11 1 3

33 33 1 3

, ;

, .

 =


=

э

э

T T k k

T T k k
  

Для каждого конкретного набора 11 12 22 44, , , ,l l l l 1 2 4, ,n n n  могут 

быть построены кривые для трансверсально-изотропного материала, 

которые назовем теоретическими. 

Задачу нахождения параметров 11 12 22 44, , , ,l l l l 1 2 4, ,n n n  сфор-

мулируем как задачу минимизации некоторой метрики, характеризу-

ющей ошибку — отклонение теоретической диаграммы для конкрет-

ного набора упругих констант от соответствующей 

экспериментальной диаграммы деформирования: 

( )
11 12 22 44 1 2 4

( )

, , , , , ,

, min.→Э

l l l l n n n

R T T                                 (30) 

Используем две метрики вычисления ошибки:  

( ) ( )( ) 2
( )

1

1 ,

, ;αβ αβ
ωω= α β

= −∑∑
N

ЭЭ
R T TT T                      (31) 

( ) ( )

2

( )
2

1 ,

, 1 ,
αβ

ω= α β αβ ω

 
 = −
 
 

∑∑
N

Э

Э

T
R

T
T T                      (32) 

здесь ω  — номера точек на диаграмме деформирования.  

С помощью метрики (31) можно получить классический МНК и 

минимизировать среднеквадратичное отклонение теоретических зна-

чений компонент тензора напряжений Коши от экспериментальных  

в конечном числе контрольных точек. Достоинства этой метрики — 

простота вычислений и наличие большого количества методов реше-

ния МНК. Недостаток — относительная погрешность для малых 
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напряжений получается больше, чем для больших значений напря-

жений. 
Использование метрики (32) позволяет минимизировать относи-

тельную погрешность, однако слагаемые с 
( )

0αβ =Э
T  необходимо  

исключать. На практике следует исключать слагаемые 
( )

αβ < εЭ
T  при 

некотором заданном малом числе 0.ε >  Это обстоятельство не поз-

воляет контролировать соответствующие величины .αβT  

Для решения задач минимизации (30) применен метод Нелдера—
Мида. 

Результаты численного моделирования диаграммы деформи-
рования НСКМ при одноосном растяжении. Для численного рас-
чета диаграмм деформирования НСКМ по методу МАО для каждого 
изотропного слоя композита применяли модели класса Bn, в которых 
определяющие соотношения имели вид  

( )1 2
1

1
( III) (1 ) ( ) 1 ,

III III

−   + β= − + µ − + − β − − β  − −  

p
n I

n n

( ) ( ) ( ) ( )

T G G E G
n n n n

 

n = I, II, IV, V, 

где µ  и β  — упругие константы модели, различные для каждого 

слоя композита.  

Для модели материала VB  были проведены численные расчеты 

согласно разработанному методу. Построены графики диаграмм де-

формирования 11 11( )P F  с тремя различными наборами констант: 

слой 1 — 0,8 МПа, 1;µ = β =  

слой 2 — 1, 4 МПа, 1;µ = β =  

слой 3 — 0,7 МПа, 0,9.µ = β =  

Относительные толщины слоев 1 0,2,=h  2 0,6,=h  3 =h  

1 21 0,2.= − − =h h  

На рис. 1 показаны графики функций 11 11( )P F  для компоненты 

осредненного тензора напряжений Пиолы — Кирхгофа 11P  в зависи-

мости от компоненты 11F  осредненного градиента деформаций, кото-
рая изменялась в диапазоне от 1 до 2. Для остальных компонент 

осредненного градиента принимались значения: 1
22 33 11( ) ,−= =F F F  

0, .= ≠ijF i j  Последние равенства соответствуют выполнению усло-

вий несжимаемости det 1.=F  Такие значения характеризуют одно- 
осное деформирование слоистого композита в направлении, парал-
лельном плоскости слоев. 
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Рис. 1. Диаграммы деформирования 
11 11

( )P F  для слоистого композита, состоящего  

из  трех  слоев  с  разными   толщинами  слоев  (а)  и  диаграмма  распределения  

11 11
( )P F  в ЯП композита (б) 

 

Расчеты проводили для четырех значений соотношения слоев: 

1) 1 2 3 1 20, 2, 0,6, 1 0,2;= = = − − =h h h h h  

2) 1 2 31, 0, 0;= = =h h h  

3) 1 2 30, 1, 0;= = =h h h  

4) 1 2 30, 0, 1.= = =h h h  

Случаи 2–4 соответствуют гомогенным материалам с характерис- 
тиками 1, 2 и 3-го слоев.  

Для значения 11 2=F  была рассчитана зависимость компоненты 

( )11 ξP  от локальной координаты ЯП композита 0,5 0,5.− ≤ ξ ≤  

Численное моделирование диаграмм деформирования для 

других моделей Bn. Кроме модели VB  для расчетов диаграмм де-

формирования при одноосном растяжении были также использованы 

модели IВ  и IIB  (рис. 2), IVB  (рис. 3). Значения констант ,µ β  и тол-

щины слоев были выбраны те же, что и при расчете по модели V .B  

Из рис. 3 видно, что значения констант по-разному влияют на харак-
теристики материала в различных моделях. 

Численный расчет диаграмм деформирования для двухслой-
ного композита, состоящего из реальных материалов. Для даль-
нейших расчетов были взяты реальные значения констант ,µ β  для 

резины (табл. 1) и полиуретана (табл. 2). 
Толщина слоев двухслойного композита из резины и полиуретана 

составляет соответственно 2 / 3,=рh  1 / 3.=пh  В результате расчетов 

были получены данные, на основании которых были построены диа-
граммы деформирования композитов. Они совпали для пары моделей 

I V,B B  (рис. 4, а) и для пары II IV,B B  (рис. 4, б).  
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Рис. 2. Диаграммы деформирования композита согласно моделям IB (а) и IIB (б) 

 

 

 

Рис. 3. Диаграммы деформирования композита в модели IVB (а) и сравнение  

диаграмм деформирования ( )1
111P F  в разных моделях (б) 

 

 

                      Таблица 1 

Упругие характеристики  

резины в моделях nB  

n  ,µ  МПа β  

I 5,145 0,13 

II 19,11 1 

IV 19,11 –1 

V 5,145 –0,13 

V* 4,41 1 
 

                         Таблица 2 

Упругие характеристики  

полиуретана в моделях nB  

n  ,µ  МПа β  

I 3,15 0,616 

II 11,56 –0,45 

IV 11,45 0,45 

V 3,15 –0,616 
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Рис. 4. Диаграммы деформирования композита из резины и полиуретана в моделях 

I V,B B  (а) и II IV,B B  (б) 

 

Был выполнен расчет для модели VB  при другом соотношении 

слоев ( 1/ 3, 2 / 3)= =р пh h  и показано сравнение полученных эффек-

тивных диаграмм деформирования в разных моделях (рис. 5). 

 

Рис. 5. Диаграмма деформирования в модели VB  для композита из резины и поли-

уретана  при  отношении  толщин слоев 1:2 (а) и сравнение эффективных диаграмм  

деформирования композита в разных моделях (б) 

 

Численный расчет диаграмм для трехслойного композита. 
Результаты расчета для НСКМ с тремя слоями полиуретан–резина–

полиуретан в соотношении 1:4:1 в моделях I ,B  II ,B  IVB  и VB  приве-

дены на рис. 6. 

Программа двухосного растяжения НСКМ показана на рис. 7. 

( )

1/8

3/8

1/2

0 0

0 0 , 1 2.

0 0 −

 
 

= ≤ ≤ 
 
 
 

k

F k k k

k
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Рис. 6. Диаграмма деформирования композита  

в соотношении 1:4:1 в модели IB  при одноосном растяжении 

 

Рис. 7. Программа двухосного деформирования НСКМ (а) и диаграмма  

в моделях IB  и VB  (б) 

 

Результат расчета для НСКМ с тремя слоями полиуретан–резина–

полиуретан в соотношении 1:4:1 в моделях IIB  и IVB  при двухосном 

нагружении представлен на рис. 8. 

 

Рис. 8. Диаграммы одноосного деформирования НСКМ (а) и двухосного 

деформирования НСКМ (б) в моделях IIB  и IVB  
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Численный расчет эффективных упругих констант модели 
НСКМ как трансверсально-изотропной среды. На основании по-
лученных диаграмм был выполнен поиск эффективных параметров 
модели НСКМ из трех слоев как трансверсально-изотропной среды. 
По найденным параметрам модели были построены диаграммы де-
формирования. Сравнительные диаграммы деформирования НСКМ 
при одноосном растяжении и при простом сдвиге, полученные пря-
мым расчетом с помощью метода МАО и с помощью аппроксимации 
на основе модели эффективной трансверсально-изотропной среды 
(ЭТИС), приведены на рис. 9. 

 

Рис. 9. Сравнительные диаграммы одноосного (а) и сдвигового (б)  
деформирований, полученных с помощью МАО и модели ЭТИС 

 
Максимальные относительные погрешности в полученных диа-

граммах составляют соответственно 11 и 13 %, что говорит о вполне 
удовлетворительном качестве модели эффективной трансверсально-
изотропной среды (2), (8). 

Выводы. Предложена модель эффективной трансверсально-изо- 
тропной нелинейно-упругой несжимаемой среды с конечными дефор-
мациями, которая относится к классу универсальных моделей, форму-
лируемых в терминах одновременно четырех классов энергетических 
пар тензоров напряжений — деформаций. Модель применена для диа-
грамм деформирования слоистых несжимаемых упругих композитов  
с конечными деформациями и периодической структурой и с исполь-
зованием универсального представления определяющих соотношений 
для слоев композита. 

Предложен метод нахождения упругих эффективных констант 
модели композита путем решения задачи минимизации отклонения 
диаграмм деформирования композита, полученных для набора стан-
дартных задач с помощью прямого численного решения задач на ЯП 
и с помощью аппроксимационной диаграммы по модели ЭТИС. 
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Выполнено численное моделирование диаграмм деформирования 

несжимаемых слоистых композитов с конечными деформациями  

с помощью методов МАО и ЭТИС. Показано, что метод ЭТИС поз-

воляет получать диаграммы дефомирования с приемлемой инженер-

ной точностью. Использование метода ЭТИС дает возможность раз-

вязать решение задач микро- и макроскопического деформирования 

нелинейно-упругих композитов с конечными деформациями и суще-

ственно уменьшить вычислительные затраты при решении задач рас-

чета напряженно-деформированного состояния конструкций из не-

линейно-упругих композитов. 
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Modeling the effective characteristics of transversely  

isotropic incompressible composites with finite strains 

© Yu.I. Dimitrienko, E.A. Gubareva, S.B. Karimov, D.Yu. Kolzhanova 

Bauman Moscow State Technical University, Moscow, 105005, Russian Federation 
 
The paper considers a model of effective constitutive relations for a transversal-isotropic 

incompressible composite with finite strains. The model belongs to the so-called class of 

universal models that connect several pairs of energy stress and strain tensors simulta-

neously. A method is proposed for separating coupled problems of micro- and macro-

scopic deforming composites with finite strains that arise when the method of asymptotic 

homogenization (AH) of periodic structures is used. The method is based on the applica-

tion of the effective constitutive relation model as an approximation dependence of the 

results of numerical simulation of the composite deformation curves obtained using the 

exact AH method. To find the elastic constants of the transversely isotropic composite 

model the method of minimizing the deviation of the approximation of deformation dia-

grams from the AH diagrams is used for a series of problems of standard deforming at 

finite strains. To solve minimization problems, the Nelder—Mead method is used. The re-

sults of numerical simulation by the proposed method for nonlinear elastic layered com-

posites are presented, which showed good approximation accuracy, achieved due to ap-

plication of the proposed method for the separation of coupled problems of micro- and 

macroscopic deforming. 

 

Keywords: layered composites, incompressible media, transversely isotropic medium, fi-

nite strains, asymptotic homogenization method, universal models of elastic media, ener-

gy tensor pairs 
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